CEUR-WS.org/Vol-2062/paperl0.pdf

SimpleETL: ETL Processing by Simple Specifications’

Ove Andersen Christian Thomsen Kristian Torp
Aalborg University & FlexDanmark Aalborg University Aalborg University
Denmark Denmark Denmark
xcalibur@cs.aau.dk chr@cs.aau.dk torp@cs.aau.dk
oan@flexdanmark.dk
ABSTRACT Vehicle Dimension Travels Fact Table Date Dimension
vehiclekey id - - datekey
Massive quantities of data are today collected from many sources. make Fs, | aveiia V| year
However, it is often labor-intensive to handle and integrate these model | vehiclekey 1 | month
modelyear | datekey < |day

data sources into a data warehouse. Further, the complexity is
increased when specific requirements exist. One such new re-
quirement, is the right to be forgotten where an organization upon
request must delete all data about an individual. Another require-
ment is when facts are updated retrospectively. In this paper, we
present the general framework SimpleETL which is currently
used for Extract-Transform-Load (ETL) processing in a company
with such requirements. SimpleETL automatically handles all
database interactions such as creating fact tables, dimensions,
and foreign keys. The framework also has features for handling
version management of facts and implements four different meth-
ods for handling deleted facts. The framework enables, e.g., data
scientists, to program complete and complex ETL solutions very
efficiently with only few lines of code, which is demonstrated
with a real-world example.

1 INTRODUCTION

Data is being collected at unprecedented speed partly due to
cheaper sensor technology and inexpensive communication.

Companies have realized that detailed data is valuable because
it can provide up-to-date and accurate information on how the
business is doing. These changes have in recent year coined
terms such as “Big Data”, “The five V’s”, and “Data Scientist”. It
is, however, not enough to collect data; it should also be possible
for the data scientist! to integrate it with existing data and to
analyze it.

A data warehouse is often used for storing large quantity of
data possibly integrated from many sources. A wide range of
Extract-Transform-Load (ETL) tools support cleaning, structur-
ing, and integration of data. The available ETL tools offer many
advanced features, which make them very powerful but also both
overwhelming and sometimes rigid in their use. It can thus be
challenging for a data scientist to quickly add a new data source.
Further, many of these products mainly focus on data processing
and less on aspects such as database schema handling. Other
important topics are privacy and anonymity concerns of citizens,
which has caused the EU (and others) to introduce regulations
where citizens have a right to be forgotten [9]. Violating these
regulations can lead to large penalties and it is thus important to
enable easy removal of an individual citizen’s data from a data
warehouse.

A simplified real-world example use case is presented by a
star-schema in Figure 1, where passenger travels carried out by a
“Produces the permission block, and copyright information

1By “data scientist” we in this paper refer to someone focused at analyzing data
and less in the technical aspects of DBMSs, e.g., ETL tools and Data Warehousing.

© 2018 Copyright held by the owner/author(s). Published in the Workshop
Proceedings of the EDBT/ICDT 2018 Joint Conference (March 26, 2018, Vienna,
Austria) on CEUR-WS.org (ISSN 1613-0073). Distribution of this paper is permitted
under the terms of the Creative Commons license CC-by-nc-nd 4.0.

Customer Dimension > customerkey

price

customerkey
name
ssn

Figure 1: Example Case Star Schema

taxi company are stored. Each travel is a fact stored in a fact table,
connected with a vehicle, a customer, and a date dimension. It is
common practice that facts are deleted, e.g., if it is discovered that
an ordered trip two days ago was not executed anyway then the
fact will be removed, or a facts gets updates, due to late arriving
accounting information. Further, for audit reasons, it is required
that changes must be tracked, e.g., if a price is updated.

The presented SimpleETL framework enables data scientists
to program an ETL solution in a very efficient and convenient
way with only few lines of code mainly with specifications of
metadata. The framework manages everything behind the scene
from structuring data warehouse schema, fact tables, dimensions,
references, indexes, and data version tracking. This also includes
handling of changes to facts in line with Kimball’s slowly changing
dimensions [12]. Processing data using SimpleETL is automati-
cally highly parallelized such that every dimension is handled in
its own process and fact table processing is spread across multiple
processes.

