
Guided Query Composition with Semantic OLAP Patterns∗

Ilko Kovacic
Johannes Kepler University Linz

Linz, Austria
ilko.kovacic@jku.at

Christoph G. Schuetz
Johannes Kepler University Linz

Linz, Austria
christoph.schuetz@jku.at

Simon Schausberger
Johannes Kepler University Linz

Linz, Austria
simon.schausberger@jku.at

Roman Sumereder
Johannes Kepler University Linz

Linz, Austria
roman.sumereder@jku.at

Michael Schrefl
Johannes Kepler University Linz

Linz, Austria
michael.schrefl@jku.at

ABSTRACT
Enabling domain experts to independently compose ad hoc OLAP
queries is the primary goal of semantic OLAP (semOLAP) pat-
terns. In this respect, a semOLAP pattern represents a recurring
domain-independent OLAP query by describing the application
scope and defining the structure of the query using formal pattern
elements (FPEs). Such a semOLAP pattern is executable: In order
to execute a semOLAP pattern, the user instantiates the pattern
by providing FPE bindings. In this paper, we propose an approach
for guided query composition which considers the inherent query
structure in order to determine a navigation flow and recommend
possible bindings for the corresponding FPEs. Guidance supports
both existing as well as future, currently unidentified semOLAP
patterns. The presented approach has been implemented in the
course of a collaborative research project between industry and
academia on precision dairy farming.

1 INTRODUCTION
Data warehousing and online analytical processing (OLAP) facil-
itate data-driven decision making, allowing domain experts to
make rational decisions. A data warehouses organizes data in a
multidimensional space (data cube). Each point in such a multi-
dimensional space represents an occurrence of a business event
(fact) which is quantified by measures. Hierarchically organized
dimensions support the aggregation of facts along a hierarchy of
granularity levels, e.g., day to month, city to county.

Standardized reports provide access to data warehouses in
order to satisfy the domain expert’s information needs. These re-
ports are usually not static but rather support the specification of
selection criteria restricting only one dimension (slice) or multiple
dimensions (dice). Each report executes a predefined underlying
query – an OLAP query – to retrieve the required information.
Reports, however, can only satisfy about 60-80% of the informa-
tion needs [6, p. 19]. Satisfying the remaining information needs
requires the composition of ad hoc OLAP queries.

In order to compose ad hoc OLAP queries, domain experts
must have knowledge about the underlying schema and the em-
ployed query language. Domain experts, however, typically lack
the required knowledge and, therefore, must rely on assistance
for ad hoc OLAP query composition.

∗This research was conducted as part of the agriProKnow project (http://www.
agriProKnow.com/), funded by the Austrian Federal Ministry of Transport, Inno-
vation and Technology (BMVIT) under the program “Production of the Future”
between 11/2015 and 01/2018, Grant No. 848610.

© 2018 Copyright held by the owner/author(s). Published in the Workshop
Proceedings of the EDBT/ICDT 2018 Joint Conference (March 26, 2018, Vienna,
Austria) on CEUR-WS.org (ISSN 1613-0073). Distribution of this paper is permitted
under the terms of the Creative Commons license CC-by-nc-nd 4.0.

In the course of several industrial research projects, such as
semCockpit [9] and agriProKnow [13], we have noticed that, inde-
pendent of a specific domain, ad hoc OLAP queries follow certain
recurring patterns. In previous work we have hence identified
and semantically described those patterns, leading to semantic
OLAP (semOLAP) patterns (for details see [10]). A semOLAP
pattern comprises a structural definition using formal pattern el-
ements (FPEs) as well as a textual description including a concise
name, the analysis situation that the pattern can be applied in,
the instructions to follow, and an example.

The semOLAP pattern approach is followed in the agriPro-
Know project to support precision diary farming. The aim of
precision dairy farming is to exploit data generated by agricul-
tural cyber-physical systems to improve the overall health of
the herd through early diagnosis and prevention of diseases [2].
In the course of the agriProKnow project animals are tracked
by milk robots measuring milk yield and milk components, vet-
erinarians capturing the animals’ health state, smart ear tags
tracking animal movement, and micro-climate sensors capturing
environmental conditions. These data are transformed and loaded
into a data warehouse which allows to compare animals across
different farm sites. The data warehouse is accessed by domain
experts such as veterinarians and farmers, allowing data-driven
decision making. For example, a domain expert who wants to
compare the milk yield of all young cows with the milk yield
of all cows of the farm site Kremesberg per date starts with the
selection of a suitable semOLAP pattern, i.e., the homogeneous
set-base comparison pattern which allows to compare a subset
with its base set. The selected pattern is then instantiated by
considering the domain expert’s information need. Finally, an
OLAP query is generated based on a pattern instance in order to
retrieve the required information (see Fig. 1).

The domain expert provides values for a semOLAP pattern’s
FPEs during the instantiation. The values provided for the FPEs
must satisfy constraints regarding the pattern structure, the
schema, and existing FPE bindings. To guide the domain expert
in this difficult task, an interactive interface is required which
allows to refine the semOLAP pattern instance by navigating
from one FPE to another. A domain expert should receive recom-
mendations of possible FPE value bindings to ease the process
of instantiation and to avoid the generation of possibly invalid
queries by enforcing existing constraints. The guidance approach
should facilitate instantiation of all semOLAP patterns, even
those which are not yet defined. Therefore, the approach should
be specific enough to incorporate pattern-specific characteristics
yet general enough to support all existing and future semOLAP
patterns.

67



In this paper we propose a guidance approach for semOLAP
pattern instantiation. After selection of a semOLAP pattern, the
user is guided through the steps of the instantiation process
following a navigation flow. This navigation flow connects all
activities required to instantiate the FPEs. For each FPE, possible
bindings are recommended to the user. To this end, the guid-
ance approach relies on a semOLAP knowledge graph, which
contains knowledge about the pattern structure, the underlying
schema, and the bindings of already instantiated FPEs. The semO-
LAP knowledge graph enables the recommendation of bindings
which are suitable for specific FPEs. The user can select values as
bindings during the instantiation of the pattern without deeper
knowledge of the underlying schema, dependencies between
query elements, and the query language. After all FPE bindings
are specified by the user, the instantiation process is finished
and a corresponding query is generated in order to retrieve the
required information. The implementation of the data warehouse
employs a relational database where different fact classes are
stored as fact tables. The semOLAP knowledge graph is repre-
sented in Resource Description Framework (RDF) format. The
interaction flow modelling language (IFML)1 and the WebRatio2

platform are used for the implementation supporting a model-
driven and data-centric development.

