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Abstract. The paper discusses a case study of grounding an ontology in the external 
world by a cognitive architecture for robot vision developed at the RoboticsLab of 
the University of Palermo. The architecture aims at representing symbolic 
knowledge extracted from visual data related to static and dynamic scenarios. The 
central assumption is the principled integration of a robot vision system with a 
symbolic system underlying the knowledge representation of the scene. Such an 
integration is based on a conceptual level of representation intermediate between the 
sub-symbolic processing of visual data and the declarative style employed in the 
ontological representation. 
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1. Introduction 

The symbol grounding problem, as stated by Stevan Harnad [1], roughly concerns how 
to interpret a formal symbol system in terms of the entities in the external world. For 
example, an instance of the problem is the interpretation of the symbol “Hammer#1” in 
a formal symbol system by the corresponding hammer in the real world. The problem is 
crucial especially for autonomous agents because an autonomous agent has to find the 
meaning of its symbols in the inner structures of the agent itself. Harnad discusses the 
capabilities of neural networks as candidate mechanisms able to solve the problem. 

The paper claims that an intermediate representation of a geometric kind is a better 
candidate for the symbol grounding problem. It is well known that neural networks 
present several problems [2]. They are opaque, i.e., it is difficult to understand the 
behavior of a neural network simply by analyzing its weights and the activation levels of 
its units. Moreover, a neural network needs a massive training set of labeled examples. 
After a neural network is trained, it is quite difficult to add new examples without 
restarting the training phase from scratch. The compositionality of concepts in neural 
networks is another well-known problem of a complicated solution.  

The theory of conceptual spaces provides instead a robust geometric framework for 
the grounding of ontologies of symbols in a cognitive agent that overcomes many of the 
limitations of neural network representations. 



2. Conceptual Spaces 

A conceptual space (CS) is a metric space in which entities are characterized by some 
quality dimensions [3]. Examples of such aspects could be color, pitch, volume, spatial 
coordinates, and so on. Some dimensions are closely related to the sensorial inputs of the 
system; others may be characterized in more abstract terms. The dimensions of a 
conceptual space represent qualities of the external environment independently from any 
linguistic formalism or description. In this sense, a conceptual space comes before any 
symbolic characterization of cognitive entities.  

An important aspect of the theory of conceptual spaces is the definition of a metric 
function in CS. In brief, the distance between two points of a CS computed according to 
such a metric function corresponds to a measure of the similarity between the entities 
corresponding to the points.  

Another pillar of CS theory is the role of convex sets of points in the 
conceptualization. According to psychological literature (see, e.g., [4]), the so-called 
natural categories represent the most informative level of categorization in taxonomies 
of real-world entities. They are the most differentiated from one another and constitute 
the preferred level for reference. Also, they are the first to be learned by children, and 
categorization at their level is usually faster. The theory of conceptual spaces assumes 
the so-called Criterion P, according to which natural categories correspond to convex 
sets in some suitable CS. As a consequence, betweenness is significant for natural 
categories, in that for every pair of points belonging to a convex set (and therefore 
sharing some features), all the points between them also belong to the set itself, and share 
in their turn the same features.  

Conceptual spaces, as discussed in detail in [2], are more transparent than neural 
networks; they can be built even by a small set of examples; they are more suitable for 
incremental learning; the problem of compositionality may be taken into account more 
quickly and naturally. See [5] for up to date discussion on the relationships between 
conceptual spaces and structures in the brain.  

3. A Cognitive Architecture 

Based on these ideas, a cognitive architecture for robot vision has been developed at the 
RoboticsLab of the University of Palermo.  

3.1. The three areas 

 
The design is subdivided into three main areas: the subconceptual, the conceptual and 
the linguistic areas. The subconceptual area is related to the processing of data coming 
from the sensors. Here, information is not yet organized concerning conceptual structures 
and categories. Instead, in the linguistic area, representation and processing are based on 
a logic-oriented formalism based on description logic [6]. In this area, ontologies may be 
suitably represented. 

The conceptual area is based on the theory of conceptual spaces previously outlined. 
It is an intermediate level of representation between the sub-conceptual and the linguistic 
areas. Here, data is organized in conceptual structures that are independent of symbolic 
description. The symbolic ontology of the linguistic area is then interpreted on 



aggregations of these structures. The conceptual space acts as a workspace in which low-
level and high-level processes access and exchange information from bottom to top and 
from top to bottom.  

