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Abstract

This paper reports on a program for the development of cogni-
tive systems based on user specifications expressed in Natural
Language in the form of high-level guidelines for the desired
behaviour of those systems. Language analysis from existing
NLP tools is used to generate scenarios based on the users’
description of their preferences in the provision of the service
by the system. These scenarios are combined with the SoDA
Methodology to develop and generate an argumentation theory
that captures the guidelines of operation given in the natural
language description of the user. The intended architecture of
a fully automated system that generates argumentation based
cognitive systems from natural language is presented, together
with a first analysis of the challenges posed and evaluation of
progress in addressing them. This system is called Gorgias-NL,
reflecting the central task of the approach to provide a natural
language interface to the Gorgias argumentation system.

1 Introduction
We are today experiencing a dramatic increase in the in-
terest of developing systems that have a human-like be-
haviour in providing personalized services to users. This
is mainly driven by the market for systems that will be able
to help people in their every day life in a naturally intel-
ligent way. Such systems, fall under the area of Cognitive
Systems (Langley, Laird, and Rogers 2009; Langley 2012;
Michael et al. 2015) needing to interact with their users in
a natural way and generally exhibit a behaviour that is cog-
nitively compatible with that of human users without any
technical knowledge, but rather relying on the common sense
knowledge that people have and utilize through their use
of natural language. In general, cognitive systems are thus
envisaged to capture and learn their users’ personal require-
ments through dialogues in natural language that are high-
level and non-reliant on technical knowledge. The central
challenge then, for building such systems, is to bridge the
gap between Natural Language used by humans and Ma-
chine Languages through which these systems are built and
executed on today’s computers.

For example, we would like a user to be able to specify
her/his guidelines for their own Cognitive Assistant for online
shopping in the following manner:

“The quality of food is very important for me. When
possible try to economize. I like to eat organic food. I
am not diabetic but I like to avoid sugary foods. I prefer
not to eat red meat except for special occasions.”

This would be followed by implicit evaluations of pur-
chases suggested or made by the cognitive assistant, e.g.:

“The fish last night was very good but not enough.”

Such advanced expressions of specification forms the ulti-
mate final goal of our work, namely, to be able to automati-
cally capture these natural language specifications and their
contextual meaning so that we can build automated systems
whose operation is influenced or governed by these guide-
lines. This goal can be addressed, to a large extent, modularly
in two stages. In the first stage the challenge is the linguistic
extraction of (i) the predicate relations expressed in the natu-
ral language text and (ii) the preference meaning conveyed
explicitly or implicitly in the text.

This preference information is relative amongst different
entities at various levels, e.g. in the example above a pref-
erence of quality over economy is expressed as well as that
of organic food over non-organic food. Terms like quality or
economy of food do not have a full meaning until they are
immersed into common sense knowledge in the context of
the application discourse. Acquiring, organizing and using
the relevant common sense knowledge forms a second part
of our program for the development of these systems, outside
the scope of this paper.

1.1 Argumentation for Cognitive Systems
The basis of our approach will be that of argumentation and
its computational form as developed in Artificial Intelligence
over the last two decades (see e.g. (Bench-Capon and Dunne
2007; Rahwan and Simari 2009) for an overall view). Argu-
mentation will form the “middleware” between the natural
language user input and the machine language on upon which
the systems will be implemented. There are many reasons
for choosing argumentation as the “technology basis”, such
as its natural link to human reasoning/thinking (Mercier and
Sperber 2011) and the computational form that it exhibits in
its dialectical process.



Specifically, our approach aims to produce, from the natu-
ral language user guidelines, an argumentation theory com-
posed of arguments, a conflict relation between arguments
and preference information that would give strength of some
arguments over others. As mentioned above, we will separate
the task into two phases. In the first phase we use standard
Natural Language Processing (NLP) tools, such as that of
Stanford Core NLP (Manning et al. 2014) to syntactically
analyse the text sentences of the guidelines. This analysis is
used to extract the symbolic predicate relations that the guide-
lines document contains. These are then used to form typical
application scenarios in terms of collections of conditions un-
der which various decisions or options are sanctioned. Hence,
in the example above we may form a scenario where “a food
with high quality sanctions the option to buy it” whereas
another scenario would specify that “a food with a high price
sanctions it the decision not to buy it”.

