
Supporting IoT Application Middleware on Edge
and Cloud Infrastructures

Sven Akkermans, Stefanos Peros, Nicolas Small, Wouter Joosen, Danny Hughes

imec-DistriNet, KU Leuven
Celestijnenlaan 200A, 3001, Leuven, Belgium

{first}.{last}@cs.kuleuven.be

Abstract. The Internet-of-Things (IoT) is evolving from classic networks
to cloud-style heterogeneous infrastructures, including both edge and
cloud entities. As a result, application creators, system managers and
infrastructure providers are now distinct stakeholders. The problem is
that current IoT middleware solutions are: (1) insufficiently expressive,
limiting the specification of application aspects such as Quality-of-Service,
and/or (2) require infrastructure-specific knowledge from application
creators to meet their application requirements. This paper argues that
it is essential for middleware to enable application creators to define
functional and non-functional aspects of applications since middleware
require this information to correctly deploy and manage applications.
Accordingly, expressive abstractions are needed to specify applications as
service compositions while hiding the increased complexity of emerging
IoT infrastructures. Concretely, the contributions are: (1) a classification
of functional and non-functional aspects of IoT applications and (2)
requirements for IoT application middleware to simplify application
management for different stakeholders.

Keywords: Internet-of-Things, Application Middleware, Cloud Computing

1 Introduction

The Internet-of-Things (IoT) is changing from Wireless Sensor Networks (WSNs)
connected with remote cloud servers to cloud-style heterogeneous infrastructures
through new paradigms such as edge computing and high-level specification
languages. Smart devices are becoming part of a multi-tier IoT infrastructure with
both edge (e.g., end-devices, gateways) and cloud entities capable of supporting
applications composed out of services [6].

This evolution leads to three distinguishable categories of stakeholders: ap-
plication creators, system managers and infrastructure providers. Application
creators are application-domain experts with little middleware or infrastructure
knowledge. System managers provide application creators with a middleware to
specify, deploy and manage their applications. Infrastructure providers supply
the physical and virtual resources of the IoT infrastructure.

N. Herzberg, C. Hochreiner, O. Kopp, J. Lenhard (Eds.): 10th ZEUS Workshop, ZEUS 2018,
Dresden, Germany, 8-9 February 2018, published at http://ceur-ws.org/Vol-2072

http://ceur-ws.org/Vol-2072


This distinction between stakeholders challenges middleware to provide ex-
pressive abstractions for specifying functional and non-functional application
aspects while hiding infrastructure complexity. To the best of our knowledge,
current middleware solutions provide limited support for application runtime
specifications or rely on the infrastructure knowledge of the application creator
to make deployment decisions [2].

This paper decomposes IoT applications into a generic classification of func-
tional and non-functional aspects as a first step to tackle this challenge. From
this classification, we propose requirements for middleware to support expressive
and transparent creation, deployment and management of applications on the
edge and cloud IoT infrastructure. Modelling IoT applications as compositions of
functional and non-functional aspects allows application creators to specify the
function and runtime characteristics of their applications and makes it simpler
for middleware to match applications to the available resources.

In summary, the contributions of this paper are (1) a classification of generic
functional and non-functional aspects of IoT applications, and (2) requirements
for middleware to support expressive and transparent creation, deployment and
management of IoT applications on edge and cloud infrastructures.

2 Classification of IoT Application Aspects

This section presents a high-level classification of IoT application aspects by
extracting application specifications and requirements from related research.
We analysed 26 papers from previous EWSN, IPSN and SenSys conferences
and 36 papers focused on keywords around WSNs, IoT applications, Edge and
Cloud computing1. We classify high-level application aspects into two categories,
similarly to [1]: functional elements and non-functional properties. Functional
elements express pure functionality, e.g., what the functions do. Non-functional
properties express runtime properties of the application, e.g., how the functions
are performed. The values of their configuration parameters depend on the
capabilities of the available resources in the infrastructures and middleware in
question. The goal is to provide a representative set of values to guide middleware
in using the classification of functional and non-functional application aspects.

Functional Application Elements. Representative functional elements can
be obtained from the cross-cut of functional concepts listed in the surveyed papers.
Due to space concerns, we limit discussion here to well-cited WSN application
papers [4,7, 11] and IoT application frameworks [12, 14].

