
Importing Agent-like Interaction in Object
Orientation

Matteo Baldoni, Guido Boella
Dipartimento di Informatica

Università degli Studi di Torino
C.so Svizzera, 185 — I-10149 Torino (Italy)

Email: {baldoni,guido}@di.unito.it

Leendert van der Torre
Department of Computer Science FTST

6, rue Richard Coudenhove - Kalergi
L-1359 Luxembourg

Email: leon.vandertorre@uni.lu

Abstract— This paper begins with the comparison of the
message-sending mechanism, for communication among agents,
and the method-invocation mechanism, for communication
among objects. Then, we describe an extension of the method-
invocation mechanism by introducing the notion of “sender” of
a message, “state” of the interaction and “protocol” using the
notion of “role”, as it has been introduced in the powerJava
extension of Java. The use of roles in communication is shown
by means of an example of protocol.

I. INTRODUCTION

The major differences of the notion of agent w.r.t. the notion
of object are often considered to be “autonomy” and “proactiv-
ity” [27]. Less attention has been devoted to the peculiarities
of the communication capabilities of agents, which exchange
messages while playing roles in protocols. For example, in the
contract net protocol (CNP) an agent in the role of initiator
starts by asking for bids, while agents playing the role of
participants can propose bids which are either accepted or
rejected by the Initiator.

The main features of communication among agents which
emerge from the CNP example are the following:

1) The message identifies both its sender and its receiver.
E.g., in FIPA the acceptance of a proposal is:
(accept-proposal :sender i :receiver
j :in-reply-to

bid089 :content X :language
FIPA-SL).

2) The interaction with each agent is associated to a state
which evolves according to the messages that are ex-
changed. The meaning of the messages is influenced by
the state. E.g., in the FIPA iterated contract net protocol,
a “call for proposal” is a function of the previous calls
for proposals, i.e., from the session.

3) Messages are produced according to some protocol (e.g.,
a call for proposal must be followed by a proposal or a
reject).

4) The sender and the receiver play one of the roles
specified in the protocol (e.g., initiator and participant
in the contract net protocol).

5) Communication is asynchronous: the response to a mes-
sage does not necessarily follow it immediately. E.g., in
the contract net protocol, a proposal must follow a call

for proposal and it must arrive, no matter when, before
a given deadline.

6) The receiver autonomously decides to comply with
the message (e.g., making a proposal after a call for
proposal).

The message metaphor has been originally used also for
describing method calls among objects, but it is not fully ex-
ploited. In particular, message-exchange in the object oriented
paradigm has the following features:

1) The message is sent to the receiver without any infor-
mation concerning the sender.

2) There is no state of the interaction between sender and
receiver.

3) The message is independent from the previous messages
sent and received.

4) The sender and the receiver do not need to play any role
in the message exchange.

5) The interaction is synchronous: an object waits for the
result of a method invocation.

6) The receiver always executes the method invoked if it
exists.

These two scenarios are rather different but we believe that
the object-oriented (OO) paradigm can learn something from
the agent-oriented world. The research question of this paper is
thus: is it profitable to introduce in the OO paradigm concepts
taken from agent communication? how can we introduce
in the OO paradigm the way agents communicate? And as
subquestions: which of the above properties can be imported
and which cannot? How to translate the properties which can
be imported in the OO paradigm? What do we learn in the
agent-oriented world from this translation?

The methodology that we use in this paper is to map the
properties of agent communication to an extension of Java,
powerJava [4], [3], [5], which adds roles to objects. Roles
are used to represent the sender of a message (also known as
the “player of the role”), to represent the state of the interaction
via role instances, allowing the definition of protocols and
asynchronous communication as well as the representation of
the different relations between objects.

The choice of the Java language is due to the fact that it is
one of the prototypical OO programming languages; moreover,

158



MAS systems are often implemented in Java and some agent
programming languages are extensions of Java, e.g., see the
Jade framework [8] or the JACK software tool [26]. In this
way we can directly use complex interaction and roles offered
by our extension of Java when building MAS systems or
extending agent programming languages.