Preference information is also based on the linguistic anal-
ysis of the text and patterns of expression in the text which
contain implicitly the preferences of the user. The aim is to
capture these through refined scenarios where the options
sanctioned differ from those of the more general scenario.
For example, we would have a general scenario where “food
that contains red meat is sanctioned as not suitably to buy”
but a refined scenario of “food that contains red meat for
a special occasion is sanctioned as suitably to buy”. Some-
times this would be clear from the text but not always. For
example what is the preference of the user above for food of
high-quality but also of high-price? Such combined scenarios
could be put to the user for expressing more directly her/his
preferences or could be kept “in mind” by the system waiting
for further information on the possible user preference.

The consideration of combined application scenarios fol-
lows the SoDA (Software Development through Argumenta-
tion) Methodology (Spanoudakis, Kakas, and Moraitis 2016;
2017) for developing applications of argumentation. This
methodology gives a principled and systematic way of
considering preferences in scenarios and their refinements.
This methodology then enables the automatic generation
of an argumentation theory within the preference-based
argumentation framework of the Gorgias system (Kakas,
Mancarella, and Dung 1994; Dimopoulos and Kakas 1995;
Kakas and Moraitis 2003) capturing the scenario informa-
tion. The generated argumentation theory and implemen-
tation code is transparent to the user but can be executed
directly under the Gorgias system to suggest choices under
the user guidelines and to provide an explanation support-
ing these choices in terms of the argumentation process that
makes them suitable choices.

Our approach is implemented in a system, called Gorgias-
NL, whose aim is to pipeline together these different stages
of analysis from the natural language text of the user to the
Gorgias argumentation code that captures this.

1.2 Related Work
Our approach falls within the general effort of developing
human-like AI systems that link directly with their human
users in Natural Language. Such systems include proprietary
personal assistants, e.g. Alexa, Cortana, Siri, and Google

Assistant. Their development is driven by their direct link
to the market and they use methods targeted to the specific
needs of their application. Google Assistant1 and Alexa2 use
phrase matching, which triggers the appropriate action or
event. Siri3 registers specific vocabulary to identify user’s
intents. Cortana analyses queries using bag-of-words models
and a classifier, after eliminating noise (non-alphabetic and
non-English words) and applying stemming (Elwany and
Shakeri 2014). Similarly, in IBM’s Watson, linguistic analysis
of natural language input is carried out by two deep parsing
components, an English Slot Grammar (ESG) parser and
a predicate-argument structure (PAS), followed by pattern-
based relation extraction (McCord, Murdock, and Boguraev
2012; Lally et al. 2012).

Other notable assistants are the open-source projects Lu-
cida4 and Mycroft5. Lucida uses OpenEphyra, a Java frame-
work, as an internal parser to extract textual information and
answer queries, plus a Wikipedia database stored in Lemur’s
Indri format. Mycroft’s parsers take in a sentence and attempt
to find user’s intention by searching for matching words and
phrases from registered intents and vocabulary.

In comparison, our approach rests on argumentation as a
principled foundation for capturing human reasoning. The
emphasis is not so much on the underlying learning technol-
ogy for analysing natural language input but on the subse-
quent use of the information extracted. Our aim is to attempt
to give this information a symbolic logical form, using ar-
gumentation as a basis for common sense logical reasoning,
rather than a direct operational meaning. Also unlike many
methods for Natural Language Understanding our linguistic
analysis does not aim to translate directly the text into some
formal logical (classical or non-classical) language but rather
to form typical scenarios or partial models that capture the
meaning of the text.

After a brief review of argumentation, the next section de-
scribes the extraction of the predicate relations expressed in
the natural language text. It also gives the overall architecture
of the Gorgias-NL system that implements our approach. The
functionality of the system is illustrated through an example
of scenario generation and argument extraction. The initial
evaluation, challenges concerning open NLP problems, and
the challenges emerging through our development and evalu-
ation process are presented in Section 4. Finally, in Section 5
we conclude with a brief description of future work needed
to complete our program of work.