Browse

Pattern

Select

Pattern

<<datastore>>

Pattern 

Knowledge

<<datastore>>

Binding

Knowledge

Instantiate 

Pattern

Instantiate Pattern

Get next not

instantiated FPE

Gather current

FPE information

<<decisionInput>>

Uninstantiated 

FPEs exists?
Handle FPE

dependencies

Check current

binding context

Instantiate 

FPE

[yes]

[no]

Generate

Query

Retrieve

Result

<<datastore>>

Semantic Schema 

Knowledge

Figure 1: Pattern instantiation guidance activities

The remainder of this paper is organized as follows. Section 2
discusses the semOLAP approach. Section 3 details the semOLAP
knowledge graph. Section 4 explains the determination of the
navigation flow and the recommendation of possible bindings.
Section 5 exemplifies the instantiation of a semOLAP pattern.
Section 6 reviews related work. The paper concludes with a sum-
mary and an outlook on future work.

2 SEMANTIC OLAP PATTERNS
The notion of patterns is introduced by Alexander et al. [1] where
patterns describe how a specific problem in a specific context
can be solved while considering existing constraints. In OLAP,
an unsatisfied information need represents the problem whereas
the specific analysis situation represents the context [10]. A sem-
OLAP pattern can, therefore, be seen as an instruction on how to
compose an OLAP query that satisfies the information need in
a specific analysis situation. The identification of such patterns
is based on the detection of recurring OLAP queries, which are
usually abstracted to domain-dependent templates for OLAP
reports. To obtain domain-independent semOLAP patterns, such
templates are grouped and abstracted (see Fig. 2).

As of now, the identified patterns can be grouped into basic
patterns and comparative patterns. The group of basic patterns
1http://www.omg.org/ifml/
2http://www.webratio.com

Pattern

Template

Query

Pattern 

Definition

Partial Pattern 

Instance
Full Pattern 

Instance

Compare measures of a subset with its base set.

(homogeneous set-base comparison pattern)

Compare the milk yield of all young cows with the milk 

yield of all cows of the farm site Kremesberg per date.

Abstraction RealizationExample

Compare the milk yield of all <X> cows with the milk 

yield of all cows of the farm site <Y> per date.

Figure 2: Query abstraction levels

covers generalized multidimensional queries aggregating busi-
ness events (facts) according to spatial, temporal, and/or semantic
aspects. Domain experts perform such a query by joining one
fact class with its dimensions, restricting the result of the join
using selection criteria (business terms), grouping the result us-
ing grouping criteria, and aggregating measures by applying
predefined aggregation functions (calculated measures).

In contrast to basic patterns, which are only based on one set,
comparative patterns serve to compare two sets. Therefore, a set
of interest (SI) and a set of comparison (SC) need to be defined.
The SI is used to specify the primarily focused data which is com-
pared to another set, the SC. For each of these two sets, either the
same or different fact class(es), selection criteria, dimension(s),
grouping criteria, and/or measure(s) are defined. Depending on
the number of shared pattern elements, different types of com-
parative patterns can be identified. The homogeneous set-base
comparison pattern, for example, covers all OLAP queries where a
subset (SI) is compared with its base set (SC). It is a homogeneous
comparison because both SI and SC refer to the same fact class.
The grouping criteria, measures, and selection criteria are shared,
with the exception of additional selection criteria which are ex-
clusively used to define the SI. The heterogeneous independent set
comparison pattern, contrary to the previously described patterns,
is not restricted to one fact class. It is heterogeneous since two
different fact classes are used to define SI and SC. Furthermore,
no pattern elements at all must be shared. This also applies to the
measures to be compared since they can be based on completely
different aggregation functions. The measures from SI and SC
can be used to calculate ratios, rates, percentages, proportions,
and other complex values.

The definition of such semOLAP patterns is based on semantic
web technologies, i.e., RDF, yielding formalized and machine-
readable representations. Furthermore, RDF allows to define
shared conceptualizations representing calculated measures and
business terms (predicates) which can be used during pattern in-
stantiation and linked to domain ontologies. Each pattern defini-
tion comprises a textual description, a target language-dependent
pattern expression, the pattern result, and the FPEs defining its
structure.

As the target audience are domain experts the textual descrip-
tion includes all relevant information needed to instantiate the
pattern. Therefore, each semOLAP pattern definition covers a con-
cise pattern name, a description of the analysis situation where
it can be applied in, the solution describing the instructions to
follow, and an example. In addition to the textual description,
a pattern definition contains a pattern expression. This pattern
expression is a representation of the query to be generated in
a specific target language, e.g., SQL. This representation is en-
riched by grammar expressions which indicate where certain FPE
values must be placed in order to generate an executable query.
The result of a pattern is specified by defining which FPEs are
returned, i.e., which measures and grouping criteria are returned
and how they can be enriched by prefixes to foster differentiation
of set-specific elements. It is specified only once in the pattern

68



definition and not changed during the instantiation. Reusability
is fostered, since each result yields a new cube which again can
be used as the fact class in other pattern instances.

