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Abstract. Nowadays a great deal of attention is devoted to the issue of supporting big data 

analytics over big mobile social data. These data are generated by modern emerging social 

systems like Twitter, Facebook, Instagram, and so forth. Mining big mobile social data has been 

of great interest, as analyzing such data is critical for a wide spectrum of big data applications 

(e.g., smart cities). Among several proposals, clustering is a well-known solution for extracting 

interesting and actionable knowledge from massive amounts of big mobile (geo-located) social 

data. Inspired by this main thesis, this paper proposes an effective and efficient similarity-matrix-

based algorithm for clustering big mobile social data, called TourMiner, which is specifically 

targeted to clustering trips extracted from tweets, in order to mine most popular tours. The main 

characteristic of TourMiner consists in applying clustering over a well-suited similarity matrix 

computed on top of trips. 

1   Introduction 

Social networks coupled with the diffusion of smart mobile devices equipped with GPS 
sensors have contributed to generate a big amounts of users-generated contents which are 
geo-referenced and timestamped. These are recognized in literature as big mobile social 
data (e.g., [1,2,3]). By analizying recent research trends, it follows that, nowadays, a great 
deal of attention is devoted to the issue of supportingbig mobile social data analytics. 
These data are generated by modern emerging social systems like Twitter, Facebook, 
Instagram, and so forth. Mining big mobile social data (e.g., [13,14]) has been of great 
interest, as analyzing such data is critical for a wide spectrum of big data applications 
(e.g., smart cities). The possibility of cross-analyzing geo-references, timestamps, 
characteristics of content authors, and, last but not least, message contents, poses new 
challenges to the research community (e.g., [4]). CISCO estimated that data on the 
Internet will increase at a Compound Annual Growth Rate of 25% by the year 2017. Thus, 
in order to deal with continuously-growing-in-size data sets, it will be necessary to 
frequently scale-up existing algorithms or to define new paradigms for big mobile social 
data analytics (e.g., [5,6]).  

Another aspect to be faced-off is represented by the amenity of synthesizing big data 
collections with the purpose of highlighting relevant meanings embedded within them. 



Several real-world applications, such as social network community identification (e.g., 
[7]) and their trajectory summarization (e.g., [8]), require means to filter-out the 
communities of users and further to group and represent similar trajectories. This latest 
task implies scaling-down the collecions of big data by removing noise and redundancies, 
so that highlighting the main representative spatio-temporal patterns (e.g., [9]). Faceted 
search (e.g., [10]) and clustering techniques can be used to this purpose since their goal is 
to identify groups of items within the target data set with common characteristics in a 
feature space, while removing outliers and noise which are considered uninteresting from 
further analysis. 

Inspired by this main thesis, this paper proposes an efficient implementation of 
similarity-matrix-based algorithm for clustering big mobile social data, called 
TourMiner, which is specifically targeted to clustering trips extracted from geo-located 
tweets, in order to mine most popular tours. The main characteristic of TourMiner 
consists in applying clustering (any clustering algorithm) over a well-suited similarity 
matrix (possibly using distinct similarity measures) computed on top of trips. 

Looking at specific algorithmic charateristics, TourMiner can be considered as a 
hybrid algorithm as it sequentially applies a “scaling-up” and subsequently a “scaling-
down” phase to mine tours. In particular, the first phase applies a scale-up approach in 
order to identify the community of tourists visiting a region of interest within a big set of 
Tweet messages, which are collected during a period of time, so that data increasingly 
scale up with time, thus efficiently improving our previous contribution [15]. The second 
phase, which is based on geo-partitioning and geo-clustering, applies a scale-down 
approach for identifying and synthetising the main tours followed by most of the tourists 
within the target region, by exploiting low-cost hardware, GPU-based computing 
paradigms (e.g., [16]) and open-source libraries to manage available memory resources, 
thus significantly extending and further improving our previous contribution [17] and 
clearly matching the strict computational requirements of big data management by means 
of low cost hardware (e.g., [18]). 

