
Optimization of Parallel Software Tuning

with Statistical Modeling and Machine Learning

Anatoliy Doroshenko, Pavlo Ivanenko, Oleksandr Novak, Olena Yatsenko

Institute of Software Systems of National Academy of Sciences of Ukraine,

Glushkov prosp. 40, 03187 Kyiv, Ukraine
doroshenkoanatoliy2@gmail.com, paiv@ukr.net, oayat@ukr.net

Abstract. High-performance computation is the main goal of parallel comput-

ers, but the performance of compiled code is often far from the best. Parallel

program auto-tuning is the method adjusting some structural parameters (main-

ly, data structures) of an application program for a target hardware platform to

speed-up computation as much as possible. In previous work, the authors have

developed a framework intended to automate generation of an auto-tuner from

an application source code. However, auto-tuning for complex and nontrivial

parallel systems is usually time-consuming due to empirical evaluation of huge

amount of parameter values combinations of an initial parallel program in a tar-

get environment. In this paper, we propose to improve the auto-tuning method

using statistical modeling and neural network algorithms that allow to reduce

significantly the space of possible parameter combinations. The resulting opti-

mization is illustrated by an example of tuning a parallel sorting program, that

combines several sorting methods. The optimization is done by means of the

automatic training of a neural network model on results of “traditional” tuning

cycles with subsequent replacement of some auto-tuner calls with an evaluation

from the statistical model.

Keywords. Auto-tuning, parallel computation, machine learning, neural net-

work, statistical modeling.

1 Introduction

The problem of optimal use of computing resources has always been important in the

process of development of any software — from mobile applications to complex cli-

ent-server systems. The auto-tuning paradigm [1, 2], which has become a standard for

solving the problem of software application optimization over the last decade, allows

to fully automatize this process for any computing environment. Its popularity is pre-

defined first by simplicity of use and independence from qualitative characteristics of

a computer and operating system. Auto-tuning traditionally uses empirical data for

obtaining a qualitative evaluation of optimized code (the quality usually refers to

program execution time and accuracy of output results). It automates the search for

the optimal program version out of a set of provided possibilities by running each

candidate and measuring its performance on a given parallel architecture. Its main

mailto:doroshenkoanatoliy2@gmail.com
mailto:paiv@ukr.net
mailto:oayat@ukr.net

benefit is a high level of abstraction — a program is optimized without explicit

knowledge of hardware implementation details, such as number of cores, cache size

or memory access speed on various levels. Instead, it needs to use subject domain

concepts such as number and size of independent tasks.

In the previous works [3–6], we have developed a theory, methodology and tools

for automated program design, synthesis, and auto-tuning, based on Glushkov’s sys-

tems of algorithmic algebras (SAA) and term rewriting technique. The model for

parallel programs optimization and the auto-tuning framework named TuningGenie

aimed at automating adjustment of programs to a target platform have been proposed

in [6]. The framework works with a source code of parallel software and performs

source-to-source transformations by using facilities of a rule-based rewriting system

TermWare [3].

The main drawback of the auto-tuning approach is in significant one-time costs of

optimization process: if the number of program versions is large enough, the optimi-

zation process may run for many hours and even days. In this paper we propose the

hybrid approach to auto-tuning using statistical modeling and machine learning tech-

nique to reduce the time needed for searching for an optimal program version. The

approach consists in automatic training of a neural network model on results of com-

mon tuning cycles with subsequent replacement of some auto-tuner calls with an

evaluation from the statistical model.

2 Auto-Tuning Software Framework and Machine Learning

In the work [6], TuningGenie framework for automated generation of auto-tuner ap-

plications from a source code has been developed. The idea of an auto-tuner consists

in empirical evaluation of several versions of input program and selection of the best

one where the main evaluation criteria are less execution time of input program and

accuracy of results obtained. The framework works with program source code using

expert knowledge of a developer and automation facilities from the framework. A

developer adds some metadata (parameter names and value ranges) to a source code

in the form of special comments-pragmas. Exploiting such expert knowledge (s)he

can reduce the number of program versions to be evaluated and therefore increase

optimization performance.

The auto-tuning software implementation is based on the rewriting rules system

TermWare [3]. TermWare is an open-source implementation of rewriting rules engine

written in Java. It provides a language for describing rewriting rules that operate on

data structures that are called terms, and a rule engine that interprets rules to trans-

form terms. TuningGenie uses TermWare to extract expert knowledge from program

source code and generates a new program version on each tuning iteration. TermWare

translates source code into a term and provides transformations according to rewriting

rules. The current TermWare version contains components for interaction with Java

and C# languages, and the current TuningGenie version supports Java programs.

Application of auto-tuning for complex and nontrivial program systems usually

takes a lot of time due to empirical estimating a large number of parameter combina-

tions of input program in a target environment (let us denote the set of parameters

combinations as).C In this paper we propose to optimize the auto-tuning method by

using statistical modeling and machine learning. The improvement consists in reduc-

ing the number of auto-tuner launches by means of building an approximation model

which allows dismissing the parameter combinations that are unlikely to be fast. The

model approximation often results in a reduction of dimensionality of input parame-

ters of the set C that means significant auto-tuning process speed-up.