Bai et al. [4] focus on sensor networks to develop a taxonomy of WSN
archetypes. They extract eight key application concepts: mobility, initiation of
sampling, initiation of data transmission, actuation, interactivity, data interpreta-
tion, data aggregation and homogeneity. Rahman et al. [14] survey the literature
for IoT frameworks and map functionality to physical devices. They define twelve

1 Available online at: goo.gl/Mw9p1p [Last Access: January 2017]

Supporting IoT Application Middleware on Edge and Cloud 41

goo.gl/Mw9p1p 


typical IoT functions: sense, actuate, profile, device management, control, ap-
plication, API, discovery, storage, vertical analytics, horizontal analytics and
translation. Oppermann et al. [11] survey a decade of WSN applications and
present a taxonomy of WSNs. They focus on WSN design aspects for common
applications: goal, sampling approach, sensed phenomenon, data rate, hetero-
geneity, mobility, connectivity, processing, storage, services and communication
primitives. Patel et al. [12] present a development methodology that separates
IoT application development into different concerns. They define a sequence
of steps for IoT application development, separated into four concerns (i.e.,
domain, functional, deployment, and platform). They list five concepts that
map to software components which encapsulate system functionality: sensor,
storage, computation, actuator and user interface. Greenstein et al. [7] propose
a sensor network application construction kit that is based on smart application
service libraries. Their library contains six components, which together create
applications: sense, aggregate, transmit, route, process data and storage.

The analysis of these papers results in six functional elements and associated
configuration parameters that are commonly present in IoT application design.
Table 1 provides an overview of the functions with sample configuration values.
Data Source is the function that creates data, e.g., through measurements.
Location determines where the function has to be done. Data type dictates
the type of the data. Initiation method determines when the function performs.
Result transmission governs when the function result is transmitted. Actuator is
the function that performs physical actions. Action type is the type of performed
physical action. Store is the function that stores data. Data gathering specifies
how the function receives data. Storage processing determines how data is
processed before being stored. Storage method governs how the data is stored.
Processor is the function that processes data. Processing method determines
what is done with the data. Interface is the function that presents data to the
front-end. Data view determines how the data is presented. Function Manager
is a meta-function that manages other functions. Query functions retrieves meta-
data from functions. Control functions controls other functions.

Table 1. Functions and configuration parameters with possible values.

Function Configuration Parameter Configuration Parameter

Data Source Location (Spot, Local, Mobile, ...) Data Type (Motion, Weather, ...)
Initiation Method (Event-Driven, Periodic, ...) Result Transmission (Passive, Active, ...)

Actuator Location (Spot, Local, Mobile, ...) Action Type (On/Off, Move, Buzz, ...)
Initiation Method (Event-Driven, Periodic, ...)

Store Data Gathering (Passive, Active, ...) Storage Processing (Filter, Compress, ...)
Storage Method (Caching, Persistent, ...)

Processor Initiation Method (Event-Driven, Periodic) Data Gathering (Receive, Request, ...)
Processing Method (Sort, Trigger, Translate, ...) Result Transmission (Passive, Active,...)

Interface Data Gathering (Receive, Request, ...) Data View (Event-Driven, Periodic, ...)
Function Manager Query Functions (Discover, Expose, ...) Control Functions (Configure, Migrate, ...)

42 Sven Akkermans et al.



Non-Functional Properties. Middleware requires application creators to spec-
ify properties during application specification to deploy and manage their appli-
cations. The middleware determines the possible specifications of the properties
and how to meet them based on its managed infrastructures.

We discuss some identified papers though research in non-functional aware
deployment for Cloud/Edge IoT applications is sparse [2]. Horre et al. [9] iden-
tify quality aware deployment specifications as an important aspect of software
deployment for multi-purpose WSNs, but only consider coverage. Heinzelman
et al. [8] propose a middleware solution that supports QoS for applications on
top of WSNs. However, they integrate the QoS application requirements with
sensor network management, tightly coupling QoS support with the underlying
infrastructure, limiting it to sensor networks and neglecting edge and cloud infras-
tructures. Brogi et al. [5] propose a model to support QoS-aware deployment
of IoT applications over Fog infrastructures, but consider only bandwidth and
latency as metrics. These papers partially list non-functional metrics to evaluate
their models, but lack a classification of non-functional properties for the IoT.

Table 2 lists the extracted non-functional properties, how they can be specified
and the main factors of the infrastructure that influence them. The infrastruc-
ture providers determine how their infrastructure influences the non-functional
property at hand.

Table 2. Non-functional elements, their specifications and main infrastructure factors.