2 Argumentation and SoDA Methodology
In this section we briefly review the basic theory of argumen-
tation on which our approach rests and the SoDA Method-
ology used for developing the argumentation code that cap-
ture the user’s guidelines. This framework was proposed in
(Kakas, Mancarella, and Dung 1994) and further developed
later in (Kakas and Moraitis 2003) as a preference-based

1https://developers.google.com/actions/
2https://aws.amazon.com/lex/
3https://developer.apple.com/sirikit/
4http://www.lucida.ai/
5https://mycroft.ai/



argumentation framework with a view to support flexible
decision making for autonomous agents.

Application requirements are captured via argumentation
theories composed of arguments at different levels. Object
level arguments support the possible decisions, or options,
in the specific application domain, while first-level priority
arguments express preferences on the object level arguments
in order to resolve possible conflicts. Higher-order priority
arguments are also used to resolve potential conflicts between
priority arguments of the first or subsequent levels.

Argumentation theories are expressed in this framework in
the language of rules and priorities on rules. An argumenta-
tion theory is a pair (T ,P) whose sentences are rules of the
form L ← Body, where Body is a conjunction of positive
or negative literals. Rules in T capture argument schemes for
building object level arguments. On the other hand, rules
in P represent argument schemes for building priority ar-
guments. The head L of these rules has the general form, L
=prefer(rule1, rule2), where rule1 and rule2 are atoms
naming two rules and prefer refers to an (irreflexive) higher
priority relation amongst the rules of the theory.

The semantics of an argumentation theory is defined via
the standard notion of admissibility within an abstract argu-
mentation framework <Args,Att > associated to any given
theory (T ,P). In this the attack relation is defined through
the conflicts between literals or between opposing priorities,
prefer(r,r’) and prefer(r’,r) and a notion of relative strength
for the attacking argument that is build through the priority
rules that the arguments contain (see (Kakas and Moraitis
2003) for the details).

The simplicity of this argumentation framework facili-
tates the systematic “Software Development for Argumen-
tation”(SoDA) methodology for developing applications of
argumentation through a process of directly mapping the
user or system requirements to an argumentation theory. The
main feature of this methodology is the incremental consid-
eration of scenarios in which the developer is asked to state
the default preferred behaviour (i.e. preferred options) of
the system and subsequently to consider refinements of the
scenarios where this preference changes. The methodology
concentrates on scenarios where conflicting options can oc-
cur and for each such case a process of refinement is initiated.
A tool, called Gorgias-B (http://gorgiasb.tuc.gr), helps the de-
veloper to consider his/her application according to the SoDA
methodology and offers a high-level environment through
which the software code of the underlying argumentation
theory is automatically generated.

The important characteristic of the methodology that stems
from the declarative nature of the underlying argumentation
framework is that the interaction with the developer is car-
ried out in the high-level application language and hence no
technical knowledge is needed by the developer. This is very
important in our work as it indeed allows the users to express
their requirements in Natural Language without the need
to consider how this will be mapped into an argumentation
theory or rules and priority rules.

3 Gorgias-NL Design and First Version
Our approach is based on extracting typical scenarios repre-
senting the user’s preferences from the text document. A two
step process is used. First, initial scenarios are extracted via a
natural language analysis. Subsequently, the SoDA Methodol-
ogy is applied, where the combined and refined scenarios are
extracted. These scenarios constitute a complete argumenta-
tion software which implements the user’s preferences.

3.1 Natural Language Understanding for
Cognitive Assistants

A Cognitive Assistant must be capable of extracting the gen-
eral and specific contexts via language analysis, without the
need for detailed operational instructions. The user’s lan-
guage and vocabulary used in this domain consist of a subset
of a Natural Language concerning everyday tasks.