The rest of the paper is structured as follows: First related
work is discussed in Section 2. Then a simple use-case is intro-
duced in Section 3 followed by an example implementation in
Section 4 showing how a user efficiently programs an ETL flow.
In Section 5, the support for fact version management and dele-
tion of facts is described. Then in Section 6 it is described how
a data scientist configures and initializes an ETL run including
how the framework operates along with a real-world use case
example. Section 7 concludes the paper and points to directions
for future work.

2 RELATED WORK

A survey of ETL processes and technologies is given by [16].
A plethora of ETL tools exist from commercial vendors such
as IBM, Informatica, Microsoft, Oracle, and SAP [2-5, 7]. Open
source ETL tools also exist such as Pentaho Data Integration
and Talend [6, 8]. Gartner presents the widely used tools in its
Magic Quadrant [10]. With most ETL tools, the user designs the
ETL flow in a graphical user-interface by means of connecting
boxes (representing transformations or operations) with arrows
(representing data flows).

Another approach is taken for the tool pygrametl [14] for
which it is argued that programmatic ETL, i.e., creating ETL pro-
grams by writing code, can be beneficial. With pygrametl, the

user programs Python objects for dimension and fact tables to
handle insert/update operations on the target data warehouse.
SimpleETL, however, hides complexity from the user and con-
veniently handles all schema management. Based on the speci-
fication of metadata, SimpleETL creates 1) the required SQL to
generate or alter the target data warehouse schema; 2) the neces-
sary database actions and pygrametl objects to modify the tables;
and 3) processes for parallel execution. SimpleETL provides tem-
plate code for its supported functionality, e.g., history tracking
of changing facts. It is therefore simple and fast for a data scien-
tist to define an ETL flow or add new sources and dimensions,
because she does not have to make the code for this, but only
specify the metadata.

Tomingas et al. [15] propose an approach where Apache Ve-
locity templates and user-specified mappings are used and trans-
formed into SQL statements. In contrast, SimpleETL is based on
Python, which makes it easy for data scientists to exploit their
existing knowledge and to use third party libraries.

BlIAccelerator [13] is another template-based approach for cre-
ating ETL flows with Microsoft’s SSIS [4], enabling properties
to be defined as parameters at runtime. Business Intelligence
Markup Language (Biml) [1] is a domain-specific XML-based
language to define SSIS packages (as well as SQL scripts, OLAP
cube definitions and more). The focus of BIAccelerator and Bim-
I/BimlScript is to let the user define templates generating SSIS
packages for repetitive tasks while SimpleETL makes it easy
to create and load a data warehouse based on the templating
provided by the framework.

3 USE-CASE

In this section, we describe a simplified use-case scenario that
serves as a running example throughout the paper and is used to
explain the distinctive features of the SimpleETL framework. The
simplified use-case is heavily inspired from a real-world example.

In Figure 1, a star schema is presented, that connects infor-
mation on passenger travels with a dimension for passengers,
a dimension for the vehicle carrying out the travel, and a date
dimension. The data is loaded from a CSV file with all the infor-
mation available at each line. Both the references and measures
consist of a combination of integer values, numeric values for
monetary amounts, string values, date, and time values.

Every night this set of data is exported from a source system
(an accounting system) and a complete data dump is available,
including all historic earlier dumped data. The nightly dump
has some distinctive characteristics, which make handling the
data non-trivial. The characteristics are that the data contain
duplicates of existing facts, contain updated measures of existing
facts, and lack deleted facts, which must be detected. These three
characteristics put up some special demands for the ETL solution.

Two types of requirements exist for the functionality of the
final data warehouse, after data have been processed. First, a set
of business-oriented demands exists, such as tracking updates
of facts, e.g., when and what corrections were made. Second,
updated legislation on people’s rights, e.g., the General Data
Protection Regulation [9], creates new requirements for data to
be deleted completely if a customer requests to be forgotten.

4 FRAMEWORK COMPONENTS

This section provides an overview of the components in Sim-
pleETL which a user customizes to create a data warehouse and
corresponding ETL process. First, a class diagram is presented

Datatype

+ Datatype(sqltype, typefunc):

+ sqltype(): varchar

store_history, key):

+ add_dim_mapping(dimension, dstcol,
namemapping, inject, insert):

+ add_column_mapping(srccol, datatype, dstcol):
+ handle_deleted_rows(method, limitfunc):

+ parse(in_value): out_value

1.
0.

Dimension

1o FactTable

1 + FactTable(schema, table, lookupatts,
0."

0.