The structure of an OLAP query is represented by FPEs, which
are defined as objects in the pattern definition but treated as prop-
erties during the instantiation. The FPE siFactClass, for example,
is used to define the fact class of the SI during the pattern instanti-
ation of the heterogeneous independent set comparison pattern. To
support such a behaviour an FPE consists of an element range, a
multiplicity, and is part of zero or more pattern element sets (see
Fig. 3). The FPE range defines the (sub)type of the values which
can be specified during the instantiation. For the FPE siFactClass,
for example, the range is set to the Fact type. Depending on the
FPE, the range can be set to (sub)types representing measures, di-
mensions, dimension attributes, and predicates. The multiplicity,
as the name suggests, determines the number of values that can
be provided for an FPE during the pattern instantiation, such as
One or OneOrMore. The FPE siFactClass, for example, is defined
with the multiplicity One specifying that only one value of the
Fact type can be used for the definition of the SI. As already
indicated by the prefix of the name siFactClass, FPEs can be as-
signed to pattern element sets, e.g., SC or SI, using the partOfSet
property. This is especially important during the instantiation
of SI and SC, since different selection criteria can be applied to
different pattern element sets.

Formal Pattern Element

Element Range

Multiplicity

Pattern Element Set

1..* range

1 
multiplicity

0..*
 partOfSet

1..*

 

dependsOn

Figure 3: Formal pattern element structure

FPEs can also be related to each other using the dependsOn
property. The fact class, for example, which stores occurrences
of a business event, is the core element of the multidimensional
model. These stored occurrences are quantified by measures,
hence, there exists a dependency between a measure and its cor-
responding fact class. Further dependencies exist, since a fact
class can be aggregated to different levels of granularities ac-
cording to its corresponding dimensions and hierarchies. Each
fact class has predefined dimensions and each dimension can be
assigned also to different fact classes. Dimensions support the
aggregation of fact classes to different levels of granularity and,
therefore, each dimension has one or more dimension hierarchies
which, again, consist of dimension attributes. All these depen-
dencies between FPEs are expressed by dependsOn relationships.
In addition to the dependencies within the pattern element sets
SI and SC, dependencies of FPEs located outside of the pattern
element sets can exist. Comparative measures, for example, are
defined by using measures from both SI and SC. Comparing two
sets requires the specification of FPEs respectively attributes over
which those sets can be joined. The join condition can be implicit,
if both sets share attributes, or explicitly specified, if no attributes
are shared.

The relationships between pattern element sets and FPEs as
well as the dependencies between the FPEs themselves yield a
graph representation. Fig. 5 depicts such a graph for an instance
of the heterogeneous independent set comparison pattern. The
dependsOn relationships are displayed as grey edges since they
are only available in the pattern definition and not directly in the
displayed pattern instance (binding graph). Both pattern element

sets share the same internal structure, since each of them consists
of a FactClass and one or more Measure, Dimension, DimensionAt-
tribute, and Slice values. The outer FPEs, also called non-set FPEs,
factCorrelation and compMeasure refer to FPEs within the sets.
The join condition factCorrelation determines which attributes
are used to combine the sets whereas the compMeasure defines
the comparative measure to be calculated.

3 SEMOLAP KNOWLEDGE GRAPH
Guiding users through semOLAP pattern instantiation requires
the consideration of the available semOLAP knowledge graph,
which comprises the three knowledge graphs representing the
pattern definition, the semantic schema elements, and current
binding of FPEs within the instantiation process (see detailed
activity in Fig. 1). Thereby, the semOLAP knowledge graph al-
lows to identify interconnections between a pattern instance and
existing values, types, and the underlying schema (see Fig. 4).

val:ObjectPredicate

siSlice

Pattern 

Knowledge 

Graph

FactDimension

Predicate

Fact

Dimension

Object

Dimension

Level

Dimension

Predicate

FactPredicate

Semantic 

Schema

Knowledge 

Graph

...

riskOfObesity

Binding 

Knowledge 

Graph

Object

Predicate

val:Fact

siFactClass

val:DimensionObject

siDimension

val = ?

:siSlice
val = BodyCond.

:siFactClass

val = Animal

:siDimension

val = MainBreed

:siDimension

Attribute

range

FPE

requires

dependsOn

subtypeOf

isRangeOf

binding

InstanceOf

(Sub)Type

Possible

Binding

val = BCS

:siMeasure

Figure 4: Exemplified semOLAP knowledge graph

A typical OLAP query is composed of the fact class represent-
ing the data of interest, grouping criteria, and selection criteria
representing logical restrictions regarding temporal, spatial, and
semantic aspects. The semOLAP pattern definitions reflect this
structure by specifying FPEs and the relationships between them,
e.g., the set of selectable measures and dimensions depends on
the previously selected fact class. The pattern definition also in-
cludes constraints for each FPE: multiplicity, element range, and
the pattern element sets to which the FPE is related. This avail-
able knowledge, also called pattern knowledge, can be exploited
during pattern instantiation, e.g., to determine the FPE instantia-
tion order or the type of possible values for an FPE. The pattern
knowledge graph in Fig. 4 is an extract of the FPE’s dependsOn
relationships of an SI definition. The siSlice depends on the siFact-
Class and the siDimension, whereas the siDimension depends only
on the siFactClass. The ranges for these FPEs are represented by
the (sub)types of their values, e.g., for the siFactClass the FPE
range is the type Fact.

The types of the FPE ranges are part of the underlying seman-
tic schema knowledge. The schema is based on the Dimensional
Fact Model (DFM) [8] which allows to conceptually represent
multidimensional elements such as fact classes, attributes, dimen-
sions, dimension hierarchies, and relationships between them.

69



The modeled elements are represented using the RDF Data Cube
(QB) [5] vocabulary and its extension QB4OLAP [7], thus creating
a semantic multidimensional schema. This RDF representation
facilitates the definition of predicates (ObjectPredicates) repre-
senting business terms as well as calculated measures (Calculat-
edMeasures) which can exceed simple aggregations. The semantic
schema knowledge graph in Fig 4 shows the types and subtypes
of the range of the FPEs and the structural relationships (dotted
directed requires edge) between these (sub)types. During the in-
stantiation process this RDF knowledge provides information
about the structure of the type, e.g., the type ObjectPredicate and
some of its subtypes require the structure provided by (sub)types
of the ranges of siFactClass and/or siDimension.