The user will set the general guidelines and probably place
an emphasis on distinct cases, possibly expressing exceptions
to the guidelines s/he sets. This interaction has not necessar-
ily an order or a time frame. New guidelines or exceptions
can arise, as the user needs, the environment, and the cog-
nitive system evolve. A guideline can contain conditions,
exceptions, actions, or any combination of them.

The extraction of guidelines and preferences involves find-
ing important words of a sentence and generating a knowl-
edge representation corresponding to the user’s guidelines.
Combined with a representation of commonsense knowl-
edge, the Cognitive System can reason over user preferences
and user queries expressed using the same subset of Natural
Language. These would typically provide information about
the user’s current needs and request a recommendation on
what decision to take. The query, considers the current en-
vironment of the user and returns options that fall under the
personal guidelines of the user.

3.2 Gorgias-NL Architecture
Gorgias-NL is based on a modular design, which is depicted
in Fig. 1. All modules can function independently, and they
communicate using simple specifications. Firstly, the user’s
text input concerning preferences and policies, is processed
by the NLP module. The NLP module relies on state-of-
the-art NLP software to obtain the language analysis for
the given text input. Language analysis includes coreference
resolution, i.e. determining possible expressions that refer
to the same person, object or thing. At the current stage of
implementation, those are performed by Stanford NLP, but
any other software that outputs CoNNL-U data can be used
with minor modifications.

Afterwards, the module responsible for scenario extraction
uses the language analysis input to generate the preliminary
scenarios. Although developed as a module for Gorgias-NL,
it can be used independently as it generates conditions and op-
tions/actions from natural language. Within Gorgias-NL, the
generated scenarios capture the user’s general preferences.

Scenario generation is followed by application of the SoDA
Methodology, to obtain the refined scenarios which capture
the general user preferences. They form a consistent set of
arguments, to be later used at the decision level.
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Figure 1: Design of the prototype system

The derived final argumentation software captures the pre-
ferred guidelines of operation of the user, while being con-
sistent. Combined with the common sense knowledge, the
environment, and user specific knowledge, queries can be
answered or actions can be taken.

3.3 Scenario generation
For the scenario generation, the prototype is using a strict
grammar-to-model parser. Syntactic structures are translated
to predicates, along with their corresponding terms, in order
to extract the first level symbolic information. Predicates
derived from the root of the sentence, identify the option or
the decision of the scenario. An overview of this is as follows:
Copular Verbs The predicate is the conditional clause,

while the subject is a term (e.g. “the coupon is out-of-date”
generates the predicate out of date(coupon)).

Auxiliary Verbs At this initial stage of our work we are
assuming that auxiliary verbs do not form part of the pred-
icate. Such verbs can qualify the predicate and its link to
other information in the sentence but this would only be
important if it makes a difference on a typical scenario.

Verbs The other verbs are predicates, while their respective
subjects, objects, and noun modifiers are terms. In the
domain of a “cognitive assistant”, a greater focus needs to
be given in imperative mood.

Adjectives Adjective phrases are predicates, and the cor-
responding noun is the term (e.g. “Pick up some cheap
wine. . . ” is cheap(wine)).

Adverbs Adverbs and adverb phrases can be terms (e.g.
“Wake me up tomorrow” is wake me up(tomorrow)),
or can be ignored.

Prepositions Prepositions are used as a variation of the pred-
icate (e.g. “When I’m at work. . . ” is at work), or can be
ignored.

Lemmatisation Predicates and terms are lemmatised. Ex-
ceptions to this include gerund, participles, and past tense.

Preference Several adverbs and prepositions can state ex-
plicitly a user preference (e.g. “Normally allow calls”, “I
prefer fish over meat”).
This analysis can ignore some words of a sentence. While

some information can be lost, it is not always essential. Sim-
ilar to (McCord, Murdock, and Boguraev 2012), we are ig-
noring auxiliary verbs and words that introduce verb phrases

(e.g. ”that”, if it is introducing a “that” clause). Forms of “be”
are also ignored, e.g. if it is a copular verb. Determiners as
possessive pronouns are taken into account. Articles, while
they do not appear in the final form of scenarios, are used to
determine if a term is a variable or a constant, together with
the grammatical number of nouns.

