
Incrementalizing Abstract Interpretation
Position Paper

Noah Van Es, Maarten Vandercammen, Coen De Roover
Software Languages Lab – Vrije Universiteit Brussel – Brussels, Belgium

{noahves, mvdcamme, cderoove}@vub.ac.be

Abstract—A powerful approach to design static analysers is
abstract interpretation, which reasons over an approximation
of the program’s behaviour. The Abstracting Abstract Machines

(AAM) technique, introduced by Van Horn & Might, presents a
systematic approach to derive abstract interpreters. However, it
is often not useable in the development and evolution of large-
scale applications, as with the current state-of-the-art, an AAM
analysis can not incrementally update its results upon changes in
the program. That is, whenever minor modifications occur in the
program’s source code, one needs to recompute the entire AAM
analysis from scratch, which can easily get time-consuming.

We therefore propose an incremental approach to abstract
interpretation, more precisely the AAM technique. That is, we
modify the technique so that the result of an AAM analysis,
the abstract state graph, can incrementally be updated following
a change in the program’s source code. Our algorithm tracks
dependencies between the nodes in the abstract syntax tree
(AST) of the program and the transitions in the abstract state
graph to invalidate and recompute new transitions in the state
graph upon a change in the AST. Our experiments using a
set of Scheme micro-benchmarks reveal that in practice this
approach is often limited, as only states that are identical
in both state graphs are reusable. We therefore introduce an
improvement to the original incremental algorithm, which we
refer to as state adaptation. State adaptation also enables reusing
states that are not identical, but similar. Both the original and
improved algorithm are integrated and evaluated in the Scala-
AM framework. Our current implementations already show
good results in terms of incremental efficiency, although more
optimization is required to achieve actual gains in run time
performance with our approaches.

Index Terms—static analysis, incremental computation, ab-
stract interpretation, AAM

I. INTRODUCTION

Static analysis tools are often an integral part in the
evolution of software artefacts to detect bugs early on in
the development process. Today’s IDEs are equipped with
powerful analysis tools that developers have come to rely on
to detect bugs in their programs early on. Static analysis is the
foundation of these tools, making it possible to check prop-
erties of a program without actually executing the program.
Static analyses that are used in this context not only require
precision and correctness, but also performance. In particular,
when developers make incremental changes to the source code,
they expect responsive feedback from the program analysis.
This results in a need for performant static analysis tools that
can efficiently update their results in response to changes in
the program.

We explore the incrementalization of the Abstracting Ab-
stract Machines (AAM) technique [1], an approach to sound
and decidable program analysis. Currently, when this analysis
technique analyses a given program and this program’s source
code is later edited, the analysis must throw away its original
result and recompute the analysis from scratch. Given a series
of small modifications to a program, which are typical for
an application under development, this often results in time-
consuming recomputation of the analysis. Indeed, we expect a
minor change to the program to only have a limited impact on
the resulting state graph, making recomputation of the entire
state graph redundant. Furthermore, analyses developed using
the AAM technique are notorious for being slow due to the
large state graph that needs to be computed, so efficiency and
performance are critical for these kinds of analyses [2].

We therefore hypothesise that an incremental approach
for the AAM technique can be developed, where as much
as possible of the original analysis result is reused while
analysing the updated program.

Concretely, we make the following contributions:
• We design an incremental variant of the AAM approach

to abstract interpretation that enables updating the ab-
stract state graph given a change in the AST of the
program.

• We present state adaptation as an improvement to this
algorithm, so that more reuse can be exploited from the
previously computed state graph.

• An implementation of both the original algorithm as well
as the improved version with state adaptation is made
available in the Scala-AM framework.

• We evaluate our implementation using a series of Scheme
micro-benchmarks that enable us to point out strengths
and weaknesses of our incrementalization approach.

II. BACKGROUND

Abstract interpretation [3] is a program analysis technique,
used to statically check some property of a given program. The
main idea behind abstract interpretation is that the analysis
reasons over an approximation of the program’s execution
behaviour. That is, the program’s semantics are abstracted
using an over-approximation to obtain an analysis that is sound
and decidable. In particular, we focus on the AAM technique.