In addition to the pattern and the semantic schema knowl-
edge, the binding knowledge has to be considered. It represents
the current instantiation, i.e., the bindings of FPEs within the
instantiation process. The pattern instance, again represented in
RDF, is updated during the instantiation process. The binding
knowledge contains the already instantiated FPEs with their val-
ues and all currently uninstantiated FPEs. During the binding
recommendation process, the binding knowledge needs to be
considered, since it reflects the available structure of existing val-
ues on the basis of which suitable values can be determined. The
current binding knowledge graph in Fig 4 depicts the available
fact class value BCS and the dimension level value MainBreed
for siFactClass and siDimension. These values must be consid-
ered to recommend values for siSlice, e.g., in order to recommend
the FactDimensionPredicate value riskOfObesity, it is checked if
its structurally required values BCS and MainBreed exist in the
binding knowledge.

A guidance approach for query instantiation requires to con-
sider the whole knowledge graph in order to provide navigation
and recommendation and to avoid the creation of invalid queries.
Valid queries can be only ensured when all relationships between
the pattern to be instantiated, the semantic schema elements, and
the already provided values are considered.

4 EXPLOITING SCHEMA AND PATTERN
KNOWLEDGE FOR INCREMENTAL
PATTERN INSTANTIATION

The semOLAP patterns provide a conceptual foundation to com-
pose ad hoc OLAP queries without further assistance. A domain
expert, however, requires visual assistance to fulfil this task. They
should be enabled to browse existing semOLAP patterns, select
the one which fits their information need, and instantiate the
semOLAP pattern in order to generate the desired query. Es-
pecially the pattern instantiation is a non trivial task since the
available knowledge graph, which can be used to determine and
restrict possible values for FPEs, must be considered (see Fig. 1).

The guidance process based on semOLAP patterns requires
the consideration of the semOLAP knowledge graph as well as
an interactive instantiation interface. The interface implementa-
tion is based on IFML which supports a data-driven application
development following a strict separation of the data model, the
hypertext model, and the presentation model [4]. We focus on
the hypertext and presentation model since these are crucial for
the user interaction. Furthermore, interfaces are generated for
the browsing, selection, instantiation, and result retrieval step.
To detail the guidance approach and the implementation, the
instantiation of the heterogeneous independent set comparison
pattern is exemplified (see Fig. 5).

4.1 Navigation Flows
Adapting the idea of logical stratification [12, p. 131-136], we
determine a default navigation flow by calculating the corre-
sponding level of each FPE. The calculation of the levels is based
on the FPEs from the pattern knowledge and simple rules: FPEs
with no outgoing dependsOn edge are assigned to level 0; FPEs
which have one or more outgoing dependsOn edges are assigned
to the highest level of the referred FPEs plus one; these steps are
repeated until the level assignments are not changed any more
(see Algorithm. 1).

repeat
forall formalPatternElement f pe in
patternKnowledgeGraph do
level[f pe] := 0;

end
repeat

forall formalPatternElement f pe in
patternKnowledgeGraph do

forall dependsOn dp in f pe .dependsOn do
tarдetFpe := dp.tarдet ;
if level[f pe] <= level[tarдetFpe] then

level[f pe] := level[tarдetFpe]+1;
end

end
end

until there are no changes to any level or a level
exceeds the number of formal pattern elements;

until all levels of abstraction are processed;
Algorithm 1: Level computation

An exemplified application of this algorithm is the calculation
of the SI levels depicted in Fig. 5. The calculated level assignments
are indicated by the number in the left corner of the instanti-
ated FPEs. The first number indicates the assigned level whereas
the second number indicates the sequence within the default
navigation flow. The siFactClass is assigned to level 0 since it
has no outgoing dependsOn edges; siMeasure and siDimension
are assigned to level 1 due to their dependence on siFactClass;
siDimensionAttribute and the siSlice are assigned to level 2 due
to their dependence on siDimension. This algorithm, however,
is not limited to the FPEs in the pattern element sets SI and SC,
it can also be applied to the next level of abstraction. Each pat-
tern element set can be also seen as an FPE of an outer graph.
Considering this abstraction level both SI and SC represent FPEs
without outgoing dependsOn edges which are referenced by the
FPEs factCorrelation or the compMeasure.

The default navigation flow can be determined by considering
the dependsOn relationships between the FPEs and the assigned
levels. It starts from FPEs assigned to the lowest level, i.e., from
FPEs assigned to level 0. If multiple FPEs are assigned to the
same level an arbitrary navigation flow order can be specified for
them. These steps are repeated for the next levels until all levels
are processed. The result is a default navigation flow linking
the interface elements of the FPEs during the instantiation of a
selected pattern.

The dotted directed linksTo edges in Fig. 5 represent the default
navigation flow of the heterogeneous independent set compari-
son pattern. It starts with the value specification of siFactClass,
followed by the specification of siMeasures and siDimension. The
order of these last two FPEs is interchangeable since both of them

70



val = June2016

:siSlice

val = Consumed

WeighedRough

:siMeasure

val = Feeding

:siFactClass

val = Animal

:siDimension

val = Date

:siDimension

val = Animal

:siDimension

Attribute

val = Date

:siDimension

Attribute

:setOfInterest

val = SumOf

MilkYieldParlour

:scMeasure

val = Milk

:scFactClass

val = Date

:scDimension

val = Date

:scDimension

Attribute

val = Animal

:scDimension

val = Animal

:scDimension

Attribute

val = June2016

:scSlice

:setOfComparison

val = matchDay

ToDayAfter

:factCorrelation

val = FoodMilk

YieldRatio

:compMeasure

pattern element 
set instance

dependsOn

instantiated 
FPE

linksTo

1:2

0:1

1:31:4

2:6 2:5

2:7 0:9

1:10

1:11 1:12

2:13 2:14

2:15

1:17
0:8 0:16

Level:Sequence

1:19

June2016

MainBreedHolstein

HighFoodConsumption

HolsteinWithHighFood-

Consumption

Suggested 

Bindings

val = sameAnimal

:factCorrelation
1:18

Figure 5: Enriched binding graph of a heterogeneous independent set comparison pattern example

are assigned to level 1. At level 2, values must be specified for
the dimension attributes siDimensionAttribute, representing the
grouping criteria, and the siSlice, representing set-specific predi-
cates. The selectable dimension attributes depend on the specified
dimensions. Depending on the values specified in the previous
levels, only specific types of predicates can be specified for the
siSlice. In the heterogeneous independent set comparison pattern
the FPE dependsOn relations of SI and SC are the same, therefore
SI’s navigation flow can be applied to the SC analogously. To
finish the instantiation of the pattern the factCorrelation attribute,
used for joining, and the compMeasure, which determines the
type of comparison to be performed, have to be specified.