+ Dimension(schema, table, key,
rowexpander, cachesize):

+ add_lookupatt(name, datatype,
default_value):

+add_att(name, datatype):

+ add_index(columns):

Figure 2: UML Class Diagram for SimpleETL

Listing 1: Defining Year Data Type

1 from simpleetl import Datatype

2 def _validate_year (val):

3 if str(val).isnumeric() and 1900 <= int (intval) <= 2099:
4 return int (intval)

5 return -1

6 yeartype = Datatype('smallint', _validate_year)

that shows all components in the framework. Next, each compo-
nent is described in more details by from the use case in Section 3.

4.1 Class Diagram

Figure 2 shows the UML class diagram for the SimpleETL frame-
work that consists of three classes. The class Datatype is used to
define the type of a column in both dimension tables and (mea-
sure) in a fact table. The parse method transforms a value (e.g.,
from a string to an integer) and ensures that the data type is
correct (e.g., it is a signed 32 bit integer) and any constraints on
the values in the column (e.g., it must be positive). The sqltype
method returns the SQL data type recognizable for a DBMS. The
SimpleETL framework comes with most standard data types, e.g.,
2, 4, and 8-byte integer, numeric, date, and string (varchar) types.

The class Dimension models a dimension. It is an aggregation
of a number of Datatype objects. The Dimension class contains
two methods, one for adding lookup attributes, add_lookupatt,
and one for adding regular attributes, add_att. The combined set
of lookup attributes uniquely defines a record, which refers to
a Dimension key. Regular attributes simply describe the record.
The SimpleETL framework comes with a standard date and time
dimension.

The class FactTable models a fact table. It is an aggregation
of a number of Dimension objects and Datatype objects. Four
methods are available on the class, first a method for connect-
ing a Dimension with the FactTable, add_dim mapping. Second,
a method for adding a measure mapping, add_column_mapping
, a method for defining how deleted rows should be handled,
handle_deleted_rows, and finally a method for defining addi-
tional indexes over a set of columns, add_index. Note that the
SimpleETL framework automatically adds indexes on all dimen-
sion mappings and on the lookup attribute set.

4.2 Data Type

A data type define how a specific value is stored in the database
and how a value from the data source is parsed and processed
during ETL. An example of how a user can specify a data type
for storing year is shown in Listing 1. The data type is defined at
line 6 and named yeartype. The first parameter specifies the SQL
data type, a 2-byte integer. The second parameter is a Python
function, _validate_year, which both handle the diversity of
data, e.g., NULL values and conversion of string representations,

Listing 2: Defining Vehicle Dimension

Listing 3: Defining Travels Fact Table

1 from simpleetl import Dimension, datatypes as dt

2 def handle_model (row, namemapping):

3 row["make"] = row["make"][0:20]

4 row["model"] = row["model"][0:20]

5 vehicledim = Dimension (schema="dims", table="vehicle",
key="vehiclekey", rowexpander=handle_model

o

vehicledim.add,lookuﬁatt(name="veh1cleid",
dtype=dt.varchar (20), default_value='missing')
7 vehicledim.add_att (name="make", dtype=dt.varchar (20))
vehicledim.add_att (name="model", dtype=dt.varchar (20))
9 vehicledim.add_att (name="vehicleyear", dtype=yeartype)

3

and also enables constraints like 1900 <= year <= 2099 (line 3).
If the input fails to be parsed, -1 is returned (line 5).

A number of standard data types are pre-defined, e.g., SMALLINT
(2-byte integer), NUMERIC (precision, scale), and VARCHAR (n),
where the length of the two latter can be defined using arguments.
Floating point data types are not supported by the SimpleETL
framework since it depends on equality comparison for version
management and determining updates/deletes and comparing
floats can yield unpredictable results. It is encouraged to use
NUMERIC (precision, scale) when decimal values are used.

4.3 Dimension

The Dimension class describes how a single dimension table in the
database is modeled. An example implementation of the vehicle
dimension from Figure 1 is shown in Listing 2. The dimension
is defined in line 5, where the first and second parameters are
the schema and table name, respectively. The third parameter is
the name of the primary key. The fourth parameter, namemapping,
known from pygrametl [14], allows for a user-defined function,
here nandle_model, which is called on every row, in this case
(line 2-4) truncating make and model to 20 characters, preventing
overflowing the database varchar column, limited to 20 chars
(line 7-8).