Property Possible Specification Infrastructure Factors
Latency Upper bound in time units Network
Lifetime Range in time units or run count Resource Usage

Dependability Percentage of uptime Verification
Degree of redundancy Redundancy

Security Required encryption level Encryption
Data placement and movement Data Locality

Cost Monetary unit per resource usage or time unit Pricing Model

Latency is the communication delay between the functions of an application,
specified in time units and commonly upper bounded. The main influencing factor
is the infrastructure network where the communicating functions reside. The
network protocol and topology direct latency in several ways. Influencing factors
are routing strategies, hop depth, crossing network boundaries and co-locating
entities to avoid communication overhead [10, 13]. Lifetime of a function refers
to the duration (in time units) or the amount of times it performs work [13].
Infrastructure resource usage is the main influencing factor for lifetime. Edge and
cloud infrastructures can have battery-powered resources, such as IoT end-devices,
or resources with limited usage allowance, such as leasing time on cloud VMs.
Dependability is the property of a function to perform correctly. It can be
expressed as desired uptime or through the degree of redundancy. The infrastruc-
ture increases dependability by way of verification, to ensure functions perform as

Supporting IoT Application Middleware on Edge and Cloud 43



intended, and redundancy, to protect against failure. Function working verifica-
tion can be done through heartbeats for uptime and message acknowledgements
to ensure packet delivery and redundancy through multiplexing a function, for
example, using multiple sensors for more sources. Security, as well as privacy,
of IoT applications is a broad subject, mostly concerned with the data of the
application. Data is more secure and private when encrypted or handled in trusted
domains. Therefore, we abstract data placement, movement and its encryption
as specifications for privacy and security. Middleware influences this through
function placement in the infrastructure. Placing functions on encryption-featured
resources and bounding data or data flows to or between trusted resources or
areas, avoid unsecured resources having access to the data. Cost refers to the
cost of the application to run on the infrastructure. Two methods that can be
used to express cost requirements of an IoT application, based on research around
cloud pricing models [3] are: pay-per-use and subscription-based. In the former,
the application is charged based on resource usage while in the latter it is charged
on a time basis. Infrastructure determines the pricing model and monetary unit.

3 Requirements for IoT Application Middleware

This section defines requirements and guidelines for IoT application middleware
based on the classification proposed in Section 2 and the distinction between stake-
holders. System managers need to provide expressive application specifications
to application creators which shield them from the underlying infrastructures of
the infrastructure providers. This is simplified through blueprints, proposed ab-
stractions of application specifications, essentially a contract from the application
creator to the middleware. System managers use blueprints to inform application
creation, deployment and management.

Requirements. In this section, we identify four high-level requirements for IoT
application middleware. These requirements are defined with respect to the needs
of the application creator and the required support of the underlying middleware:
– R1: Application creators should be able to specify what an application

does [1]. Middleware should provide the functions that are possible on the
infrastructures to compose applications.

– R2: Application creators should be able to specify how an application oper-
ates [1]. Middleware should provide the ability to specify the non-functional
properties it can support.

– R3: Application creators have their applications deployed and managed trans-
parently to the underlying infrastructures. Middleware should autonomously
insert additional functions if necessary in the infrastructure to support func-
tion interoperability and non-functional properties.

– R4: Application creators should only be able to specify functions and non-
functional properties that are possible in the provided infrastructures. Middle-
ware should maintain a consistent view of the capabilities of its resources and
infrastructures and relate them to functions and non-functional properties.

44 Sven Akkermans et al.



3.1 Blueprints

In this section, we propose blueprints, an application specification abstraction
based on the classification in Section 2 and the requirements in Section 3.
Three distinct elements can be derived from R1, R2 and R3 for application
specification: user functions, middleware functions and non-functional properties.
Application creators compose blueprints through a combination of user functions,
essentially services, and non-functional properties. The middleware, with a view
of the resources and infrastructures, as specified in R4, provides suitable options
to application creators when creating blueprints. For instance, the middleware
should enable creating a Data Source function with a mobile location option on
a mobile tracking resource in the infrastructure. User functions are specified by
the application creator while middleware functions are autonomously inserted
by the middleware. Middleware presents the possible functions, configuration
parameters and values to the application creators, which they specify and connect.
Middleware functions can be necessary to support non-functional properties or
other functions, depending on the infrastructure, and so should be autonomously
inserted by the middleware. For instance, communicating functions on different
resources may need an intermediate Processor function for translation or functions
might need to be periodically exposed by a Function Manager to ensure reliability.

Blueprints support stakeholders in three phases of the application life-cycle.
For creation, blueprints remove the burden of programming from application
creators by providing generic functions and allow expressing non-functional
properties. This is motivated by basing functions and properties on a wide range
of existing research. For deployment, blueprints provide the middleware with
the application requirements it needs to intelligently deploy the application on
the suitable resources. For management, blueprints allow to balance changing
infrastructural concerns with ongoing application requirements. For instance, in
case of unexpected resource failures, replacement functions can be inserted.