The three areas of the architecture are parallel computational components working 
together on different commitments. There is no privileged direction in the flow of 
information among them: some computations are strictly bottom-up, with data flowing 
from the subconceptual up to the linguistic through the conceptual area; other 
calculations combine top-down with bottom-up processing.   

3.2. The case of static scenes 

 
In the case of grounding ontologies related to static scenes [7], we take into account a 
suitable conceptual space where each point corresponds to a geometric entity. Then, 
“natural” concepts such as boxes, cylinders, spheres, correspond to convex sets of points 
in the considered conceptual space. A symbol like “Box#1” thus corresponds to an item 
in the CS belonging to the convex set of boxes.  

Composite objects cannot be described by single points in this CS. To represent 
these objects, we naturally assume that they correspond to sets of points in CS. For 
example, a chair can be easily described as the set of its constituents, i.e., its legs, its seat 
and so on. Analogously, a hammer may be considered as composed of two geometric 
entities: its handle and its head. So, a generic composite object is described as the set of 
points corresponding to its components. 

The concept of hammer thus is described in CS as a set of pairs, each of them is 
made up of the two elements of a real hammer, i.e., its handle and its head. Let us suppose 
for simplicity that the hammer handle is typically a cylinder, while the hammerhead is 
usually a box. Then, the handle of the hammer will be grounded in the CS on the subset 
of the set of points corresponding to the concept of the cylinder, while the head of the 
hammer will be grounded on the suitable subset of points corresponding to the concept 
of the box.  

Thus, the symbol "Hammer#1,” corresponding to a specific instance of a hammer, 
will correspond to a specific pair of points in the conceptual space: one point of the pair 
will belong to the proper subset of cylinders while the other point will belong to the 
subset of boxes. In turn, these points are linked to the corresponding entities in the 
external world thanks to the subconceptual area that processes the data coming from the 
sensors of the system. 

3.3. The focus of attention 

 
To identify in the CS the set of components of a composite object as the hammer that is 
described at the symbolic level, we define a focus of attention mechanism acting as a 
light spot that sequentially scans the conceptual space. 

In the beginning, the focus of attention explores a zone in the conceptual space where 
a point is expected that matches one of the components of the composite object, for 
example, the point corresponding to the hammer handle. If this expectation is satisfied, 
then the focus of attention searches for a second component of the composite object (e.g., 
a second point corresponding to the hammerhead, with suitable shape and appropriate 
spatial arrangement). This process is iterated until all such expectations are satisfied, and 



therefore there is enough evidence to assert that a composite object as the hammer is 
present in the scene. 

The focus of attention is controlled by two different modalities, namely the linguistic 
modality and the associative modality.  According to the linguistic modality, the focus 
of attention is driven by the symbolic knowledge explicitly stored in the ontology in the 
linguistic area.  

For example, let us suppose that the system stored in its ontology the description of 
the hammer as composed by a head and by a handle. When the system recognizes a point 
in CS as a possible part of a hammer (e.g., as its handle), it generates the hypothesis that 
a hammer is present in the scene, and therefore it searches the CS for the lacking parts 
(in this case, the hammer's head).  

When different types of objects have similar parts (e.g., similar handles), various 
competing hypotheses are generated, the most plausible of which wins on the others, and 
is accepted by the system. 

According to the associative modality, the focus of attention is driven by an 
associative mechanism based on learned expectations. Let us suppose that the system has 
experienced several scenes where a hammer is present along with a nail. As a 
consequence, the system determines to associate hammers and boxes; when a hammer is 
present in the scene, it expects to find a nail in the surroundings. 

A natural way to implement the focus of attention as it has been described before is 
to employ an associative memory. A mechanism based on a suitable associative neural 
network that implements both the linguistic and the associative modalities of the focus 
of attention is discussed in [7]. 

The ideas previously summarized for the analysis of static scene are generalized to 
ground ontologies related to dynamic scenes analysis [8], robot actions [9], robot self-
recognition [10], robot self-consciousness [11], and recently to model ontologies related 
with music perception [12]. 

4. Conclusions 

Conceptual spaces offer a robust theoretical framework for the development of a 
conceptual semantics for symbolic ontologies that can account for the grounding of 
symbols in the data coming from robot vision. In this sense, conceptual spaces could give 
a relevant contribution to a better integration of robot vision and ontology-based AI 
techniques in the design of autonomous agents. 
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