When the dimension has been defined, two types of attributes
can be added. The first type is mandatory and is called the lookup
attribute set. In the example, a vehicle id, vehicleid, is defined
as a single lookup attribute in line 3. Lookup attributes are not al-
lowed to be NULL as these must be comparable for lookups, hence
a default value for a vehicle id is the string “missing”. Adding the
primary key of the Dimension as a single lookup attribute makes
the primary key a smart key instead of a surrogate key [12]. Smart
keys can optimize performance of dimension handling while a
smart key can be computed, e.g., the date 2017-07-21 can be a
smart key 20170721. The second set of attributes is optional and is
called member attributes. Member attributes provide additional
information for a dimension entry. Three member attributes are
added in Listing 2 (line 7-9), adding make and model attributes as
varchars of size 20 and vehicle year utilizing the yeartype data
type, defined in Listing 1.

4.4 Fact Table

The FactTable class defines a fact table and all aspects of this,
including database schema descriptions, data processing, and
data version management. A set of lookup attributes can be
defined to uniquely identifying a row. If the lookup attributes
are set they enforce that duplicate facts with the same set of
lookup attributes cannot exist. If no lookup attributes are defined,
version management cannot be enabled and duplicate facts can
exist. Lookup attributes are not allowed to have NULL values.
The implementation of the fact table Travels from Figure 1 is
shown in Listing 3.

1 from simpleetl import FactTable, datatypes as dt

2 travels = FactTable (schema="facts", table="travels",
lookupatts=["travelid"], store_history=True, key="id")

3 travels.add_dim_mapping (dimension=vehicledim, dstcol="
vehiclekey")

4 travels.add_dim_mapping (dimension=datedim, dstcol="datekey")

5 travels.add_dim_mapping (dimension=customerdim, dstcol="
customerkey")

6 travels.add_column_mapping(srccol="id", datatype=dt.integer,
dstcol="travelid")

7 travels.add_column_mapping(srccol="price", datatype=dt.
numeric(6,2), dstcol="price")

8 travels.add_index (["price"])

9 travels.handle_deleted_rows (method="mark"

In line 2, the FactTable object is instantiated, given a schemma
and table name as the first two parameters. The third parameter
defines the lookup attributes, the fourth parameter specifies that
full history should be retained and the fifth parameter defines the
primary key of the table, id. The 1ookupatts attribute defines no
two identical travelid can exist and is used when determining
new/updated/deleted facts.

The vehicle dimension defined in Listing 2 is attached as a
dimension using a single line of code in line 3. In lines 4 and 5,
two additional dimensions are added, one handling date of the
travel and another handling customer information, introduced in
Figure 1. In line 6 and 7, two measures are added, first the lookup
attribute, id, and second the price of a travel, implemented as a
numeric data type.

The framework automatically creates primary keys, foreign
keys, and indexes including a unique index on the lookup at-
tributes and the primary key. It is possible for the user to add
additional indexes (line 8). In line 9 it is defined that when a row
is determined to have been deleted from the data source the row
should be marked in the table as having been removed (method
D4 from Section 5.2), thus keeping the fact in the data warehouse.

Overall, SimpleETL is designed to optimize productivity, en-
sure consistency, reduce programming errors, and help the data
scientist in loading and activating data for analysis. This is re-
alized by reuse of data types and dimensions shown using code
examples and by keeping the number of methods and parameters
to a minimum.

5 MODIFICATIONS OF FACTS

In some system applications it is a business requirement that
facts can be updated and full history be maintained for enabling
tracking of changes to facts. Simultaneously it is common practice
to remove data if it is no longer valid, e.g., if a passenger travel
was not carried out it is later deleted from the accounting system.
Another motivation for deleting data is legal demands such as the
concept called the right to be forgotten [9]. This section shows how
these requirements are handled automatically by the SimpleETL
framework.

5.1 Slowly Changing Fact Tables

To handle updates of facts we introduce the slowly changing fact
table. When a user enables version tracking of facts (store_history
=True in Listing 3 line 2), a second fact table is created.

The main fact table, illustrated in Table 1, acts a similar to a
type-1 slowly changing dimension such that facts get updated
(overwritten) when changes are detected in the source data. For
these examples the type-1 fact table consists of a id, a travelid,
shortened tid, and a price. This table is referred to as the type-1
fact table in the rest of the paper.