This technique starts from a concrete CESKt⇤ abstract
machine, a state machine which acts as a concrete interpreter
for a language and hence models the concrete execution of

31



a program. The AAM technique systematically abstracts this
machine to an abstract

\CESKt⇤ abstract machine modelling
the abstract execution behaviour of a program. Running the
abstracted abstract machine on a given program produces an
abstract state graph approximating the execution of the pro-
gram. More precisely, a given program expression is injected

into an initial state s0. A transition relation modelling the
abstract semantics of the programming language then defines
how we step from one state to another, until the entire state
graph is computed. Figure 1 depicts an example of such a
resulting abstract state graph.

Fig. 1. Illustration of a state graph resulting from abstract interpretation.

III. INCREMENTALIZING AAM
We now present the foundation of our approach to incre-

mentalizing abstract interpretation, more precisely the AAM
technique. The goal of this incrementalization is to avoid full
recomputation of the analysis given a small change in the
source code of the analysed program. Therefore, the resulting
algorithm is able to incrementally update the abstract state
graph produced by the analysis, given a change to the pro-
gram’s abstract syntax tree (AST). That is, given the previously
computed state graph and a list of changes in the AST as input,
it produces a new, updated state graph.

Our approach operates on the level of the abstract state
graph. It does not rely on any language-specific features or
characteristics. Instead, it reuses the state graph computed
from the original program (henceforth referred to as the
previous state graph) as a cache that is kept up-to-date with
modifications in the AST through the invalidation of outdated
transitions. When recomputing the new state graph, transitions
that are still valid are reused directly, while invalidated tran-
sitions have to be recomputed.

To support our incrementalization approach, we need to
explicitly track dependencies between the nodes in the AST
and transitions in the abstract state graph. These dependencies
are registered and maintained in a data structure during the
analysis when building up the state graph.

By explicitly tracking these dependencies, we can efficiently
update the state graph given a change in the program’s source
code. Once such a change occurs, we first require an AST
differencer that matches nodes between the new and the old
AST and points out which of these nodes have been modified.
Afterwards, our algorithm works in two phases to update the
previously computed state graph. An example of such an initial
state graph is given in Figure 2.

Fig. 2. Illustration of an initially computed state graph.

• In the first phase, transitions that may be affected by
the change are invalidated, resulting in an invalidated
state graph. Finding out which transitions need to be
invalidated is done by examining the tracked dependen-
cies. An example of the resulting state graph is given in
Figure 3, where states whose transitions were invalidated
are highlighted in grey.

Fig. 3. Illustration of the state graph after invalidation.

• In the second phase, new transitions are recomputed from
those invalidated states, resulting in the updated state
graph. An example is given in Figure 4, where newly
computed states and transitions are highlighted in grey.

Fig. 4. Illustration of the state graph after recomputation.

Given these two steps, one ends up with a state graph
identical to the one obtained from recomputing it from scratch.

IV. STATE ADAPTATION

We now present an improvement to the previous incremen-
talization technique. More precisely, we introduce the concept
of state adaptation to overcome a shortcoming of the original
approach. A key observation is that when recomputing new

32



transitions, we often end up with states that are similar, but
not entirely identical to corresponding states in the previously
computed state graph. The original algorithm is not able to
exploit this, as these program states no longer appear identical
between the new and the old state graph. Indeed, transitions
that are not completely identical will be invalidated and
recomputed, and the initial approach’s effectiveness becomes
limited by the amount of states that are shared identically
between both graphs. Using state adaptation, we can now also
reuse the transitions of states that are not identical, but similar

to a state of the new graph.
The main idea is that if the difference, or delta, between

both states is unimportant to the computation of their succes-
sors, the transitions of one can be reused for the other. Doing
so avoids recomputation of transitions from scratch because
of minor differences in the program state after recomputation.
The high-level idea of state adaptation is shown in Figure 5.