2   TourMiner: An Effective and Efficient Algorithm for Mining 

Most-Popular Tours from Big Social Media 

In this Section, we provide principles and implementation of the proposed algorithm 
TourMiner. TourMiner comprises three main phases: 

1. Geo-partitioning: trips extracted from tweets are generated according to 
different representations so that they are defined as semantic trajectories over 
a spatial domain ontology, intended as a representation of spatial entities of 
interest with their geographic footprints; 

2. Computing the pairwise trip similarity matrix: trips are processed in order to 
compute a suitable similarity matrix that is the fundamental data structure of 
our clustering approach; 

3. Trip clustering (based on the similarity matrix): finally, on the basis of the 
similarity matrix, trips are clustered as to extract actionable knowledge from 
the target big mobile social media data. 

In the following, we describe these phases in details. 



2.1   Geo-Partitioning 

Firstly, each trip is represented by a semantic trajectory, i.e., a sequence of IDs a1, a2, …, 

an that identify interesting locations on the spatial domain, such as Points Of Interest 
(POIs) like restaurants, hotels, museums, etc, or area districts such as city areas, 
municipalities, etc. An example of semantic trajectory defined by sequence of IDs could 
be:  

<Malpensa Airport, Milano Central Station, Bergamo Railway Station, Piazza 
Vecchia> 

By this representation we may argue that the traveller landed in Malpensa airport, then 
went to Milano Central Station and from there he travelled by train to Bergamo where he 
visited the medioeval Piazza Vecchia. 

This same trajectory could be represented in a coarsest way bearing more uncertainty 
on the visited locations, for example by a sequence of municipalities, namely: 

<Malpensa, Milano, Bergamo, Bergamo> 

In this case, we can just guess the visited cities. 
In this phase, one can choose to represent a trip based on the following two kinds of 

IDs: 

a) Categorical IDs: trips are represented in terms of a sequence of objects of 

interest that are implemented as Point Of Interest (POI) on the spatial domain or zones 

such as municipalities, ZIP code areas, NUTS etc. In this case, IDs are categorical and 

neither a metric, nor an order is defined between them. 

b) Numerical IDs: trips are represented in terms of a sequence of natural numbers 

ai  N among which a linear order is defined so that ai  aj if i  j. These IDs identify 

cells in a regular tessellation of the spatial domain, and can be generated by space filling 

functions [12] such as the Z-Order and the Peano curve. They are named as GeoHash 

codes and a metric over them is defined by a function of kind: |.| N → N that satisfies the 

following properties: (i) |ai – ai| = 0; (ii) |ai – aj| = |aj – ai|; (iii) |ai – aj| + |aj – ak|  |ai – 

ak|. 

The advantage of using GeoHash codes is represented by the opportunity of using 
similarity measures based on a metric distance, thus achieving more accuracy. In fact, 
when using categorical IDs, the matching operation between two IDs is crisp, they either 
match or not, and, in this context, it is meaningless to evaluate fuzzy matching, since two 
IDs, e.g. ZIP codes, may differ only by one digit and be distant in space. On the other 
hand, when using GeoHash codes, one obtains trajectoies whose semantic is both implicit 
and uncertain with respect to the objects of interest: to explicit the semantics, one should 
determine which POIs are within each cell identified by the GeoHash codes. 

2.2   Computing the Pairwise Trip Similarity Matrix 

Computing the pairwise trip similarity matrix depends on the types of IDs used to 
represent trips (see Section 2.1), i.e. via categorical IDs or numerical IDs. In the 
following, we address both cases. Before computing such similarity matrix, we first 



eliminate redundancies, i.e. consecutive duplications of the same ID in the trip 
representation. Therefore, a trip of kind: 

A = ID1, ID2, ID3, ID3, ID3, ID4, ID3 

becomes of kind: 

A = ID1, ID2, ID3, ID4, ID3 

after redundancy removal. 

Furthermore, pointwise trips are deleted. For instance, a trip of kind: 

B = ID1, ID1, ID1 

becomes of kind: 

B = ID1 

after redundancy removal and then, being pointwise, it is deleted. 
The motivation of redundancy removal relies in the idea of not to favor the subsequent 

grouping of trips into a tour just because many tweets have been sent from the same 
locality. This usually happens in the airport area, and free WIFI hotspots . 