Table 1: T1 Facts Table 2: Version Managed Fact Table

Table 7: Deleted Version Managed Facts using D2

id tid price id tid price _vfrom _vto _ver _fid id tid price _vfrom _vto _ver _fid
1 100 40 1 100 40 t1 -1 1 1 1 100 40 t1 -1 1 1
2 109 25 2 109 25 t1 -1 1 2

Table 3: Upd. T1 Table 4: Updated Ver. Managed Facts

id tid price id tid price _vfrom _vto _ver _fid

1 100 40 1 100 40 11 -1 1 1
2 109 35 2 109 25 t1 2 1 2
3 109 35 2 -1 2 2

Table 5: Del. T1using D2/D3 Table 6: Deleted T1 using

D4
id tid price
1 100 40 id tid price _del
1 100 40 -1
2 109 35 t1

The second table, illustrated in Table 2 acts in a similar way
as a type-2 version managed slowly changing dimension where
version management of data is tracked using four additional
columns. A pair of columns _validfromand _validto, shortened
_vfrom and _vto, stores the validity period of a fact using 32-bit
Unix timestamps, ¢1 through ¢3. A version number, _ver, keeps
track of fact changes and a column, _fact_id, shortened _fiq,
is references the primary key of the type-1 fact table bridging
the type-1 and the version managed fact tables together, e.g., for
tracing historic changes from facts in the type-1 fact table. This
table is referred to as the version managed fact table in the rest
of the paper.

We now illustrate what happens when a data set is loaded
by the SimpleETL framework. Table 1 and Table 2 shows the
type-1 and the version managed fact tables with two rows of data
loaded. The _vfromis set to t1 and the _vto defaults to -1 when a
fact is still live. When an update happens at the data source, it is
propagated to SimpleETL at the next ETL batch run. For example
if the price for the tid=109 is updated from 25 to 35 the measure
of the type-1 fact table is overwritten, shown in Table 3, while in
the version managed fact table, Table 4, the _vto is set for id=2
and a new version of the fact is inserted with id=3.

The advantage of this two-table approach is that dispite many
updates the type-1 fact table does not grow in size. The downside
is increased storage cost from representing facts in both tables.

5.2 Deleting Facts

The motivation for deleting facts can be to reflect production, e.g.,
if a passenger travel was not carried out it is deleted in hindsight.
Second, legal demands, such as the right to be forgotten [9], can
require data to be deleted on individuals.

The SimpleETL framework enables the user to choose between
four methods for handling deleting data. These are described
using Table 3 and Table 4 as the outset. The fact with tid=109 is
deleted.

The first method, D1, ignores when facts are deleted at the
source system, i.e., if the fact with tid=109 is deleted it will still
persist in the data warehouse, like Table 3 and Table 4. This
method enables keeping facts regardless of what happens at the
data source and is useful if facts cannot be altered or data is
loaded incrementally.

Table 8: Deleted Version Managed Facts using D3 and D4

id tid price _vfrom _vto _ver _fid ‘ [D4 _del]

100 40 t1 -1 1 1 -1
2 109 25 t1 t2 1 2 13
3 109 35 t2 t3 2 2 t3

The second method, D2, completely deletes facts from the
data warehouse if they are removed at the source system. Table 5
shows the type-1 fact table and Table 7 shows the version man-
aged fact table after the fact with tia=109 has been deleted. This
method is useful if facts must be enforced to be removed, e.g.,
due to legal reasons and when data is removed at data source it
will automatically be removed from the fact tables too.

The third method, D3, removes the fact in the type-1 fact table,
like method D2 shown in Table 5 while in the version managed
fact table the deleted fact is marked with an time stamp _vto=
t2, shown in Table 8. This method is useful, if the type-1 fact
table must mirror the source system, while deleted data must be
tracked.

The fourth method, D4, adds an extra attribute to both fact
tables, _deleted, shortened _de1, with default value -1. When a
fact is removed the _del measure will be set to the relevant time
stamp for the fact in both the type-1 and version managed fact
tables, Table 6 and Table 8 respectively. This method is useful if
easy filtering of deleted facts is required for, e.g., bookkeeping
on the type-1 fact table.

Having four different methods for handling deleted facts makes
the SimpleETL framework very versatile and matches most busi-
ness and legal needs with respect to the balance between pre-
serving data versus privacy regulations.