Fig. 5. Illustration of state adaptation.

We refer to state adaptation as an indirect form of reuse, as
it does not enable direct reuse of states from the previous state
graph. Rather, it is more of a hybrid approach, as some work
is still required before a transition can be reused. That is, to
reuse the transition (s01, s

0
2) when determining the transition

(s1, s2) we require the following steps:
• Given the current state s1 for which we have to determine

the successor state, a similar state s01 is looked up the
previous state graph. If such a state exists, we compute
the delta between s1 and s01. In Figure 5, this is indicated
by an arrow from s1 to s01.

• Next, we examine the effects and dependencies of the
transition (s01, s

0
2). If we can determine that the computed

delta does not violate any of these, the transition is ready
for indirect reuse using state adaptation.

• This is done by adapting the successor of s01 (i.e. s02),
so that it can be reused as the successor of s1 (i.e. s2).
As indicated by the arrow from s02 to s2, this involves
applying the computed delta to s02 to obtain s2.

The main motivation for state adaptation is to avoid redun-
dant computation of transitions. Instead, an efficient incremen-
talization strategy should maximise reuse from the previous
state graph. State adaptation offers more flexibility in reusing
transitions, since it no longer requires states to be completely
identical. Of course, the current formulation of state adaptation
does not necessarily translate to better run time performance

in updating the state graph. While state adaptation can avoid
recomputation of transitions, it itself requires searching for
similar states, computing a state delta, checking for violations
of the delta with the effects of a transition, and then reapplying
the delta to some state. The approach presented here provides
a solid and safe technique to further improve the incremental
AAM algorithm.

V. IMPLEMENTATION

Both the original incrementalization approach, as well as
the improved algorithm augmented with state adaptation have
been integrated into the Scala-AM framework [4]. All source
code has been made available publicly in an online repository1.

Integrating our novel incremental approach into this existing
framework as an additional component offers several benefits.
It enables reusing most components of the abstract machine
that already exist in the framework. In addition, we avoid
producing an isolated artefact by implementing our approach
as a component of the framework, so that we can present it
as a flexible addition to an established environment.

At the time of writing, our implementation does not yet
feature an advanced AST differencer. Instead, it uses a simple
differencer that expects the same structure for the new and
old AST of the program. While the AST differencing is just
a front-end to our algorithm, we envision that future work
could integrate a more advanced AST matcher [5] in our
implementation to get more accurate differencing on larger,
real-world applications.

VI. EVALUATION

To evaluate the effectiveness of our incrementalization ap-
proach, we study to what extent the previous state graph can
be reused. More precisely, when recomputing the updated state
graph after a change in the AST, we measure how many of
those states are recomputed from scratch compared to how
many are reused or adapted from the state graph which was
computed in the previous run of the analysis. We expect that
lowering the amount of states that need to be recomputed
results in an improvement in the total run-time performance for
successive runs of the analysis given incremental modifications
to a program’s source code. Figure 6 shows how many states
need to be recomputed for a set of micro benchmarks.

Clearly, the original – or ‘naive’ algorithm – often falls
short, as for most benchmarks the majority of states have to be
recomputed. The reason for this is that after recomputation, we
often notice minor changes in all subsequent program states,
so that only states occurring before the recomputation can be
properly reused. A resulting insight here from this observation
is that direct reuse – i.e. reuse based on identical states between
both graphs – is limited in the context of incremental updates
to the state graph of an AAM analysis. This points out the need
for an alternative approach to reusability. Indeed, we observe
greater incremental efficiency for the ‘improved’ algorithm
that employs state adaptation. Using state adaptation, small

1
http://github.com/noahvanes/scala-am

33



co
un

tA

co
un

tB

co
un

tC

co
un

tD

gc
ipd fAd

d

fR
em

fPe
rm

rot
ate

A

rot
ate

B va
r

fac
t

eta

Pe
rce

nta
ge

 of
 re

co
mp

ute
d s

tat
es

0

20

40

60

80

100
Naive
Improved

Fig. 6. Recomputation ratios for both algorithms (lower is better).

differences that occur after recomputation can be accommo-
dated for. As a result, using state adaptation fewer states need
to be recomputed from scratch.