We next describe how the pairwise trip similarity matrix is defined for both cases (i.e., 
categorical IDs and numerical IDs). 

Case 1: Categorical IDs. Let A = a1, a2, …, aN and B = b1, b2, …, bM denote a pair of 

trips of different length, such that N  M, being ai and bj strings that identify categories 

(i.e., ZIP or NUTS codes). Let A  B denote the intersection trip between A and B. We 

define the cardinality of A  B, denoted by A  B, as follows: 

|𝐴𝐵| = ∑ max
𝑗=1,…max⁡(𝑁,𝑀)⁡|⁡𝑏𝑗⁡≠⁡𝑎𝑘⁡∀⁡𝑘<𝑖⁡

(𝑎𝑖 = 𝑏𝑗

min(𝑁,𝑀)

𝑖=1

) 

 
(1) 

such that: 

𝑎𝑖 ∈ 𝐴⁡𝑤𝑖𝑡ℎ⁡|𝐴| = min(𝑁,𝑀) (2) 

and: 

𝑏𝑗 ∈ 𝐵⁡𝑤𝑖𝑡ℎ⁡|𝐵| = max(𝑁,𝑀) (3) 

Formula (1) is computed as follows. We first scan every element of the shortest trip A 
and match it with every element of the longest trip B by increasing the counter if there is a 
new element in the longest trip (not previously matching any other element of B) that 
matches the current element of A. This way, we constrain an element of B to be selected 
only once by one single element of A. This measure is symmetric. This means that by 
scanning the longest trip and matching it with every element of the shortest one of the two 
respective trips we would obtain the same result due to the fact that we cancel, at each 
match, the elements already selected. 

Furthermore, the cardinality of intersection trip satisfies the following properties: 

A  B = B  A 

A  A = A 

 
(4) 



Finally, in our framework, we exploit the following similarity measures between trips 
(case of trips modeled in terms of categorical IDs): 

𝐹𝑢𝑧𝑧𝑦_𝐼𝑛𝑐𝑙𝑢𝑠𝑖𝑜𝑛(𝐴, 𝐵) = |𝐴𝐵| =
|AB|⁡

min⁡(𝑁,𝑀)
 

𝐽𝑎𝑐𝑐𝑎𝑟𝑑_𝑆𝑖𝑚(𝐴, 𝐵) =
|AB|

𝑁 + 𝑀 − |AB|
 

𝐷𝑖𝑐𝑒_𝑆𝑖𝑚(𝐴, 𝐵) = 2
|AB|

𝑁 + 𝑀
 

𝐶𝑜𝑠𝑖𝑛𝑒_𝑆𝑖𝑚(𝐴, 𝐵) =
|AB|

√𝑁 ∗ √𝑀
 

𝐹𝑢𝑧𝑧𝑦_𝑆𝑖𝑚(𝐴, 𝐵) =
1

2
(
|AB|

𝑁
+
|AB|

𝑀
) 

 
 
 
 
 

(5) 

These similarity measures are used to enrich the knowledge discovery phase from big 
social media implemented in our framework. 

Case 2: Numerical IDs. Let A = a1, a2, …, aN and B = b1, b2, …, bM denote a pair of 

trips of different length, such that N  M, being ai and bj numbers that identify cells (i.e., 
GeoHash codes, which we assume to be implemented in terms of Z-Order codes – see 
Section 2.1). Let MaxZcode be the maximum Zcode among those generated, which is 
defined as follows: 

𝑀𝑎𝑥𝑍𝑐𝑜𝑑𝑒 = max(𝑎𝑁 , 𝑏𝑀) (6) 

Also, let (A – B ) denote the difference-trip between A and B, and |A – B| its 
cardinality, which is defined as follows: 

|𝐴 − 𝐵| =∑ min
𝑗=1,…,𝑀⁡|⁡

𝑏𝑗⁡≠argmin(|𝑎𝑘−𝑏𝑗|)∀𝑘<𝑖

(|𝑎𝑖 − 𝑏𝑗| ⁡

𝑁

𝑖=1

) 
 

(7) 