Furthermore, we believe that in order to contribute to the
success of the Autonomous Agents and Multiagent Systems
research, the theories and concepts developed in this area
should be applicable also to more traditional views. It is
a challenge for the agent community to apply its concepts
outside strictly agent-based applications. The OO paradigm is
central in Computer Science and, as observed and suggested
also by Juan and Sterling [19], before AO can be widely used
in industry, its attractive theoretical properties must be first
translated to simple, concrete constructs and mechanisms that
are of similar granularity as objects.

The paper is organized as follows. In Section II we show
which properties of agent communication can be mapped to
objects. In Section III we introduce how we model interaction
in powerJava and in Section IV we discuss how to use roles
in order to model complex forms of interaction between object
inspired by agent interaction, we also illustrate the contract net
protocol among objects using powerJava. Conclusions end
the paper.

II. COMMUNICATION BETWEEN OBJECTS

When approaching an extension of a language or of a
method, the first issue that should be answered is whether
that extension brings along some advantages. In our specific
case, the question can be rephrased as: Is it useful for the OO
paradigm to introduce a notion of communication as developed
in MAS? We argue that there are several acknowledged limita-
tions in OO method invocation which could be overcome, thus
realizing what we could call a “ session-aware interaction” .

First of all, objects exhibit only one state in all interactions
with any other object. The methods always have the same
meaning, independently of the identity or type of the object
from which they are called.

Second, the operational interface of Abstract Data Types
induces an asymmetrical semantic dependency of the callers
of operations on the operation provider: the caller takes
the decision on what operation to perform and it relies on
the provider to carry out the operation. Moreover, method
invocation does not allow to reach a minimum level of “ control
from the outside” of the participating objects [2].

Third, the state of the interaction is not maintained and
methods always offer the same behavior to all callers under
every circumstance. This limit could be circumvented by
passing the caller as a further parameter to each method and
by indexing, in each method, the possible callers.

Finally, even though asynchronous method calls can be
simulated by using buffers, it is still necessary to keep track
of the caller explicitly.

The above problems can be solved by using the way
communication is managed between agents and defining it

as a primitive of the language. By adopting agent-like com-
munication, in fact, the properties presented in Section I –
with the only exception of autonomy, (6), which is a property
distinguishing agents from objects – can be rewritten as in the
following:

1) When methods are invoked on an object also the object
invoking the method (the “ sender” ) must be specified.

2) The state of the interaction between two objects must
be maintained.

3) In presence of state information, it is possible to imple-
ment interaction protocols because methods are enabled
to adapt their behavior according to the interaction that
has occurred so far. So, for instance, a proposal method
whose execution is not preceded by a call for proposals
can detect this fact and raise an exception.

4) The object whose method is invoked and the object
invoking the method play each one of the roles specified
by the other, and they respect the requirements imposed
on the roles. Intuitively, requirements are the capabilities
that an object must have in order to be able to play the
role.

5) The interaction can be asynchronous, thanks to the fact
that the state of the interaction is maintained.

For a better intuition, let us consider as an example the
case of a simple interaction schema which accounts for two
objects. We expect the first object to wait for a “ call for
proposal” by the other object; afterwards, it will invoke the
method “ propose” on the caller. The idea is that the call for
proposal can be performed by different callers and, depending
on the caller, a different information (e.g. the information that
it can understand) should be returned by the first object. More
specifically, we can, then, imagine to have an object a, which
exposes a method cfp and waits for other objects to invoke
it. After such a call has been performed, the object a invokes
a method propose on the caller. Let us suppose that two
different objects, b and c, do invoke cfp. We desire the data
returned by a to be different for the two callers.

Since we look at the agent paradigm the solution is to have
two different interaction states, one for the interaction between
a and b and one for the interaction between a and c. In our
terminology, b and c interact with a in two distinct roles
(or better, role instances) which have distinct states: thus it is
possible to have distinct behaviors depending on the invoker.
If the next move is to “ accept” a proposal, then we must be
able to associate the acceptance to the right proposal.

In order to implement these properties we use the notion
of role introduced in the powerJava language in a different
way with respect to how it has been designed for.