The default navigation flow only allows slight adaptations,
such as changing the FPE order within one level, e.g., either
siMeasure or siDimension can be instantiated first. Additional
adaptations, however, have to be supported since a user might
not want to start with the specification of the FPE siFactClass,
instead they might want to start with other FPEs. As discussed
in [3], a user knows prior to the query composition which mea-
sure(s) they want to retrieve, therefore a user typically starts
with the selection of the desired measure(s). This is especially
relevant for ad hoc query composition, since a user wants to
retrieve something that is not covered by existing reports. Facili-
tating such a custom navigation flow requires the adaptation of
the default navigation flow which is based, so far, on the FPEs’
dependsOn relationships and the assigned levels. The navigation
flow must be detached from these dependsOn relationships to
provide such flexibility. A custom navigation flow cannot be de-
termined automatically, instead it must be specified manually
in the course of system configuration. In exchange, the custom
navigation flow allows to move arbitrarily between the FPEs, e.g.,
allowing to navigate from siMeasure to siFactClass.

4.2 Binding Recommendation
The navigation flow allows to move from one interface element
to another while providing values for the corresponding FPEs.
The user can be guided in this process by having bindings recom-
mended for the FPE values. Therefore, the range of the current
FPE (available in the semantic schema knowledge), the dependsOn
relationships between FPEs (pattern knowledge), and the bind-
ings of other FPEs (binding knowledge) need to be considered. To
illustrate this, we exemplify the instantiation of the FPE siSlice
in the heterogeneous independent set comparison pattern by
recommending bindings of the FactDimensionPredicate subtype;

this approach can be applied to all other FPEs and (sub)types as
well.

Each FPE specified in the pattern definition is represented as a
property during the pattern instantiation. The range of each FPE
determines the type of possible bindings, e.g., the range of siSlice
is ObjectPredicate. Due to the complexity of the multidimensional
model, each range can cover multiple subtypes which are a part of
the semantic schema knowledge, e.g., ObjectPredicate is a subtype
of Predicate and a supertype of FactPredicate, DimensionPredicate,
and FactDimensionPredicate. Consequently it is possible to select
bindings of the types FactPredicate, DimensionPredicate, or Fact-
DimensionPredicate for the FPE siSlice (see pattern knowledge
and the semantic schema knowledge graph in Fig. 4). We focus
here on bindings of the type FactDimensionPredicate.

Recommending bindings for the current FPE requires to re-
trieve all other FPEs that the current FPE depends on – the depend-
ing FPEs. To this end, dependsOn relationships from the pattern
knowledge graph are used. Considering, for example, the depend-
sOn relationships of the siSlice allows to identify the depending
FPEs siFactClass and siDimension. For each subtype of the cur-
rent FPE’s range, each depending FPE is processed separately.
For the sake of simplicity we refer to the (sub)type of the current
FPE’s range as current subtype and to the subtypes of the de-
pending FPEs’ range as depending subtypes. For example, for the
current subtype FactDimensionPredicate, as a subclass of siSlice’s
range, the depending FPE siDimension is processed. Therefore,
the (sub)types of the depending FPE’s range are retrieved. For
the range of the depending FPE siDimension, for example, the
subtypes are DimensionLevel and DimensionRole3.

For the current subtype FactDimensionPredicate and the de-
pending subtypes DimensionLevel and DimensionRole the possible
basic relations FactDimensionPredicateRelatesToDimensionLevel
and FactDimensionPredicateRelatesToDimensionRole need to be
considered. A basic relation is used to represent the structural
relationship of a current subtype to a depending subtype (see
requires relationships in the semantic schema knowledge graph
in Fig. 4). Not all possible basic relations derived from current
and depending subtypes actually exist. The siSlice, for example,
depends on siDimension but the FactPredicate, which is a subtype
of siSlice’s range, does not have a basic relation to either sub-
types of siDimension’s range DimensionLevel nor DimensionRole.
Therefore, only the actually existing basic relations are then used
3A dimension role is used to reference dimensions using different names, e.g., the
dimension animal can be references using the dimension role dam animal.

71



to determine potential bindings of the current subtype for the
current FPE. Each of the existing basic relations is represented
by a predefined SPARQL Protocol And RDF Query Language
(SPARQL) query which checks all available values of the current
subtype in order to determine potential bindings.

The bindings of the depending FPE that are of the depend-
ing subtype are checked against the required structure of each
available value of the current subtype. The structure of values
is represented by relationships in the multidimensional schema,
predicates, and measures, e.g., the FactDimensionPredicate riskO-
fObesity requires the dimension attribute MainBreed and the
measure BCS (see Fig. 4). If the required structure regarding the
current basic relation is available in the structure of the depend-
ing FPE binding, the value of the current subtype is added to the
list of potential bindings of the current depending FPE. Determin-
ing if riskOfObesity, for example, is a potential binding for the
current FPE, the underlying SPARQL query of the basic relation
FactDimensionPredicateRelatesToDimensionLevel checks whether
a binding of the depending subtype DimensionLevel (of the de-
pending FPE siDimension) exists which contains the dimension
attribute MainBreed. Since available values of the current sub-
type are checked against multiple bindings of different depending
subtypes, the list of potential bindings of the current depend-
ing FPE is extended continuously, e.g., bindings of siDimension
are either of the depending subtype DimensionLevel or Dimen-
sionRole. This concludes the calculation of potential bindings
for the first depending FPE siDimension for the current subtype
FactDimensionPredicate.