The generated scenarios are of the form <scenario id,
sentence id, {Conditions}, Options>. The no-
tation is as follows: scenario id is a number used to
identify the scenario, sentence id is a list of numbers
corresponding to the natural language sentence(s) which the
scenario refers to, Conditions is a list of zero or more
predicates defining the context that constitutes the scenario,
and Options is a list of one or more predicates correspond-
ing to decision options and which are valid in the scenario.

To illustrate how scenarios are extracted from the guide-
lines text consider the following example concerning the
management of discount offers. “Normally, discard coupons.
If a coupon is related to my wish list, save it, unless it is ex-
pensive. If a coupon offers a large discount, save it. Discard
the coupons that are out-of-date.” After coreference resolu-
tion and language analysis performed by Stanford NLP, the
scenario generation yields the following scenarios:
<1, 1, {}, discard(Coupon)>
<2, 2, {related to(Coupon,wish list)},
save(Coupon)>

<3, 2, {expensive(Coupon),
related to(Coupon,wish list)},
neg(save(Coupon))>

<4, 3, {large(discount),
offer(Coupon,discount)}, save(Coupon)>

<5, 4, {out of date(Coupon)},
discard(Coupon)>
As shown above, each sentence can generate more than

one scenario, e.g. if an exception is included. The latter
part of the second sentence “unless the coupon is expen-
sive” implies an additional scenario which includes the extra
condition expensive(Coupon) and the unique option
neg(save(Coupon)). This option is derived from the
initial natural language sentence which does not provide an
alternative option, thus the negation is used. For simplic-
ity, we will assume that we have additional information to
identify the two options of not saving and discarding.

3.4 Argument extraction from context scenarios
Given a set of primary scenarios extracted directly from the
text as in the above example we then need to consider combi-
nations of these scenarios to further capture the guidelines.
The SoDA methodology helps us to consider such combi-
nations in a structured and systematic way. For example,
considering the combination of scenarios 2 and 5 we get a
new combined scenario:
<6, {2,4}, {related to(C,wish list),
out of date(C)}, {save(C), discard(C)}>

where initially both options are possible. At this stage, we
consider the task of making a combined scenario more deter-
ministic by trying to ascertain if the user has some (implicit)
preference in such a scenario. For example, we can use prag-
matic information that comes from the common sense knowl-



edge that typically out of date coupons to give preference to
the discard option. This is a heuristic process that can also be
captured through argumentation, namely using the common
sense and practical information to support arguments for the
various options in a combined scenario, as in the example
above where we have a strong argument to discard. In cases,
where it is not possible to decide in favour of a smaller set
of preferred options in a combined scenario we can either
ask the user for extra information on this or we can wait
until some information that can help with this is acquired by
the cognitive assistant. In our running example one possible
outcome of this process could give the following combined
scenarios.
<7, {3,4}, {large(discount),
offer(C,discount), out of date(C)},
discard(C)>

<8, {2,3}, {expensive(C),
related to(C,wish list),
large(discount), offer(C,discount)},
{save(C), discard(C)}>

<9, {2,3,4}, {expensive(C),
related to(C,wish list),large(discount),
offer(C,discount), out of date(C)},
discard(C)>
An algorithm is then applied that results in the generation

of a Gorgias argumentation theory from such context sce-
narios extracted from the text. This algorithm first constructs
a context graph that puts scenarios in levels from the more
general contexts to more specific ones. The context graph is a
graph whose nodes correspond to scenarios. The nodes have
a name (corresponding to a scenario), a set of options that are
valid in the node’s scenario and a level integer. Its root (first
node that has only outgoing edges) is a node named true.

The algorithm to transform scenarios to such a graph starts
from the “true scenario” at the root and then gradually adds
scenarios from simple ones to more complex connecting with
an edge those that are more specific contexts of others. Fig. 2
shows this initial graph for our example. Note that each node
has its name on its label. For simplicity of representation,
and since we only have two options, the valid option at each
node is denoted by the colour of its background, white for
discard(C) and grey for save(C). Hence a note which is half
white and half grey, e.g. node 4.1, designates that both options
are possible. The context graph is refined in two passes. The

Figure 2: The graph of the generated scenarios

first one removes all edges that connect nodes whose source

node and target node have the same set of options. The second
pass removes all nodes that are not the root and there is no
edge having them as targets. The final context graph for our
example is shown in Fig. 3.