III. MODELLING INTERACTION WITH powerJava

In [24], [1], [13], [22] the concept of “ role” has been
proved extremely useful in programming languages for several
reasons. These reasons range from dealing with the separation
of concerns between the core behavior of an object and its
interaction possibilities, reflecting the ontological structure of
domains where roles are present, from modelling dynamic

159



changes of behavior in a class to fostering coordination among
components. In [4], [3], [5] the language powerJava is
introduced: powerJava is an extension of the well-known
Java language, which accounts for roles, defined within social
entities like institutions, organizations, normative systems, or
groups [6], [15], [28]. The name powerJava is due to the fact
that the key feature of the proposed model is that institutions
use roles to supply the powers for acting (empowerment).
In particular, three are the properties that characterize roles,
according to the model of normative multiagent systems [10],
[11], [12]:

Foundation: a (instance of) role must always be
associated with an instance of the institution it be-
longs to (see Guarino and Welty [17]), besides being
associated with an instance of its player.
Definitional dependence: The definition of the role
must be given inside the definition of the institution
it belongs to. This is a stronger version of the
definitional dependence notion proposed by Masolo
et al. [20], where the definition of a role must include
the concept of the institution.
Institutional empowerment: the actions defined for
the role in the definition of the institution have access
to the state and actions of the institution and to the
other roles’ state and actions: they are powers.

Roles require to specify both who can play the role and
which powers are offered by the institution in which the role
is defined. The objects which can play the role might be of
different classes, so that roles can be specified independently
of the particular class playing the role. For example a role
customer can be played both by a person and by an organi-
zation. Role specification is a sort of double-sided interface,
which specifies both the methods required to a class playing
the role (requirements, keyword “ playedby” ) and the methods
offered to objects playing the role (powers keyword “ role” ).
An object, which plays a role, is empowered with new methods
as specified by the interface.

To make an example, let us suppose to have a printer which
supplies two different ways of accessing to it: one as a normal
user, and the other as a superuser. Normal users can print their
jobs and the number of printable pages is limited to a given
maximum. Superusers can print any number of pages and can
query for the total number of prints done so far. In order to
be a user one must have an account which is printed on the
pages. The role specification for the user is the following:

role User playedby AccountedPerson {
int print(Job job);
int getPrintedPages();

}

interface AccountedPerson {
Login getLogin();

}

The superuser, instead:

role SuperUser playedby AccountedPerson {
int print(Job job);
int getTotalPrintedPages();

}

Requirements must be implemented by the objects which act
as players.

class Person implements AccountedPerson {
Login login; // ...
Login getLogin() {

return login;
}

}

Instead, powers are implemented in the class defining the
institution in which the role itself is defined. To implement
roles inside an institution we revise the notion of Java inner
class, by introducing the new keyword definerole instead
of class followed the name of the role definition that the
class is implementing.

class Printer {
final static int MAX_PAGES_PER_USER;
private int totalPrintedPages = 0;

private void print(Job job, Login login) {
totalPrintedPages += job.getNumberPages();
// performs printing

}

definerole User {
int counter = 0;
public int print(Job job) {

if (counter > MAX_PAGES_USER)
throws new IllegalPrintException();

counter += job.getNumebrPages();
Printer.this.print(job, that.getLogin());
return counter;

}
public int getPrintedPages(){

return counter;
}

}

definerole SuperUser {
public int print(Job job) {

Printer.this.print(job, that.getLogin());
return totalPrintedPages;

}
public int getTotalPrintedpages() {

return totalPrintedPages;
}

}

}

Roles cannot be implemented in different ways in the same
institution and we do not consider the possibility of extending
role implementations (which is, instead, possible with inner
classes), see [5] for a deeper discussion.

As a Java inner class, a role implementation has access
to the private fields and methods of the outer class (in the
above example the private method print of Printer used both
in role User and in role SuperUser) and of the other roles
defined in the outer class. This possibility does not disrupt
the encapsulation principle since all roles of an institution are
defined by who defines the institution itself. In other words, an
object that has assumed a given role, by means of it, has access

160



and can change the state of the corresponding institution and of
the sibling roles. In this way, we realize the powers envisaged
by our analysis of the notion of role.

The class implementing the role is instantiated by passing
to the constructor an instance of an object satisfying the
requirements. The behavior of a role instance depends on the
player instance of the role, so in the method implementation
the player instance can be retrieved via a new reserved key-
word: that, which is used only in the role implementation.
In the example the invocation of that.getLogin() as a
parameter of the method print.