The current subtype, however, might require depending sub-
types of more than one depending FPE, e.g., FactDimensionPred-
icate requires the depending subtype Fact of siFactClass and at
least one of the depending subtypes of DimensionObject of siDi-
mension (see semantic schema knowledge graph in Fig. 4). There-
fore, the potential bindings of these depending FPEs have to be
determined which results in a list of potential bindings for each
depending FPE. Only the potential bindings present in all these
lists are possible bindings which can be recommended as a bind-
ing for the current FPE, e.g., riskOfObesity requires a binding of
subtype DimensionLevel or DimensionRole which contains the
dimension attribute MainBreed as well as a binding of subtype
Fact which contains the measure BCS.

The calculation of possible bindings is repeated for all other
current subtypes, i.e., FactPredicate and DimensionPredicate. Fi-
nally, all possible bindings of all subtypes of the current FPE’s
range are combined and returned to the user as binding recom-
mendations for the FPE currently being instantiated.

Considering the relationships between a current subtype and
its depending subtypes using the corresponding basic relations
enables the recommendation of bindings along the default navi-
gation flow. These corresponding basic relations are following
the dependsOn relationships between the FPEs. Supporting rec-
ommendations for the custom navigation flow, however, requires
the extension of the dependsOn relationships to bidirectional ones.
Up to now, the FPE’s dependsOn relationships have reflected a
hierarchical structure, i.e., siFactClass serves as the root whereas
all other FPEs are either directly or indirectly depending on
it. This hierarchical view yields a directed graph which can be
traversed from top to bottom, i.e., the default navigation flow.
Representing the dependsOn relationships bidirectionally leads
to a non-hierarchical view which can be traversed beginning
from any FPE. No new relationships between FPEs are intro-
duced, only existing unidirectional dependsOn relationships are

extended to bidirectional ones. After the dependsOn relationships
are extended, the corresponding basic relations have to be de-
fined. Therefore, the basic relations of the subtypes of the FPE’s
ranges need to be extended by relations in the opposite direction,
e.g., for the FPEs siSlice and siFactClass with their corresponding
ranges ObjectPredicate and Fact the existing basic relations are
extended by FactRelatesToFactDimensionPredicate, FactRelatesTo-
FactPredicate, and FactRelatesToDimensionPredicate.

If a user, for example, starts to select a binding for siMea-
sure and then navigates to the FPE siFactClass, the basic relation
FactRelatesToObjectCalculatedMeasureRelates can be used to de-
termine Fact values, which provide the necessary structure for
the previously specified siMeasure value(s). This, again, takes the
semOLAP knowledge graph into account. The binding recom-
mendations for a custom navigation flow, however, faces also
limitations. For example, the instantiation could start with the
specification of the siMeasure value, followed by the siDimension
value and continuing with the siFactClass value. Recommending
possible bindings for siDimension would not be possible, since
no basic relations between the subtypes of siMeasure and siDi-
mension ranges exist in the heterogeneous independent set com-
parison pattern. All potential bindings, in this case all values
of the subtypes DimensionRole and DimensionLevel, would be
recommended as possible bindings. This issue can be solved by
introducing new basic relations between the subtypes of siMea-
sure and siDimension. These new basic relations, which do not
follow existing dependsOn relationships, can be created by con-
sidering existing basic relations between subtypes of siMeasure
and siFactClass and subtypes of siFactClass and siDimension. In
contrast to siDimension, possible bindings could be recommended
for the siFactClass without new basic relations, since there exist
dependsOn relationships between the siFactClass and both siDi-
mension and siMeasure. The bidirectional basic relations FactRe-
latesToDimensionRole, FactRelatesToDimensionLevel, and FactRe-
latesToObjectCalculatedMeasure are therefore used. Considering
these relations allows to recommend bindings for the instantia-
tion of the FPE siFactClass, however, it could be possible that no
bindings at all could be recommended. This would be the case if,
for example, a combination of values for siMeasure and siDimen-
sion is selected which cannot be structurally supported by any
value of siFactClass. To resolve this issue the user would need to
navigate back and edit the corresponding FPE values, otherwise
the instantiation could not be continued. The default navigation
flow is not affected by these limitations at all, since it consid-
ers the logical dependencies derived from the multidimensional
model.

Binding recommendations are restricted by the availability of
existing bindings of the depending FPEs. The advantage of this
approach is that the basic relations are defined only once and can
be reused multiple times since FPEs with the same dependencies
are used within different pattern definitions. For example, the
basic relation between the subtype FactDimensionPredicate and
DimensionLevel occurs in the basic multi-aggregation patterns as
well as in other comparison patterns such as the homogeneous
set-base comparison pattern. New FPEs with currently not con-
sidered dependsOn relationships can be introduced as part of new
semOLAP patterns. To handle these dependencies only their basic
relations and the underlying SPARQL queries need to be defined
once. Contrary to this case, new semOLAP patterns using only
considered dependsOn relationships, can be instantiated without
further effort.

72



5 EXEMPLIFIED PATTERN INSTANTIATION
The guidance approach is exemplified by instantiating the het-
erogeneous independent set comparison pattern following the
default navigation flow. Even though custom navigation flows
could be supported, only the unidirectional basic relations are
implemented so far. To illustrate our approach we consider a
domain expert who wants to compose an ad hoc query which
calculates the ratio of the consumed food of one day (SI) and the
milk yield of the next day (SC) for the same animal in June 2016
per date and animal (see FPE bindings in Fig. 5). The resulting
ratio is used by the expert to see whether the amount of food fed
the day before impacts the milk yield of the next day. Therefore,
a data cube containing the two fact classes Milk and Feeding with
the shared dimensions Date, Farm Site, and Animal is accessed
(see DFM model in Fig. 6).

FarmSite

ProvinceState
Year

Month

Day

Animal

DateOf
Birth

Second
Breed

MainBreed 

Sire

Town
Date FarmSite

Animal

milkYield

fatContent

proteinContent

...

Milk

Dam

Date

amountOfferedWeighedRough

amountRestWeighedRough

NoOfFeedingsRough

...