Furthermore, the cardinality of difference-trip satisfies the following properties: 

A – B = B – A 

A – A = 0 

 
(8) 

Finally, in our framework, similarly to the case of trips modeled as categorical IDs, 
we exploit the following similarity measures between trips (case of trips modeled in terms 
of numerical IDs): 

𝐹𝑢𝑧𝑧𝑦_𝐼𝑛𝑐𝑙𝑢𝑠𝑖𝑜𝑛_𝐻𝑎𝑠ℎ(𝐴, 𝐵)

=
𝑀𝑎𝑥𝑍𝑐𝑜𝑑𝑒 −

|𝐴 − 𝐵|
min⁡(𝑁,𝑀)

𝑀𝑎𝑥𝑍𝑐𝑜𝑑𝑒
 

𝐽𝑎𝑐𝑐𝑎𝑟𝑑_𝑆𝑖𝑚_𝐻𝑎𝑠ℎ(𝐴, 𝐵)

=
𝑀𝑎𝑥𝑍𝑐𝑜𝑑𝑒 −

|𝐴 − 𝐵|
𝑁 +𝑀 − |𝐴 − 𝐵|

𝑀𝑎𝑥𝑍𝑐𝑜𝑑𝑒
 

𝐷𝑖𝑐𝑒_𝑆𝑖𝑚_𝐻𝑎𝑠ℎ(𝐴, 𝐵) =
𝑀𝑎𝑥𝑍𝑐𝑜𝑑𝑒 − 2

|𝐴 − 𝐵|
𝑁 +𝑀

𝑀𝑎𝑥𝑍𝑐𝑜𝑑𝑒
 

 
 
 
 
 

(9) 



𝐶𝑜𝑠𝑖𝑛𝑒_𝑆𝑖𝑚_𝐻𝑎𝑠ℎ(𝐴, 𝐵) =

𝑀𝑎𝑥𝑍𝑐𝑜𝑑𝑒 −
|𝐴 − 𝐵|

√𝑁 ∗ √𝑀
𝑀𝑎𝑥𝑍𝑐𝑜𝑑𝑒

 

𝐹𝑢𝑧𝑧𝑦_𝑆𝑖𝑚_𝐻𝑎𝑠ℎ(𝐴, 𝐵) =
𝑀𝑎𝑥𝑍𝑐𝑜𝑑𝑒 − |𝐴 − 𝐵|

𝑀𝑎𝑥𝑍𝑐𝑜𝑑𝑒
 

These similarity measures, just like to case of trips modeled as categorical IDs, are 
used to enrich the knowledge discovery phase from big social media implemented in our 
framework. 

On the basis of the definitions above, the pairwise trip similarity matrix SIM is 

introduced as a D  D matrix such that, for each pair of trips ti and tj, the entry SIM(ti,tj) 
satisfies the following properties: 

𝑖. 𝑆𝐼𝑀(𝑡𝑖 , 𝑡𝑖) = 1

𝑖𝑖. 𝑆𝐼𝑀(𝑡𝑖, 𝑡𝑗) = 𝑆𝐼𝑀(𝑡𝑗, 𝑡𝑖)
 

(10) 

Based on (ii), the similarity matrix SIM is a triangular matrix hence we need to 

compute only its values below the main diagonal, i.e.  i = 1, …, D. We compute 
SIM(ti,tj) with j = 1,…, i-1 only. 

Moreover, since the computation of the similarity between any two trips is 
independent from the other trips, in our implementation this process has been parallelized 
by exploiting GPU-based computing paradigms. 

2.3   Similarity-Matrix-based Trip Clustering 

Here we describe the core strategy of our proposed TourMiner algorithm, i.e. clustering 
of trips based on the similarity matrix SIM (see Section 2.2). 