Figure 3: The refined context graph after the second step
where all edges that connect same coloured nodes have been
eliminated along with node 2.2 that becomes orphan

The algorithm then transforms the context graph into a
structure called threads in the SoDA methodology. This con-
siders any path from the root to a leaf for each pair of op-
tions and creates a corresponding thread by defining all the
possible contexts - combinations of conditions - from the
most general to the more specific, under which a decision
between a pair of options is reached. In general, a thread,
T ij , is based on a pair of conflicting options Oi and Oj , and
is a sequence, {P k} (1 ≤ k ≤ n), where each P k has the
form, P k =< Sk, Ck

ij , C
k
ji >, where Sk, Ck

ij , C
k
ji are sets of

scenario conditions, such that Sk = Sk−1 ∪ Ck−1
ij ∪ Ck−1

ji

(and hence S1 ⊆ S2 ⊆ ... ⊆ Sn). Here Ck
ij and Ck

ji are
contextual conditions (possibly empty) such that Oi is pre-
ferred over Oj in the consistent scenario Sk ∪ Ck

ij and Oj

is preferred over Oi in the consistent scenario Sk ∪ Ck
ji.

Hence, in a thread based on two conflicting options we
iteratively consider (consistent) refinements of an application
scenario and at each such level, k, of iteration new contex-
tual information is considered, denoted by Ck

ij or Ck
ji, under

which one of the options is preferred over the other. Con-
textual information can be given for none of the preferences
(in which case both Ck

ij and Ck
ji are equal to the empty set),

for one or for both preferences between the two options Oi

and Oj . In the special case of the contextual information not
imposing any further refinement of the current scenario, i.e.
when Ck

ij = {true} (or Ck
ji = {true}), we have a default

preference (at level k) of Oi over Oj (resp. Oj over Oi) and
the thread stops.

Algorithm 1 shows the process of transforming the context
graph to threads. Figure 4 shows the four threads for our
example. The first thread T1 is given below, where it should
be noted that the node with two valid options causes the T1
thread to fork creating T12 and T11:



for each pair of conflicting options do
for each path that contains these options do