4 Discussion and Conclusion

This work supports middleware in the management of IoT applications across
multi-tier infrastructures. IoT middleware can implement blueprints by supporting
the listed functions, essentially services, and non-functional properties on their
managed infrastructure. This requires middleware to have suitable configurable
programming constructs (e.g., Python scripts, Contiki ELF modules, ...) for
functions and the ability to define non-functional properties on top of them. For
instance, if the middleware supports application specification in an XML-language
(e.g., as in [9]), the discussed functions and properties should be part of the
language the application creators use. The resulting application specification is a
blueprint and enables the middleware to deploy and manage the application. In
practice, blueprints are currently being implemented on Niflheim, an end-to-end
middleware for applications on a multi-tier IoT infrastructure [15].

This paper contributes a classification of functional elements and non-functional
properties, essential for application specification, and a set of requirements for

Supporting IoT Application Middleware on Edge and Cloud 45



middleware to support the management of IoT applications, transparently to the
emerging edge and cloud infrastructures. This research is based on existing liter-
ature which covers a wide range of applications. To conclude, this work supports
IoT application middleware in application specification through blueprints and
by listing necessary requirements to foster application use on IoT infrastructures.

References

1. Aldinucci, M., Danelutto, M., Kilpatrick, P.: Autonomic management of non-
functional concerns in distributed parallel application programming. In: 2009 IEEE
International Symposium on Parallel Distributed Processing. pp. 1–12

2. Arcangeli, J.P., Boujbel, R., Leriche, S.: Automatic deployment of distributed
software systems: Definitions and state of the art. Journal of Systems and Software
103, 198–218 (2015)

3. Artan Mazrekaj, I.S., Sejdiu, B.: Pricing schemes in cloud computing: An overview.
International Journal of Advanced Computer Science and Applications 7(2) (2016)

4. Bai, L.S., Dick, R.P., Dinda, P.A.: Archetype-based design: Sensor network program-
ming for application experts, not just programming experts. In: 2009 International
Conference on Information Processing in Sensor Networks. pp. 85–96 (Apr 2009)

5. Brogi, A., Forti, S.: Qos-aware deployment of iot applications through the fog. IEEE
Internet of Things Journal (2017)

6. Chiang, M., Zhang, T.: Fog and IoT: An Overview of Research Opportunities. IEEE
Internet of Things Journal 3(6), 854–864 (Dec 2016)

7. Greenstein, B., Kohler, E., Estrin, D.: A Sensor Network Application Construction
Kit (SNACK). In: Proceedings of the 2Nd International Conference on Embedded
Networked Sensor Systems. pp. 69–80. SenSys ’04, ACM

8. Heinzelman, W.B., Murphy, A.L., Carvalho, H.S., Perillo, M.A.: Middleware to
support sensor network applications. IEEE network 18(1), 6–14 (2004)

9. Horre, W., Michiels, S., Joosen, W., Hughes, D.: QARI: Quality Aware Software
Deployment for Wireless Sensor Networks. pp. 642–647. IEEE (2010)

10. Mahmud, R., Buyya, R.: Fog computing: A taxonomy, survey and future directions.
CoRR abs/1611.05539 (2016)

11. Oppermann, F.J., Boano, C.A., Romer, K.: A Decade of Wireless Sensing Applica-
tions: Survey and Taxonomy. In: Ammari, H.M. (ed.) The Art of Wireless Sensor
Networks, pp. 11–50. Springer Berlin Heidelberg, Berlin, Heidelberg (2014)

12. Patel, P., Cassou, D.: Enabling high-level application development for the Internet
of Things. Journal of Systems and Software 103(Supplement C), 62–84 (May 2015)

13. Priyantha, N.B., Kansal, A., Goraczko, M., Zhao, F.: Tiny web services: Design and
implementation of interoperable and evolvable sensor networks. In: Proceedings of
the 6th ACM Conference on Embedded Network Sensor Systems. pp. 253–266

14. Rahman, L.F., Ozcelebi, T., Lukkien, J.J.: Choosing Your IoT Programming
Framework: Architectural Aspects. In: 2016 IEEE 4th International Conference on
Future Internet of Things and Cloud (FiCloud). pp. 293–300 (Aug 2016)

15. Small, N., Akkermans, S., Joosen, W., Hughes, D.: Niflheim: An end-to-end mid-
dleware for applications on a multi-tier iot infrastructure. In: 2017 IEEE 16th
International Symposium on Network Computing and Applications (NCA). pp. 1–8

46 Sven Akkermans et al.


	Supporting IoT Application Middleware on Edge and Cloud Infrastructures