Currently, the focus of our evaluation is not yet to measure
absolute run time performance of the analysis. With our
current implementation, our gains in incremental efficiency
do not yet result in consistent gains in performance. The
main reason for this is that our implementation still copies
reused transitions from the previous state graph, and hence still
requires traversal of the entire state graph. We aim to solve this
issue by restarting recomputation only from invalidated states;
however, in order to do so, an improved implementation that
takes into account dynamic connectivity issues [6] is required.
This is necessary to avoid recomputation in graph components
that are disconnected from the initial state after invalidation
and therefore not reachable during the execution of the pro-
gram. Another major issue is that the current formulation of
state adaptation is not that efficient. As previously mentioned,
performing state adaptation can require several costly steps,
which can be more computationally expensive than simply
recomputing a transition from scratch. However, we believe
that the core idea of state adaptation offers a foundation that
enables exploiting more reuse in the context of incremental
AAM, and that such a foundation is more amendable to future
optimization than from scratch recomputation. It is clear that
evaluating the incremental effectiveness enables to assess the
potential performance benefits that could be achieved with a
more optimized implementation.

Finally, we asserted the correctness of our implementation
by comparing the results of our incremental analysis with those
of the original Scala-AM framework. For all the experiments
we conducted, the output of the incremental analysis was
identical to that of the original one.

VII. RELATED WORK

At the time of writing, no other incremental version of AAM
has yet been proposed or developed, so the work we presented

on our incremental AAM algorithm is entirely novel in that
regard. Nevertheless, a large body of research already exists for
incremental computation (IC) [7]. Looking at existing work in
the incrementalization of programs, in particular that of static
analyses, we discern two incrementalization approaches.

On one hand, manual approaches, where for a particular
kind of analysis an incremental version is designed manually.
Examples of such manual incrementalization efforts include
incremental static taint analysis in Andromeda [8] and the
static analysis of web applications in Gulfstream [9].

On the other hand, automatic approaches where an analysis
is automatically made incremental by specifying the analysis
in some framework. For instance, analyses specified in the
DSL of IncA [10] are automatically made incremental, and the
Reviser framework [11] enables automatic incrementalization
of analyses specified in the IFDS framework. Language sup-
port can also offer automatic incrementalization, using some
form of self-adjusting computation [12]. Examples include
adaptive functional programming [13] and incremental compu-
tation using Adapton [14]. In particular, incremental evaluation
of tabled Prolog [15] has already been employed to develop
incremental versions of existing static analysers [16].

Our own incremental AAM algorithm can be seen as an ad
hoc incrementalization approach. Manually incrementalizing
AAM allows for explicit, fine-grained control over the incre-
mentalization mechanism which is usually lost in automatic
incrementalization approaches.

VIII. CONCLUSION

We presented a brief overview of our work on designing an
incremental approach to abstract interpretation, more precisely
the AAM technique. The main idea is that we aim to avoid full
recomputation of the abstract state graph, given a change in
the source code of our program. Instead, our algorithm is able
to efficiently update the previously computed state graph by
invalidating affected transitions and recomputing new transi-
tions as required. We observed that this approach can fall short,
as states are often no longer identical after recomputation.
In general, we concluded that to efficiently update the state
graph, we can not only rely on reusing identical transitions
from the previous state graph. Therefore, state adaptation
was presented as a novel technique to exploit more indirect
reuse from the previous state graph. Our experiments reveal
that state adaptation can overcome the main weakness of the
original algorithm, since it can accommodate for insignificant
different in program states after recomputation. As a result,
the improved algorithm achieves great incremental efficiency,
i.e. it greatly reduces the amount of transitions that have to
be recomputed from scratch. However, future work should
aim to further optimise our current implementation, so that
these gains in incremental efficiency can also be translated into
actual performance gains. Nevertheless the results demonstrate
that our approach can provide a solid foundation for an
efficient and incremental approach to AAM.