All the constructors of all roles have an implicit first
parameter which must be passed as value the player of the
role. The reason is that to construct a role we need both the
institution the role belongs to (the object the construct new
is invoked on) and the player of the role (the first implicit
parameter). For this reason, the parameter has as its type the
requirements of the role. A role instance is created by means of
the construct new and by specifying the name of the “ inner
class” implementing the role which we want to instantiate.
This is like it is done in Java for inner class instance creation.
Differently than other objects, role instances do not exist by
themselves and are always associated to their players.

Methods can be invoked from the players, given that the
player is seen in its role. To do this, we introduce the new
construct

receiver <-(role) sender
This operation allows the sender (player of the role) to use
the powers given by “ role” when it interacts with the receiver
(institution) the role belongs to. It is similar to role cast as
introduced in [3], [4], [5] but it stresses more strongly the
interaction aspect of the two involved objects: the sender uses
the role defined by the receiver for interacting with it. Let us
see how to use this construct in our running example. The first
instructions in the main create a printer object hp8100 and
two person objects, chris and sergio. chris is a normal
user while sergio is a superuser. Indeed, instructions four
and five define the roles of these two objects w.r.t. the created
printer. The two users invoke method print on hp8100.
They can do this because they have been empowered of
printing by their roles. The act of printing is carried on by
the private method print. Nevertheless, the two roles of
User and SuperUser offer two different way to interact
with it: User counts the printed pages and allows a user to
print a job if the number of pages printed so far is less than a
given maximum; SuperUser does not have such a limitation.
Moreover, SuperUser is empowered also for viewing the
total number of printed pages. Notice that the page counter
is maintained in the role state and persists through different
calls to methods performed by a same sender/player towards
the same receiver/institution as long as it plays the role.

class PrintingExample {
public static void main(String[] args) {

Printer hp8100 = new Printer();
Person chris = new Person();
Person sergio = new Person();

hp8100.new User(chris);
hp8100.new SuperUser(sergio);

(hp8100 <-(User) chris).print(job1);
(hp8100 <-(SuperUser) sergio).print(job2);
(hp8100 <-(User) chris).print(job3);

System.out.println("Chris has printed " +
(hp8100 <-(User) chris).getPrintedPages()

+ " pages");
System.out.println("The printer hp8100 has

printed a total of " +
(hp8100 <-(User)sergio).getTotalPrintedPages()
+ " pages");

}
}

By maintaining a state, a role can be seen as realizing a
session-aware interaction, in a way that is analogous to what
done by cookies or Java sessions for JSP and Servlet. So in
our example, it is possible to visualize the number of currently
printed pages, as in the above example. Note that, when we
talk about playing a role we always mean playing a role
instance (or qua individual [20] or role enacting agent [14])
which maintains the properties of the role.

An object has different (or additional) properties when it
plays a certain role, and it can perform new activities, as
specified by the role definition. Moreover, a role represents a
specific state which is different from the player’s one, which
can evolve with time by invoking methods on the roles. The
relation between the object and the role must be transparent
to the programmer: it is the object which has to maintain a
reference to its roles. However, a role is not an independent
object, it is a facet of the player.

Since an object can play multiple roles, the same method
will have a different behavior, depending on the role which the
object is playing when it is invoked. It is sufficient to specify
which the role of a given object, we are referring to, is. In the
example chris can become also superuser of hp8100,
besides being a normal user

hp8100.new SuperUser(chris);
(hp8100 <-(SuperUser) chris).print(job4);
(hp8100 <-(User) chris).print(job5);

Notice that in this case two different sessions will be kept:
one for chris as normal user and the other for chris as
superuser. Only when it prints its jobs as a normal user
the page counter is incremented.

IV. USES OF ROLES IN powerJava

In this paper we exploit the language powerJava in a
new way which allows modelling the agent inspired vision of
interaction among objects. The basic idea of powerJava is
that objects (e.g. hp8100), called institutions, are composed
of roles which can access the state of the institution and of
other sibling roles and, thus, can coordinate with each other
[4]. However, since an institution is just an object which
happens to contain role implementations, nothing prevents us
to consider every object as an institution, and to consider the
roles as different ways of interacting with it. Many objects can
play the same role (a printer can have many users) as well as

161



the same object can play different roles (chris is both a user
and a superuser). Each role instance has its own state, which
represents the state of the interaction with the player of the
role.