Start a new thread for each node starting from the root
to the leaf do

add P level =< Slevel =
{node name}, Clevel

ij = {}, Clevel
ji = {} >

if (Oi is valid in node)) then
Clevel

ij = {true}
if (Oj is valid in node)) then

Clevel
ji = {true}

if Clevel
ij 6= {} ∧ Clevel

ji 6= {} then
This is the special case where both options

are valid in this node. Fork the thread and
make the Clevel

ij = {true} in the existing
thread and Clevel

ji = {true} in the other
thread

for each next node starting from level towards the
leaf do

if
(Oi ∈ option(next node))∧Clevel

ij = {}
then

Clevel
ij =
{name(next node)− name(node)}

node = next node

Algorithm 1: For generating the scenarios graph

T 1(O1 = discard(C), O2 = save(C)) = {
P 0 =< S0 = {true}, C0

12 = {true},
C0

21 = {related to(C,wish list)} >,

P 1 =< S1 = {related to(C,wish list)},
C1

12 = {expensive(C)}, C1
21 = {true} >,

P 2 < S2 = {related to(C,wish list),expensive(C)},
C2

12 = {true},
P 3 =< S3 = {related to(C,wish list),

expensive(C), large(discount), offer(C, discount)},
C3

12 = {out of date(C)}, C3
21 = {true} >,

P 4 =< S4 = {related to(C,wish list),

expensive(C), large(discount),

offer(C, discount), out of date(C)},
C4

12 = {true}, C4
21 = {} >}

T 12(O1 = discard(C), O2 = save(C)) = {
P 3 =< S3 = {related to(C,wish list),

expensive(C), large(discount),

offer(C, discount)}, C3
12 = {true}, C3

21 = {} >,

T 11(O1 = discard(C), O2 = save(C)) = {
P 1 =< S1 = {related to(C,wish list)},

C1
12 = {out of date(C)}, C1

21 = {true} >,

P 2 =< S2 = {related to(C,wish list),

out of date(C)}, C2
12 = {true}, C2

21 = {} >}

Figure 4: The threads depicted graphically in our context
graph. T1 is the bold dashed line (with large dashes), T11 the
forked thread from the previous one shown with the dotted
line and T2 shown with the solid line. T22 forks from T2
(dashed line with small dashes). Note that T22 does not
include node 3.2 (the arrow just passes over it in the figure)

From the threads we can automatically generate a corre-
sponding Gorgias argumentation theory that captures the
arguments for each of the options involved in a thread and
their relative strength at each level of the thread. This is done
by generating argument rules that support the priority of one
argument rule over another at the previous level. The full
details of this are omitted due to lack of space. They can be
found in (Spanoudakis, Kakas, and Moraitis 2017).

The generated argumentation theory can be executed using
the Gorgias-B tool (http://gorgiasb.tuc.gr) to reach decisions
under given current circumstances. For our coupons example,
given a specific coupon c1 for which we know it offers a
large discount Gorgias-B will return the decision save(c1)
together with the explanation:

“When [offer(c1, discount), large(discount)] choose save(c1)”

based on the arguments that support this decision. If
in addition we know that this coupon is out of date (e.g.
as time passes) Gorgias-B will now return the decision
discard(c1) together with the new explanation:

“When [offer(c1, discount), out of date(c1), large(discount)]
prefer discard(c1) over save(c1)”.

These explanations can now be transformed into natural
language to be presented to the user if and when requested.

4 Evaluation and Challenges
Our initial evaluation sought to establish evidence for the
feasibility of our approach, to uncover possible weaknesses
in the implementation and to point out future challenges. We
describe here briefly our plans for evaluation of our approach.

4.1 Evaluation
There is no widely accepted evaluation data or tests relevant
to the domain of a cognitive assistant. In order to obtain a
preliminary evaluation of the prototype system, we asked a
group of users to express their preferences in a very short
paragraph in natural language, on a task of their own choice.



The generated scenarios captured satisfactory the overall
preferences of roughly 70% of the sentences expressed by
the users. Examples of user preferences are: (i)“Categorize
work emails by their code in the subject. If I’m cced, put the
email in the relevant folder. If the email is personal, read the
subject of the email to me, except if I’m at a doctor.” and (ii)

“If I have a meeting with a client, make sure the appropriate
documents according to the client are on my desktop. If I
have a meeting with Mr. Doe interrupt us after 10 minutes
with something urgent! Remind me to pick up my kids every
day at 3:00 except from Tuesday, when you should remind
me at 1:00.”. Examples like the last two sentences were only
partially captured, due to duration, date and time mentions,
which the prototype did not support during the evaluation
stages.

We have used this evaluation exercise to help improve our
natural language parser into scenarios. In future we will con-
tinue to perform such evaluation exercises, with larger groups
of users, for early feedback on the system’s performance.

We also note that the evaluation process has reveal interest-
ing and useful information about how human users perceive
cognitive systems/assistants. For example, initially no user
expressed a high-level policy or an exception within a policy.
Some users expressed simple if-then rules or simple com-
mands (those are excluded from the above results). Other
users, initially expressed sentences containing an excessive
amount of non-essential information. More complex cases
with exceptions, and without inessential information were
expressed after an example was given, or after specific instruc-
tions to express themselves more freely, as in a conversation
with an “intelligent” human. One example concerning a shop-
ping assistant, specified by a user, is the sentence “I would
like you to inform me or alert me when you find through
Google medium dresses for the summer in green or white
colour.”, which our parser failed to capture. After a request
to repeat the same guideline as it would be addressed to a
human personal assistant, the user rephrased the sentence
as “Tell me if you find medium summer dresses in green or
white.”, which the parser captured. This raises interesting
questions about how people perceive an artificial cognitive
assistant and how thus they behave when interacting with
such a system.