Feeding

measure

Dimension

Attribute
 

Hierarchy

Level
 

Dimension 

Fact 

Figure 6: DFM of facts of interest

The instantiation starts with the specification of the SI and
its corresponding FPEs. The available fact classes Milk and Feed-
ing are recommended, besides others, to the domain expert. The
domain expert selects Feeding as the binding value for the siFact-
Class FPE. The specified fact class Feeding and the corresponding
basic relations are used to determine possible bindings for siDi-
mension, i.e., the dimensions Animal, Date, and FarmSite. The
domain expert selects the Animal and Date dimensions as values
for siDimension and continues with the specification of the mea-
sure of interest siMeasure, i.e., the consumedWeighedRough repre-
senting the summarized values of consumed weighed roughage.
For the siDimensionAttribute the dimension attributes Animal
and Date binding values are selected. The names of the values of
siDimension and siDimensionAttribute are the same, even though
they represent different FPEs. This is the result of naming con-
ventions, since the dimension’s name is used as the name of
the identifying dimension attribute (see Fig. 6). Based on the
dimension values Animal and Date and the fact value Feeding,
DimensionPredicate values, such as June2016 or MainBreedHol-
stein, FactPredicate values, such as HighFoodConsumption, and
FactDimensionPredicate values, such as HolsteinWithHighFood-
Consumption, are recommended to the domain expert as possible
values for siSlice (see recommended bindings in Fig. 5). To finish
the instantiation of the SI, the domain expert selects June2016 as
the binding for siSlice.

The instantiation of SC starts after the instantiation of SI is
finished. Since the default navigation graph of SC and SI are iso-
morph, the domain expert is guided through the same steps. The
domain expert provides the same value bindings to scDimension,
scDimensionAttribute, and scSlice already used for the analogous
FPEs of the SI. This is possible since in this query SI and SC share
the dimensions, dimension attributes, and slices. Only for the

FPEs scFactClass and scMeasure different bindings have to be
specified. The Milk fact is specified as the binding of scFactClass
and SumOfMilkYieldParlour measure as the binding of scMeasure.

After both sets are instantiated, the domain expert specifies
the bindings matchDayToDayAfter and sameAnimal for the fact-
Correlation and FoodMilkyieldRatio for the compMeasure to finish
the instantiation process. Similar to the previous instantiation
steps, other possible values for these two FPEs are provided, how-
ever, only the mentioned are relevant for the intended query. The
factCorrelation value matchDayToDayAfter combines the fact oc-
currences of SI of one specific day with the fact occurrences of SC
of the next day whereas sameAnimal restricts the combinations
to the same animals. The FoodMilkyieldRatio calculates the ratio
between SI’s consumedWeighedRough and SC’s SumOfMilkYield-
Parlour. After all FPE values are specified, a summary of the
pattern instance is provided (see Fig. 7). This summary provides
an overview of all FPEs of a semOLAP pattern instance and in-
dicates which FPEs are differently specified in SI and SC. The
differences are color-encoded to ease their identification. The
structure of the overview is independent of the semOLAP pattern
but it can be adapted by the developer to consider characteristics
of certain patterns.

Figure 7: Detail of the pattern instance summary

Finally, to satisfy the domain expert’s information need, the
OLAP query is generated and sent to the underlying ROLAP
system. The result of this OLAP query is visualized and can
thereby be interpreted by the domain expert. The domain expert
can reuse this pattern instance for future analysis situations and
adapt it to fit their information need. Besides fully-instantiated
patterns, partial instances can be specified as well, e.g., the fact, di-
mension, dimension attributes, and measures are predefined and
only additional selection criteria can be specified. These partially-
instantiated patterns can be reused as domain-dependent query
templates. A video4 of this instantiation process is provided to
demonstrate the current state of the implementation.

6 RELATED WORK
The guidance of users during the OLAP query composition is
mostly accompanied by providing suitable visualizations of the
query elements. The Semantic Data Warehouse Model (SDWM [3])
allows for a visual specification of multidimensional queries. The
SDWM does not represent semantic representations of the mul-
tidimensional data model, e.g., using QB and QB4OLAP, instead
the SDWM considers both the operational requirements as well
as the semantics of the business processes to be modeled [3].
Therefore, templates which are based on the SDWM are pro-
vided to users, serving as configurable reports [3]. Each of these
templates consists of predefined measures, dimensions, and di-
mension attributes which are related to each other. The relation-
ships between these template elements are visualized to represent
the dependencies between the measures and dimensions. The
user specifies the OLAP query by either adding/removing new
measures or by selecting the dimension hierarchy levels. Sim-
ilar to our approach, only possible dimension and dimension
4https://www.youtube.com/watch?v=BLt6heO7WKY

73



attribute values are provided to the user, however, this is not
ensured through reusable basic relations. Furthermore, additivity
checks are performed, which restrict aggregations to only possi-
ble measures, e.g., it does not make sense to summarize the food
to milk ratio over time. The proposed approach using the SDWM,
however, does not provide the abstraction of semOLAP pattern,
since it focuses on case-specific templates which are restricted
to a corresponding fact class. The user is not able to specify fact
values nor complex predicate values; only simple restrictions
are supported. Furthermore, the composition of ad hoc queries
targeting multiple fact classes is not considered at all.

Another query visualization interface is Polaris [11] which
led to the development of Tableau5. Polaris focuses on analyzing,
querying, and visualizing multidimensional relational databases
although newer versions of Tableau support other data struc-
tures as well. Instead of focusing on ad hoc queries, it primarily
supports the explorative data analysis approach by providing an
interactive visualization of both the query and the result. The
query is defined by a visual specification within a table-based
interface, which allows to specify dimensions, measures, and
grouping and filter criteria along with possible visualisation op-
tions. Corresponding queries are generated using an underlying
table algebra. Ad hoc queries can be formulated since all function-
alities for composition are provided, however, analysis situation-
specific guidance is not supported. The user is not guided while
creating, for example, comparisons of sets from one or multiple
fact classes, even though, the necessary functionality is available.
The application of filters is provided, however, these are restricted
to simple expressions; predicates representing business terms
are not supported. Furthermore, calculated measures relate only
to the fact class where they where specified, whereas calculated
measures and object predicates in semOLAP are independent of
the fact class as long as the necessary structure is provided by
any target fact class. This is possible since our approach is not
directly based on the relational data model, unlike Polaris [11],
instead it is based on the multidimensional data model. In com-
parison to the Polaris approach, we support reusing and editing
instantiated semOLAP queries to match the new information
demand. SemOLAP queries can, additionally, be used as the data
input for other semOLAP queries since each result is represent-
ing a possible fact class as it consists of measures and dimension
attributes.