Fig. 1. The possible uses of roles.

Figure 1 illustrates the different interaction possibilities
given by roles, which do not exclude the traditional direct
interaction with the object when roles are not necessary. Other
possibilities like sessions shared by multiple objects are not
considered for space reasons.

Arrows represent the relations between players and their
respective roles, dashed arrows represent the access relation
between objects, i.e., their powers.

• Drawing (a) illustrates the situation where an object
interacts with another one by means of the role offered
by it. This is, for instance, the case of sergio being a
SuperUser of hp8100.

• Drawing (b) illustrates an object (e.g., chris) interacting
in two different roles with another one (hp8100 in
the example). This situation is used when an object
implements two different interfaces for interacting with
it, which have methods (like print) with the same
signature but with different meaning. In our model the
methods of the interfaces are implemented in the roles
offered by the objects to interact with them. The role
represent also the different sessions of the interaction with
the different objects.

• Drawing (c) illustrates the case of two objects which
interact by means of the roles of an institution (which
can be considered as the context of execution). This is the
original case, powerJava has been developed for [4]; in
this paper, we used as a running example the well-known
5 philosophers scenario. The institution is the table, at
which philosophers are sitting and coordinate to take the
chopsticks and eat since they can access the state of each
other. The coordinated objects are the players of the role
chopstick and philosopher. The former role is
played by objects which produce information, the latter
by objects which consume them. None of the players
contains the code necessary to coordinate with the others,
which is supplied by the roles.

• In drawing (d) two objects interact with each other, each
playing a role offered by the other. This is often the case

of interaction protocols: e.g., an object can play the role
of initiator in the Contract Net Protocol if and only if
the other object plays the role of participant. Indeed, the
Contract Net Protocol is reported as an example in the
following section.

The four cases can be combined to represent more complex
interaction schemas.

This view of roles inspires a new vision of the the OO
paradigm, whose object metaphor has been accepted too
acritically and it has not been subject to a deep analysis. In
particular, it is a naive view of the notion of object and it does
not consider the analysis of the way humans conceptualize
objects performed in philosophy and above all in cognitive
science [16]. In particular, cognitive science has highlighted
that properties of objects are not objective properties of the
world, but they depend on the properties of the agent concep-
tualizing the object: objects are conceptualized on the basis of
what they “ afford” to the actions of the entities interacting with
them. Thus, different entities conceptualize the same object in
different ways. We translate this intuition in the fact that an
object offers different methods according to which type of
object it is calling it: the methods offered (the powers of a
role) depend on the requirements offered by the caller.

A. The Contract Net Protocol example

Hereafter, we report an example set in the framework of
interaction protocols, describing an implementation of the
well-known contract net protocol. The example follows the
interaction schema (d), reported in the previous section, and it
is substantially different than the analogous example reported
in a previous paper [3]. In fact, the solution proposed here is
distributed instead of being centralized (let us denote by this
name a solution respecting case (c) in the previous section).
The advantage of the old solution was that players did not
need to know anything about the coordination mechanism.
In this case, instead, each object also supplies a role for its
counterpart, which describes the powers that are given to the
counterpart in the interaction. For instance, the object that
will play the initiator role will define the powers of
the participants, and vice versa. The powers are the
messages that the initiator will understand; this is very
different than our previous proposal, where the powers only
allowed to start a negotiation or to take part to a negotiation,
depending on the role, and the exchanged messages were
hidden inside the institution.

In this new version, roles are also used for main-
taining interaction sessions. In the following example,
refuseProposal can be executed only if cfp has already
been executed, this can be tracked thanks to the role state and,
in particular, thanks to variable state (set to the constant
value STATE 1 or STATE 2 to check which operations of the
role can be called in which state and under which condition).

Observe that when the object, offering a role, is supposed
to answer something, it needs to invoke a method, which is
supplied as a power of a role, which is in turn offered by the
object to which it is responding. In the contract net, a possible

162



answer to a cfp is the performative propose. In this case,
see also the code reported at the end of this section, the above
interaction is implemented by the instruction:

(that <-(Participant)
Peer.this).propose(getProposal(task))

Here, Peer.this refers to the object offering the role
initiator; such an object means to play the role of
Participant and, in particular, to invoke the power
propose offered by this role. The role participant is
offered by the object which is currently playing the initiator
(identified in the above code line by that), see Fig. 2.