4.2 Future Linguistic Challenges
Challenges concerning the interaction of the user with a cog-
nitive system through automatic NLP include:

• Language analysis, coreference and ellipsis resolution of
NLP software is not, yet, perfect. Furthermore, the analysis
of complex sentences depends on the right punctuation of
user’s input. One example is the phrase “If I have a meet-
ing with a client, make sure the appropriate documents,
according to the client, are on top of the desk”. Depending
on where the commas are, the language analysis differs,
and the respectively generated scenarios do not necessarily
capture the user’s preferences.

• Language variability: Reasoning on the generated scenar-
ios can be impossible without using the context, even for
relatively simple inputs. Consider the following sentences:

Normally allow calls. If an advertiser calls, don’t an-
swer the call. If the parser is strictly based on gram-
mar and structures, the generated first scenario is
<1,1,{},allow(Call)>. In the second sentence, the
word “calls” is a verb, unlike the word “calls” in the first
sentence which is a noun and the direct object. That will
lead to different predicates and terms comparing e.g. to
the sentence “Deny calls from advertisers”. Moreover, the
possible different predicates e.g. allow, answer and deny,
don’t answer, are the same, respectively, in the context of
how to handle a phone call, given this simple policy.

• Communication between human and computer in a context
of a Cognitive Personal Assistant requires identification
of the type of a sentence. A given sentence can be a query
(e.g. “Where is my car?”), a command (e.g. “Turn off the
lights.”), a fact (e.g. “I parked my car at. . . ”), or part of a
policy (e.g. “Normally discard coupons.”). Identifying the
type of the sentence is can benefit from work on question
and intent classification.

Together with these challenges we also plan to explore
other state of the art methods and tools for NLP such as
neural networks with grammar-to-model training, or the use
of Combinatory Categorial Grammars, e.g. openCCG 6 and
compare their utility.

5 Conclusions and Future Work
We have presented the design of Gorgias-NL, an
argumentation-based system for building cognitive personal
assistants, together with its first implementation. Gorgias-NL
is based on a modular design, which uses a NLP parser that
generates scenarios from user guidelines and a module fol-
lowing the SoDA methodology to generate an argumentation
theory capturing the guidelines.

We plan to continue the process of further development of
the system together with an evaluation with human users so
that we can test early the ecological validity of our design
decisions. In a fully automated system we aim to allow the
user to confirm or not its recommendations or if the user
wishes to engage into a (structured) dialogue with the system
in order to be persuaded or not about the recommendation of
the cognitive assistant. This dialogue will form a new input
for the system that could enrich the argumentation theory
capturing the user’s guidelines.

The most important future development is that of exploring
the use of common sense knowledge in the approach and the
design of our systems. Its use will be important at various
levels. For example, it can be used in helping to understand
implicit preferences of the user and thus resolve conflicts
when we consider combinations of scenarios under the SoDA
Methodology.

Common sense Knowledge will also be important when
our cognitive systems, once build, are deployed in a real en-
vironment where they will need to decide on what options
are best suited for their users. During their execution they
will need to link the current “sensory information” that the
system will be getting from its application environment with

6http://openccg.sourceforge.net/



the high-level concepts used to express the personal user
guidelines. Common Sense Knowledge will help recognize
which of these high-level concepts hold in any given current
situation and hence which arguments apply in the current
case of reasoning by the system. This recognition can be
done as a subsidiary argumentation process on the beliefs of
the system based on common sense arguments, sanctioning
them from the sensory information framework (see (Diakidoy
et al. 2014) where common sense knowledge is used in this
way for narrative text comprehension). The Gorgias frame-
work supports this two-level argumentation process, one for
options and one for beliefs on which options are decided and
hence this facilitates the integration of common sense knowl-
edge uniformly in terms of argumentation. Nevertheless, the
main challenge with common sense knowledge is acquiring,
organizing, and accessing the relevant part of common sense
knowledge when this needs to be used.
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