6 DATA AND PROCESS FLOW

This section first introduces how the ETL process is configured
and initiated, then the process flow implementation is visual-
ized in Figure 3, separating the process flow into three stages,
Initialization (1.1-1.4 in Figure 3), Processing (2.1-2.5), and Data
Migration (3.1-3.6). White boxes in Figure 3 indicates steps pro-
cessed sequentially while gray boxes indicates parallel execution.

Facts are first loaded from a data source to a data staging
area and dimensional integrity is maintained with all related
dimensions. Next, the data is moved from the data staging to
the fact tables in three steps, first migrating updated data, then
porting new data, and finally handling deleted data, according to
the user specifications in Section 5. Finally a a real-world use-case
is presented along with a implementation and runtime statistics.

6.1 Configuration

The SimpleETL framework supports that data is loaded from mul-
tiple data sources. Each data source is defined using a data feeder,
which is a user-defined Python function that yields key/value
Python dictionaries of data for every fact, e.g., one dictionary
for each row in a CSV file. These dictionaries are used by the
ETL process in Section 6.1. The data-feeder functions are not an
integrated part of the SimpleETL framework, which allows the

Listing 4: Processing SimpleETL

1 prev_id = None

2 def dupfilter (row):

3 global prev_id

4 if prev_id == row["id"]:

5 return False # Ignore duplicate
6

7

8

wagn

id" values
prev_id = row["id"]
return True
def parsevehicle (row, dbcon):
9 # Split mk_mdl into two variables
10 row|["make"], row["model"] = row["mk_mdl"].split("|")
11 csvfile = csv.DictReader ("/path/to/file"
12 processETL (facttable=fact, datafeeder=csvfile,
filterfunc=dupfilter, transformfunc=parsevehicle,
[database connection details])

1.1 processETL .4 Fact worker 1-n
1.2 Dim. schema Init | ! 2.1 Read data

h 2.2 Run filterfunc = [2.5 Dim handler 1-
1.3 Fact schema Init —}2.3 Distribute data .5 Dim handler 1-m

1.4 Data staging Init Parallel workers
ETL Processing l

I

Initializing ETL

Data Migration W'

3.1 Update T1
3.2 Update T2

Parallel workers

3.5 Delete T1
3.6 Delete T2

Parallel workers

3.3 Move new T1
Ed 3.4 Move new T2 >

Figure 3: Main Execution Flow of SimpleETL

user to load data from various sources, e.g., CSV, ODBC, or REST
APIs, only requiring that they can present a fact as a Python
dictionary.

When the data warehouse structure, using the components
from Section 4, and a data source are defined then the ETL pro-
cess can be configured and initiated. All functionality related to
database schema management and data management is handled
automatically. When the ETL process has completed, the data is
available in the data warehouse for querying. The ETL process
is started as shown in Listing 4. In line 11, a file is prepared for
loading, using Python’s CSV-to-Dictionary function. The ETL
process is started in line 12, where the FactTable and CSV file are
given as input. Listing 4 also shows how two optional functions
are used to customize the ETL process. The argument filterfunc
=dupfilter defines a function for filtering rows before data is
distributed to parallel workers, and the argument processfunc
=parsevehicle defines a function distributed to all background
worker processes.

We have now shown all the code that the user needs to imple-
ment in various Python function to use the SimpleETL framework.
In the next section, it is described what is done internally in the
framework to build the data-warehouse schema and efficiently
load the data.

6.2 Initialization

Before starting the ETL data processing SimpleETL initializes
database connections and validates the FactTable object, processETL
(1.1) in Figure 3. Schema, constraints, and indexes are created and
verified for all attached dimensions (1.2) and the fact tables (1.3).
A temporary data staging table is initialized, for later handling
updated and deleted facts (1.4).

6.3 Processing

The main ETL process extracts data from the data source, given
the datafeeder argument, Figure 3 (2.1). A filterfunc, intro-
duced in Section 6.1, can be applied for filtering data (2.2). Then
data is distributed to the background workers (2.3) in batches of
1000 rows (user configurable size). Background fact workers (2.4)

are reading and writing to the dimensions (2.5) and when all data
has been processed, the fact and dimension workers commit data
to the data warehouse dimensions and data staging table.

Dimension and fact handling are separated from the main
process into parallel background workers of performance rea-
sons. The background workers (2.4) and (2.5) in Figure 3, are im-
plemented using Python’s multiprocessing.Process and com-
munication is handled though Inter-Process Communication
(IPC) Queries. Several caching layers, using Python’s functools.
1ru_cache, reduce the IPC and dimension database communica-
tion.