Participant

Peer

evaluateTask

propose

Peer

this

Peer.this that

Initiator cfp

Fig. 2. Description of the interaction between an Initiator and a Participant,
when, after a “ cfp” performative, the answer will be a “ propose” performative.

The communication is asynchronous, since the proposal is
not returned by the cfp method.

Notice that an object which is currently playing the role of
participant in a given interaction, can at the same time play
the role of initiator in another interaction. See the method
evaluateTask, in which a new interaction is started for
executing a subtask by creating the two roles in the respective
objects and by linking players to them:

role Initiator playedby InitiatorReq {
void cfp(Task task);
void rejectProposal(Proposal proposal);
void acceptProposal(Proposal proposal);

}
interface InitiatorReq {
// must implement the role specification
// Participant

}

role Participant playedby ParticipantReq {
void propose(Proposal proposal);
void refuse(Task task);
void inform(Object result);
void failure(Object error);

}

interface ParticipantReq {
// must implement the role specification
// Initiator

}

class Peer implements ParticipantReq,
InitiatorReq

{

definerole Initiator {
final static int STATE_1 = 1;
final static int STATE_2 = 2;
int state = STATE_1;

public void cfp(Task task) {
if (state != STATE_1)
throws new IllegalPerfomativeException();

state = STATE_2;
if (evaluateTask(task))
(that <-(Participant) Peer.this).

propose(getProposal(task));
else
(that <-(Participant) Peer.this).

refuse(task);
}

public void refuseProposal(Proposal proposal) {
if (state != STATE_2)
throws new IllegalPerformativeException();

removeProposal(proposal);
state = STATE_1;

}

public void acceptProposal(Proposal proposal) {
if (state != STATE_2)
throws new IllegalPerfomativeException();

try {
(that <-(Participant) Peer.this).

inform(performTask(proposal, task));
} catch(TaskExecException err) {
(that <-(Participant) Peer.this).

failure(err);
}
state = STATE_1;

}

}

private boolean evaluateTask(Task task) {
Task subTask; // ...
this.new Participant(peer);
peer.new Initiator(this);
(peer <-(Initiator) this).cfp(subTask);

// ...
}

definerole Participant { ... }

}

V. CONCLUSION

In this work, we have proposed the introduction of a form
of interaction between objects, in the OO paradigm, which
borrows from the theory about agent communication. The
main advantage is to allow session-aware interactions in which
the history of the occurred method invocations can be taken
into account and, thus, introducing the possibility of realizing,
in a quite natural way, agent interaction protocols. The key
concept which allows communication is the role played by an
object in the interaction with another object. Besides proposing
a model that describes this form of interaction, we have
also proposed an extension of the language powerJava that
accounts for it.

One might wonder whether the introduction of agent-like
communication between objects gives us some feedback to
the agent world. We believe that the following lessons can be

163



learnt, in particular, concerning roles:
• Roles must be distinguished in role types and role in-

stances: role instances must be related to the concept of
session of an interaction.

• The notion of role is useful not only for structuring insti-
tutions and organizations but for dealing with interaction
among agents.

• The notion of affordance can be used to allow agents to
interacts in different ways with different kind of agents.

In this paper, we show a different way of using powerJava
exploiting roles to model communications where: the method
call specifies the caller of the object, the state of the interaction
is maintained, methods can be part of protocols, objects play
roles in the interaction and method calls can be asynchronous
as in agent protocols.