34



REFERENCES

[1] Van Horn, D., & Might, M. (2010, September). Abstracting abstract
machines. In ACM Sigplan Notices (Vol. 45, No. 9, pp. 51-62). ACM.

[2] Johnson, J. I., Labich, N., Might, M., & Van Horn, D. (2013). Optimizing
abstract abstract machines. ACM SIGPLAN Notices, 48(9), 443-454.

[3] Cousot, P., & Cousot, R. (1977, January). Abstract interpretation: a
unified lattice model for static analysis of programs by construction or
approximation of fixpoints. In Proceedings of the 4th ACM SIGACT-
SIGPLAN symposium on Principles of programming languages (pp.
238-252). ACM.

[4] Stiévenart, Q., Vandercammen, M., De Meuter, W., & De Roover, C.
(2016, October). Scala-am: A modular static analysis framework. In
Source Code Analysis and Manipulation (SCAM), 2016 IEEE 16th
International Working Conference on (pp. 85-90). IEEE.

[5] Falleri, J. R., Morandat, F., Blanc, X., Martinez, M., & Monperrus, M.
(2014, September). Fine-grained and accurate source code differencing.
In Proceedings of the 29th ACM/IEEE international conference on
Automated software engineering (pp. 313-324). ACM.

[6] Thorup, M. (2000, May). Near-optimal fully-dynamic graph connectiv-
ity. In Proceedings of the thirty-second annual ACM symposium on
Theory of computing (pp. 343-350). ACM.

[7] Ramalingam, G.,& Reps, T. (1993, March). A categorized bibliogra-
phy on incremental computation. In Proceedings of the 20th ACM
SIGPLAN-SIGACT symposium on Principles of programming lan-
guages (pp. 502-510). ACM.

[8] Tripp, O., Pistoia, M., Cousot, P., Cousot, R., & Guarnieri, S. (2013,
March). Andromeda: Accurate and Scalable Security Analysis of Web
Applications. In FASE (Vol. 7793, pp. 210-225).

[9] Guarnieri, S., & Livshits, B. (2010). GULFSTREAM: Staged Static
Analysis for Streaming JavaScript Applications. WebApps, 10, 6-6.

[10] Szab, T., Erdweg, S., & Voelter, M. (2016, August). IncA: A DSL
for the definition of incremental program analyses. In Proceedings of
the 31st IEEE/ACM International Conference on Automated Software
Engineering (pp. 320-331). ACM.

[11] Arzt, S., & Bodden, E. (2014, May). Reviser: efficiently updating IDE-
/IFDS-based data-flow analyses in response to incremental program
changes. In Proceedings of the 36th International Conference on Soft-
ware Engineering (pp. 288-298). ACM.

[12] Acar, U. A. (2009, January). Self-adjusting computation:(an overview).
In Proceedings of the 2009 ACM SIGPLAN workshop on Partial
evaluation and program manipulation (pp. 1-6). ACM.

[13] Acar, U. A., Blelloch, G. E., & Harper, R. (2006). Adaptive functional
programming. ACM Transactions on Programming Languages and Sys-
tems (TOPLAS), 28(6), 990-1034.

[14] Hammer, M. A., Phang, K. Y., Hicks, M., & Foster, J. S. (2014,
June). Adapton: Composable, demand-driven incremental computation.
In ACM SIGPLAN Notices (Vol. 49, No. 6, pp. 156-166). ACM.

[15] Saha, D., & Ramakrishnan, C. R. (2006, January). Incremental eval-
uation of tabled prolog: Beyond pure logic programs. In International
Symposium on Practical Aspects of Declarative Languages (pp. 215-
229). Springer, Berlin, Heidelberg.

[16] Saha, D., & Ramakrishnan, C. R. (2005, July). Incremental and demand-
driven points-to analysis using logic programming. In Proceedings of the
7th ACM SIGPLAN international conference on Principles and practice
of declarative programming (pp. 117-128). ACM.

35