In this phase, clustering is applied to group trips into clusters based on their similarity, 
and then the biggest clusters are selected as popular tours. In principle, any clustering 
algorithm based on a similarity matrix could be applied. In our implementation, we tested 
both the density based DBSCAN clustering algorithm, generating a flat partition [24], and 
the hierarchical agglomerative complete link clustering whose main idea consists in 
generating, at each hierarchical cycle, a new cluster by focusing on the two clusters, said 
Ci and Cj , with greatest similarity in SIM. The complete link clustering main steps are the 
following: 

Step 1. Identification of the two clusters to fuse Ci and Cj as follows: 

{𝑖, 𝑗} = argmax(𝑆𝐼𝑀(𝑖, 𝑗))⁡⁡𝑖, 𝑗 = 1,… , 𝐷 (11) 

Step 2. Computation of the similarity of the actual clusters with respect to the candidate 
cluster in terms of the minimum among the similarities with the elements of the candidate 
cluster (see formula in step 4.3 in of Algorithm 1). This guarantees that, when a new 
element or cluster is added to a cluster to form a higher-level cluster, all its (clustered) 
elements share a minimum similarity degree. This allows generating compact clusters.Step 
3. Selection of the popular tours: they are the first k biggest clusters in partition with 

minimum similarity , being k and  tunable input parameters. identifies the level of the 
cluster hierarchy, i.e., the cluster partition. k is used to select the clusters with greatest 
number of trips from this partition.



3   Experimental Assessment and Analysis 

In order to prove the effectiveness and the efficiency of our proposed algorithm 
TourMiner, we designed and developed an experimental campaign, whose results are 
reported in this Section. 

In particular, experiments were aimed at evaluating the proposed clustering approach 
in terms of both time and memory needed to process the distinct phases (see Section 2). 
We designed and evaluated optimized solutions for all these phases. We discuss these 
solutions in the following. 

 

Fig. 1. Tip Creation Time 

 

 

Fig. 2. Geo-Partitioning with NUTS 

 

We developed ad-hoc metrics over such phases, and we studied the evolution of such 
metrics by increasing the number of tweets and the number of trips. Both parameters 
well-test the scalability of our proposed algorithm. In the following, we provide our 
experimental results. 

First, in order to have a better understanding on the realibility of our experimental 
campaign, Fig. 1 shows the time needed to create annotated trips, i.e., semantic 
trajectories, in terms of GeoHash codes depending on the number of tweets. This, indeed, 
allows us to better estimate the size of data we deal with, as size is one of the main 
characteristics of big data to be considered when designing algorithms that run on big data 
sets. 

 

 

Fig. 3. Geo-Partitioning with GeoHash 

 

 

Fig. 4. Temporal Perfomance of the Whole 

Tour Mining Process with GeoHash and 

Complete-link Clustering 

 



Fig. 2 and Fig 3 focus, instead, on the geo-partitioning phase of algorithm TourMiner. 
Here, we report the time needed for computing the geo-partition in the two different cases 
of NUTS (Fig. 2) and GeoHash (Fig. 3), still with respect to the number of tweets without 
the parallel optimization. 

Fig. 4 reports the time needed for the whole tour mining process by using GeoHash 
codes as semantic annotation of trips and the Complete-link clustering algorithm to 
identify popular tours. Here, it should be noticed that our introduced optimization support 
for the geo-partitioning phase (see Section 2) allows us to obtain a polynomial trend with 
degree 2 instead of 3. This further confirms to us the realibility of our clustering 
methodology over big mobile social data. 

By analyzing the experimental results of our campaign, it clearly follows the 
efficiency of our proposed algorithm TourMiner for clustering big mobile social data. 

 4   Conclusions and Future Work 

In this paper, we have introduced and experimentally assessed TourMiner, an effective 
and efficient algorithm for spatially mining big mobile social data about to semantic 
trajectories. TourMiner implements a clustering procedure that founds on (i) suitable 
semantic representations of trips extracted from Twitter data, alternatively in terms of 
categorical IDs or numerical IDs, and (ii) a well-suited similarity matrix computed on top 
of such trips. We provided motivations, definitions and analysis of TourMiner, along 
with its experimental assessment and analysis over Twitter data according to several 
(experimental) parameters. Results clearly comfirm the benefits coming from our 
proposal. 

Future work is mainly oriented towards enriching our proposed framework with 
innovative characteristics like uncertain big data management (e.g., [19]) and big data 
approximation paradigms (e.g., [27]). 
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