This proposal builds upon the experience that the au-
thors gathered on the language powerJava [4], [3], [5],
which is implemented by means of a precompiler. Basically
powerJava shares the idea of gathering roles inside wider
entities with languages like Object Teams [18] and Ceasar
[21]. These languages emerge as refinements of aspect oriented
languages aiming at resolving practical limitations of other
languages. In contrast, our language starts from a conceptual
modelling of roles and then it implements the model as
language constructs. Differently than these languages we do
not model aspects. The motivation is that we want to stick
as much as possible to the Java language. However, aspects
can be included in our conceptual model as well, under
the idea that actions of an agent playing a role “ count as”
actions executed by the role itself. In the same way, the
execution of methods of an object can give raise by advice
weaving to the execution of a method of a role. On the
other hand, these languages do not provide the notion of role
casting we introduce in powerJava. Roles as double face
interfaces have some similarities with Traits [23] and Mixins
[9]. However, they are distinguished because roles are used
to extend instances and not classes. Finally, C# allows for
multiple implementations of interfaces. None of the previous
works, however, considers the fact that roles work as sessions
of the interaction between objects.

Some patterns partially address the same problems of this
paper. For example, the strategy design pattern allows to dy-
namically change the implementation of a method. However,
it is complex to implement and it does not address the problem
of having different methods offered to different types of callers
and of maintaining the state of the interaction between caller
and callee.

Baumer et al. [7] propose the role object pattern to solve
the problem of providing context specific views of the key
abstractions of a system. They argue that different context-
specific views cannot be integrated in the same class, otherwise
the class would have a bloated interface, and unanticipated
changes would result in recompilations. Moreover, it is not
possible either to consider two views on an object as an object
belonging to two different classes, or else the object would
not have a single identity. They propose to model context-

specific views as role objects which are dynamically attached
to a core object, thus forming what they call a subject. This
adjunct instance should share the same interface as the core
object. Our proposal is distinguished by the fact that roles
are always roles of an institution. As a consequence they do
not consider the additional methods of the roles as powers
which are implemented using also the requirements of the role.
Finally, in their model, since the role and its player share the
same interface, it is not possible to express roles as partial
views on the player object.

In UML 2.0 the Protocol State Machine (PSM) was in-
troduced to specify which operations of the classifier can
be called in which state and under which condition, thus
specifying the allowed call sequences on the classifiers oper-
ations [25]. This diagram is particular useful for representing
protocols between objects. Our proposal could help to im-
plement a PSM because of the possibility represents directly
by the notion of role all the message exchanges relevant to
the protocol, increasing the readability and reusability of the
protocol implementation itself.

By implementing agent like communication in an OO
programming language, we gain in simplicity in the language
development, importing concepts that have been developed
by the agent community inside the Java language itself.
This language is, undoubtedly, one of the most successful
currently existing programming languages, which is also used
to implement agents even though it does not supply specific
features for doing it. The language extension that we propose
is a step towards the overcoming of these limits.

At the same time, introducing theoretically attractive agent
concepts in a widely used language can contribute to the
success of the Autonomous Agents and Multiagent Systems
research in other fields. Developers not interested in the
complexity of agent systems can anyway benefit from the
advances in this area by using simple and concrete constructs
in a traditional programming language.

Future work concerns making explicit the notion of state of
a protocol so to make it transparent to the programmer and
allow to define the same method with different meanings in
each state. Finally, the integration of centralized and decen-
tralized approaches to coordination among roles (drawings (c)
and (d) of Figure 1) must be studied.

REFERENCES

[1] A. Albano, R. Bergamini, G. Ghelli, and R. Orsini, “An object data
model with roles,” in Procs. of VLDB’93, 1993, pp. 39–51.

[2] F. Arbab, “Abstract behavior types: A foundation model for components
and their composition,” in Formal Methods for Components and Objects,
LNCS 2852. Berlin: Springer Verlag, 2003, pp. 33–70.

[3] M. Baldoni, G. Boella, and L. van der Torre, “ Bridging agent theory and
object orientation: Importing social roles in object oriented languages,”
in Procs. of PROMAS’05 workshop at AAMAS’05, 2005.

[4] ——, “ Roles as a coordination construct: Introducing powerJava,” in
Procs. of MTCoord’05 workshop at COORDINATION’05, 2005.

[5] ——, “ Powerjava: ontologically founded roles in object oriented pro-
gramming language,” in Procs. of OOOPS Track of SAC’06, 2006.

[6] B. Bauer, J. Muller, and J. Odell, “Agent UML: A formalism for specify-
ing multiagent software systems,” Int. Journal of Software Engineering
and Knowledge Engineering, vol. 11(3), pp. 207–230, 2001.