Parallel Fact Workers The parallel fact workers, (2.4) from
Figure 3, process rows distributed in batches from (2.3). If the pa-
rameter transformfunc is provided, Section 6.1, this is executed
first. Such a function can contain advanced user defined transfor-
mations. Second, all dimension referencing is handled using the
a dimension workers (2.5). Then each measure is processed and
finally the data is inserted into a data staging table. n parallel fact
workers will be spawned where n equals the number of available
CPU cores for the framework.

Decoupled Dimension Workers Each dimension is handled
in its own separate process (2.5), i.e., having three attached di-
mensions will run in three separate processes. Utilizing the same
dimension more than once will only spawn one instance, e.g.,
utilizing a date dimension three times will only use one parallel
worker process. If the dimension key is a smart key, see Sec-
tion 4.3, this smart key can immediately be returned from the
dimension worker while surrogate keys must be co-ordinated
with the dimension table, potentially with database lookups. m
parallel dimension workers will be spawned, where m is the num-
ber of distinct dimensions attached a FactTable, see Section 4.4.

6.4 Data Migration

The data migration is split into three steps for handling updated
facts, new facts, and deleted facts. The main driver, for determin-
ing updates, new data, and deleted data are the lookup attributes,
see Section 4.4, which uniquely define a fact and whose values are
mandatory (not NULL). Lookup attributes can be both fact mea-
sures or dimension referencing keys. If the lookup attribute set is
not defined then no updating, deletion, and version management
can be performed and all data will be appended.

Migrating Updated Facts Updated facts are defined as facts
where the set of lookup attributes already exists in the existing
fact tables and where at least one of the measures have changed.
This is handled by (3.1) and (3.2) in Figure 3 and the type-1 and
version managed tables are processed in parallel, as handling
updates does not change relationships between these two tables.

Migrating New Facts New facts are facts whose set of lookup
attributes do not exist in the type-1 and version managed fact
tables. This is handled in (3.3) and (3.4) in Figure 3 where data
is first migrated to the type-1 fact table and next to the version
managed fact table. This sequential step is necessary as the ver-
sion managed fact table needs the id of the type-1 fact table for
referencing this. This step also ensures that no duplicate sets
of lookup attributes is loaded, if the lookup attribute set of the
FactObject is defined.

Migrating Deleted Facts If migration of deleted facts is en-
abled, it is determined which facts exist in the type-1 and version
managed fact tables, while they do not exist in the staging table.
The method for how facts are handled, when removed at the data
source, is dependent on the methods described in Section 5.2.

This migration of deleted facts is handled in (3.5) and (3.6) in
Figure 3.

6.5 Real-World Use

SimpleETL is designed to be a convenient and easy tool for data
scientists to quickly load their data and start working with it. To
show that SimpleETL also performs well a real-world use-case
is implemented. One fact table is configured with version track-
ing enabled and deleted facts being propagated by the method
D3 from Section 5.2. The fact is constructed as 153 columns, in-
cluding 1 primary key, 41 foreign keys to 18 dimensions, and
111 measures. An index is automatically generated covering the
lookup attributes and the primary key and 41 indexes are auto-
matically generated on all the foreign keys. The data contains
information on passenger travels from a fleet system. 1.2 million
rows are available in a 1.67 GB CSV data file and each row has
147 columns. The final size of the type-1 and version managed
fact tables are 732 and 882 MB of data and 1193 and 1422 MB of
indexes, respectively.

The initial data load takes 34 minutes, including creating
schema while an incremental batch providing 17 678 updated,
16 381 new, and 3 deleted facts is performed in 8 minutes on a
single Ubuntu Linux server running PostgreSQL 9.6 with 16 GB
of RAM, 6 core Intel Xeon E5-2695V3 CPU clocked at 2.3 GHz.
The SimpleETL framework and the PostgreSQL DBMS both run
on the same host.

The performance of SimpleETL scales with the number of
CPUs and a large period of the execution time is related with un-
derlying DBMS transactions. A different DBMS or configurations
will yield other performance results.

7 CONCLUSION

This paper presents the SimpleETL framework that enables sim-
ple and efficient programming of ETL for data warehouse so-
lutions without the user needs database management or ETL
experience. This makes the framework particular well suited for
data scientists because they can quickly integrate and explore
new data sources.