7 SUMMARY AND FUTURE WORK
We have proposed a guided query composition approach based
on semOLAP patterns. The semOLAP pattern approach provides
the conceptual foundation to allow ad hoc query composition
by domain experts. This conceptual foundation is realized by
a data-centric and model-driven implementation which guides
the domain expert during the instantiation of the FPEs. For each
FPE instantiation, bindings are recommended by considering the
semOLAP knowledge graph which comprises knowledge about
the semantic schema, the pattern structure, and the current FPE
binding. Therefore, basic relations are introduced which are used
to check structural dependencies between the (sub)types of the
FPE ranges. This allows users to move through the FPE instanti-
ation process and select recommended bindings which consider
the current instantiation state, the FPE’s type information, and
constraints of the FPE itself.

5https://www.tableau.com

For each semOLAP pattern a default navigation flow is calcu-
lated and provided to guide the user through the instantiation
process. If an instantiation sequence other than suggested by
the default navigation flow is more convenient for a particular
pattern, a custom navigation flow can be configured by a devel-
oper. To this end, basic relations are extended to bidirectional
relations, allowing to recommend bindings independent of the
navigation sequence. Even navigation flows between FPEs which
are not represented in the FPE’s dependsOn relationships can be
supported, hence, leading to a maximum level of flexibility. The
drawback of this flexibility is that instantiation situations can
occur where no bindings at all can be recommended, since an
unsupported FPE value combination is selected.

Future work will include displaying available information
currently hidden in the semantic representation of schema ele-
ments, e.g., the measure SumOfMilkYieldParlour is linked to the
AGROVOC 6 ontology which includes a concise definition of the
measure. The calculation of a navigation flow can also consider
the number of available FPE values. This would require the con-
sideration of the selectivity of FPE values, i.e., it is preferable
to start with the FPE value specification which has the highest
potential to reduce the number of potential values of other FPEs.
Furthermore, the visualization of the result, which is currently
limited to a table representation, will be extended. In the future
domain- and data-dependent visualizations will be automatically
applied to the result. This visualization will also comprise a gen-
erated caption as well as a generated result description.

REFERENCES
[1] Christopher Alexander, Sara Ishikawa, Murray Silverstein, Joaquim Roma-

guera i Ramió, Max Jacobson, and Ingrid Fiksdahl-King. 1977. A pattern
language. Oxford University Press.

[2] Jeffrey Bewley. 2010. Precision dairy farming: advanced analysis solutions for
future profitability. In Proceedings of the first North American conference on
precision dairy management, Toronto, Canada. 2–5.

[3] Michael Böhnlein, Achim Ulbrich-vom Ende, and Markus Plaha. 2002. Visual
Specification of Multidimensional Queries based on a Semantic Data Model.
In Vom Data Warehouse zum Corporate Knowledge Center. Springer, 379–397.

[4] Marco Brambilla and Piero Fraternali. 2014. Interaction flow modeling language:
Model-driven UI engineering of web and mobile apps with IFML. Morgan
Kaufmann.

[5] Richard Cyganiak and Dave Reynolds. 2014. The RDF Data Cube Vocabulary.
W3C Recommendation. W3C. http://www.w3.org/TR/2014/REC-vocab-data-
cube-20140116/.

[6] Wayne W. Eckerson. 2008. Pervasive business intelligence: Techniques and
technologies to deploy BI on an enterprise scale. TDWI Best Practices Report
(2008).

[7] Lorena Etcheverry and Alejandro A. Vaisman. 2012. QB4OLAP: A New Vo-
cabulary for OLAP Cubes on the Semantic Web. In Proceedings of the Third
International Conference on Consuming Linked Data. 27–38.

[8] Matteo Golfarelli, Dario Maio, and Stefano Rizzi. 1998. The dimensional fact
model: A conceptual model for data warehouses. International Journal of
Cooperative Information Systems 7, 2-3 (1998), 215–247.

[9] Thomas Neuböck, Bernd Neumayr, Michael Schrefl, and Christoph Schütz.
2014. Ontology-Driven Business Intelligence for Comparative Data Analysis.
In eBISS 2013. LNBIP, Vol. 172. Springer, 77–120.

[10] Christoph G. Schuetz, Simon Schausberger, Ilko Kovacic, and Michael Schrefl.
2017. Semantic OLAP Patterns: Elements of Reusable Business Analytics. In
OTM 2017 (LNCS), Vol. 10573. Springer.

[11] Chris Stolte, Diane Tang, and Pat Hanrahan. 2002. Polaris: A system for query,
analysis, and visualization of multidimensional relational databases. IEEE
Transactions on Visualization and Computer Graphics 8, 1 (2002), 52–65.

[12] Jeffrey D. Ullman. 1988. Principles of Database and Knowledge-Base Systems,
Volume I. Principles of computer science series, Vol. 14. Computer Science
Press.

[13] Martin Wischenbart, Dana Tomic, Michael Iwersen, Michael Schrefl, and
Valentin Sturm. 2017. agriProKnow – Prozessbezogenes Informationsmanage-
ment in Precision Dairy Farming. In Proceedings der 13. Tagung Bau, Technik
und Umwelt in der landwirtschaftlichen Nutztierhaltung (BTU-Tagung 2017).

6http://aims.fao.org/vest-registry/vocabularies/agrovoc-multilingual-agricultural%
2Dthesaurus

74