164



[7] D. Baumer, D. Riehle, W. Siberski, and M. Wulf, “ Proc. of plop’02,” in
The role object pattern, 2002.

[8] F. Bellifemine, A. Poggi, and G. Rimassa, “ Developing multi-agent
systems with a FIPA-compliant agent framework,” Software - Practice
And Experience, vol. 31(2), pp. 103–128, 2001.

[9] L. Bettini, V. Bono, and S. Likavec, “A core calculus of mixin-based
incomplete objects,” in Procs. of FOOL Workshop, 2004, pp. 29–41.

[10] G. Boella and L. van der Torre, “Attributing mental attitudes to roles: The
agent metaphor applied to organizational design,” in Procs. of ICEC’04.
IEEE Press, 2004.

[11] — — , “A game theoretic approach to contracts in multiagent systems,”
IEEE Transactions on Systems, Man and Cybernetics - Part C, 2006.

[12] — — , “ Security policies for sharing knowledge in virtual communities,”
IEEE Transactions on Systems, Man and Cybernetics - Part A, 2006.

[13] M. Dahchour, A. Pirotte, and E. Zimanyi, “A generic role model
for dynamic objects,” in Procs. of CAiSE’02, ser. LNCS, vol. 2348.
Springer, 2002, pp. 643–658.

[14] M. Dastani, V. Dignum, and F. Dignum, “ Role-assignment in open agent
societies,” in Procs. of AAMAS’03. New York (NJ): ACM Press, 2003,
pp. 489–496.

[15] J. Ferber, O. Gutknecht, and F. Michel, “ From agents to organizations:
an organizational view of multiagent systems,” in LNCS n. 2935: Procs.
of AOSE’03. Springer Verlag, 2003, pp. 214–230.

[16] J. Gibson, The Ecological Approach to Visual Perception. New Jersey:
Lawrence Erlabum Associates, 1979.

[17] N. Guarino and C. Welty, “ Evaluating ontological decisions with onto-
clean,” Communications of ACM, vol. 45(2), pp. 61–65, 2002.

[18] S. Herrmann, “ Object teams: Improving modularity for crosscutting
collaborations,” in Procs. of Net.ObjectDays, 2002.

[19] T. Juan and L. Sterling, “Achieving dynamic interfaces with agents
concepts,” in Procs. of AAMAS’04, 2004.

[20] C. Masolo, L. Vieu, E. Bottazzi, C. Catenacci, R. Ferrario, A. Gangemi,
and N. Guarino, “ Social roles and their descriptions,” in Procs. of KR’04.
AAAI Press, 2004, pp. 267–277.

[21] M. Mezini and K. Ostermann, “ Conquering aspects with caesar,” in
Procs. of the 2nd International Conference on Aspect-Oriented Software
Development (AOSD). ACM Press, 2004, pp. 90–100.

[22] M. Papazoglou and B. Kramer, “A database model for object dynamics,”
The VLDB Journal, vol. 6(2), pp. 73–96, 1997.

[23] N. Scharli, S. Ducasse, O. Nierstrasz, and A. Black, “ Traits: Composable
units of behavior,” in LNCS, vol. 2743: Procs. of ECOOP’03, S. Verlag,
Ed., Berlin, 2003, pp. 248–274.

[24] F. Steimann, “ On the representation of roles in object-oriented and
conceptual modelling,” Data and Knowledge Engineering, vol. 35, pp.
83–848, 2000.

[25] The Object Management Group, “ Unified modeling language: Super-
structure,” Available at: http://www.omg.org/.

[26] M. Winikoff, “ JACK - intelligent agents: An industrial strength plat-
form,” in Multi-Agent Programming, R. H. Bordini, M. Dastani, J. Dix,
and A. El Fallah Seghrouchni, Eds. Berlin: Springer Verlag, 2005, pp.
175–193.

[27] M. J. Wooldridge and N. R. Jennings, “ Intelligent agents: Theory and
practice,” Knowledge Engineering Review, vol. 10, no. 2, pp. 115–152,
1995.

[28] F. Zambonelli, N. Jennings, and M. Wooldridge, “ Developing multia-
gent systems: The Gaia methodology,” IEEE Transactions of Software
Engineering and Methodology, vol. 12(3), pp. 317–370, 2003.

165