The framework enables advanced fact handling such as han-
dling slowly changing facts using version management and en-
ables the users to decide how deleted facts should be handled.
Four different methods for handling deleted facts are presented.

The framework is simple and contains only three classes for
data types, dimensions, and fact tables, respectively. Each class
has two to four methods. The ETL process is directed by meta-
data specifications and the framework handles everything else,
including version management and tracking of deleted facts. The
entire internal process flow extensively utilizes parallelization
and IPC for processing facts and every dimension is spawned in
separate processes.

The main contribution of SimpleETL is to provide a conve-
nient and simple ETL framework for data scientists. Despite this,
performance benchmarks, using real-world data scenario where
facts are inserted, updated, and deleted, shows that the frame-
work is lightweight and executing ETL batches and maintaining
versioned data and deletions is performed efficiently.

There are a number of relevant directions for future work,
including automatic table partitioning to handle very large data
sets. Snowflake dimension support is another commonly used
technique from data warehousing, which would be relevant to
support in the SimpleETL framework.

REFERENCES

(1]
(2]

[10]
[11]
[12]

[13]

[14]

[15]

[16

BimlScript. http://www.bimlscript.com/. Accessed 2017-10-24.

IBM InfoSphere DataStage. https://www.ibm.com/ms-en/marketplace/
datastage. Accessed 2017-10-13.
Informatica. https://www.informatica.com/. ([n. d.]). Accessed 2017-10-13.
Microsoft SQL Server Integration Services. https://docs.microsoft.com/en-us/
sql/integration-services/sql-server-integration-services. Accessed 2017-10-
13.
Oracle Data Integrator. http://www.oracle.com/technetwork/middleware/
data-integrator/overview/index.html. Accessed 2017-10-13.
Pentaho Data Integration - Kettle. http://kettle.pentaho.org. Accessed 2017-
10-13.
SAP Data Services. https://www.sap.com/products/data-services.html. Ac-
cessed 2017-10-13.
Talend. https://www.talend.com/products/big-data/. Accessed 2017-10-24.
2016. EU Regulation 2016/679: General Data Protection Regulation. Official
Journal of the European Union L119 (2016), 1-88. http://eur-lex.europa.eu/
legal-content/EN/TXT/?uri=0]J:L:2016:119:TOC
Mark A. Beyer, Eric Thoo, Mei Yang Selvage, and Ethisham Zaidi. 2017. Gartner
Magic Quadrant for Data Integration Tools. (2017).
Scott Curie. [n. d.]. What is Biml. http://www.bimlscript.com/walkthrough/
Details/3105. Accessed 2017-10-24.
Ralph Kimball and Margy Ross. 2013. The data warehouse toolkit: The definitive
guide to dimensional modeling. John Wiley & Sons.
Reinhard Stumptner, Bernhard Freudenthaler, and Markus Krenn. 2012. BIAc-
celerator — A Template-Based Approach for Rapid ETL Development. Springer
Berlin Heidelberg, 435-444.
Christian Thomsen and Torben Bach Pedersen. 2009. pygrametl: a powerful
programming framework for extract-transform-load programmers.. In DOLAP,
1l-Yeol Song and Esteban ZimAanyi (Eds.). ACM, 49-56.
Kalle Tomingas, Margus Kliimask, and Tanel Tammet. 2014. Mappings, Rules
and Patterns in Template Based ETL Construction. In The 11th International
Baltic DB & 152014 Conference.
Panos Vassiliadis. 2009. A Survey of Extract-Transform-Load Technology. 5,
1-27.

http://www.bimlscript.com/
https://www.ibm.com/ms-en/marketplace/datastage
https://www.ibm.com/ms-en/marketplace/datastage
https://www.informatica.com/
https://docs.microsoft.com/en-us/sql/integration-services/sql-server-integration-services
https://docs.microsoft.com/en-us/sql/integration-services/sql-server-integration-services
http://www.oracle.com/technetwork/middleware/data-integrator/overview/index.html
http://www.oracle.com/technetwork/middleware/data-integrator/overview/index.html
http://kettle.pentaho.org
https://www.sap.com/products/data-services.html
https://www.talend.com/products/big-data/
http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=OJ:L:2016:119:TOC
http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=OJ:L:2016:119:TOC
http://www.bimlscript.com/walkthrough/Details/3105
http://www.bimlscript.com/walkthrough/Details/3105