Generally, machine learning methods are based on the concept of learning some

behavior from data [2, 7]. In the context of auto-tuning, the behavior to be learnt, for

example, can be program performance at different settings of program parameters.

A machine learning method first evaluates several alternatives within the search space

for n different input programs nPP ..., ,1 , defined by configurations 1,..., nC C . The set

of evaluated alternatives is called training data. The process of generating and evalu-

ating the training data and learning behavior from this data is called training. Once the

training is completed, and given a new version of program P to be evaluated, execu-

tion of P is replaced with estimate, obtained from trained model.

Machine learning is closely linked to (and often overlaps with) computational sta-

tistics [8]. All statistical algorithms (including machine learning algorithms) require a

significant number of statistical data for analysis and model construction. In the con-

text of auto-tuning tasks, the collection of many statistical data can be a long process.

Therefore, the problem of selecting the algorithms narrowing the search space at a

minimal number of real launches of an auto-tuner is very acute. For a partial solution

of the mentioned problem, in this work we use a neural network for data extrapolation

(see Section 3). In this case, relatively small number of real launches is required for

construction of an approximate model, after which the neural network model can be

used by other algorithms according to the black box principle.

3 A Case Study

In the design process, we follow top-down formal transformational style provided by

our automated toolkit for designing and synthesis of programs (IDS) [4, 5]. We begin

with high-level specification presented as a generalized scheme of the algorithm rep-

resented in the algorithmic language of Glushkov's algorithmic algebras [4] that has

the advantage to be human-friendly and complete with code in one of the parallel

programming languages (Java or C++, in our case).

Below, we consider a case study of performance tuning by the example of a hybrid

parallel sorting algorithm which applies a merge sort or an insertion sort depending on

a block size (insertionSortThreshold) of input numerical array. The initial

SAA scheme of the algorithm contains the tuneAbleParam pragmas, which

specify search domain for optimal values of variables

insertionSortThreshold and mergeSortBucketSize. The resulting

algorithm is implemented in Java.

"Parallel Hybrid Sorting (arr)"

==== "Comment(tuneAbleParam name=insertionSortThreshold

 start=10 stop=200 step=10)";

 "Declare a variable (insertionSortThreshold)

 of type (int) with initial value (100)";

 "Comment(tuneAbleParam name=mergeSortBucketSize

 start=5000 stop=1000000 step=5000)";

 "Declare a variable (mergeSortBucketSize)

 of type (int) with initial value (5000)";

 IF 'Length of the array (arr) is less or equal to

 (insertionSortThreshold)'

 THEN "insertionSort(arr)"

 ELSE IF 'Length of the array (arr) is less or equal

 to (mergeSortBucketSize)'

 THEN "sequentialMergeSort(arr)"

 ELSE "concurrentMergeSort(arr)"

 END IF

 END IF

In the auto-tuning experiment, the set of
7102  random integer numbers were

sorted. The auto-tuner parameters are { , , }cn s hC T T T , where cnT is a number of

parallel threads, sT is a threshold for block size to be sorted sequentially within the

current thread (blocks with sTsize  are split into smaller blocks and assigned to

different threads), hT is a block size at which insertion sort is used.

The experiment was performed in the following environment: 2.7 GHz Intel

Core i7 processor (6820HQ) with 4 cores and 8 MB L3 cache; 16 GB 2133 MHz

RAM; 512 GB Apple SSD SM0512L; MacOS 10.12.

In a first phase, the auto-tuner was executed without a statistical model to estimate

how quick the tuned algorithm can be. In a second phase, the statistical modeling was

plugged in to understand how heavily the search space can be pruned while preserv-

ing the near-optimum performance of the tuned algorithm.

Let’s look at the results of the first phase given in Table 1. Three configurations are

listed: slow (“default” configuration that behaves almost as classical sequential merge

sort); optimal (the quickest one that was automatically picked by the auto-tuner) and

intuitive (values are filled in by intuition with respect to known hardware specifica-

tions and algorithms details). Optimal configuration is 4.93 times quicker than slow.

This result is quite good for 4-core processor and was achieved primarily by a

combination of two factors: optimal usage of processor caches (by switching to in-

place sorting for small data sets) and efficient parallelization schema (merge sort is

easy to parallelize with “divide and conquer” method). Intuitive combination was 3.1

times faster than slow — also a decent result, but it was easy to guess due to relative

simplicity of the test algorithm. Usually optimal configurations are not so obvious for

real-life parallel programs. Optimal configuration is still substantially quicker — by

58%, so we can say that it was worth the time spent on tuning.

Table 1. The results of the first auto-tuning phase.

Configuration slow optimal intuitive

Parallelism level cnT 1 (one thread) 8 4

Insertion sort

threshold hT

0 (do not switch to

insertion sort at all)

120 30 (common notion

is to set couple

dozen as a threshold

for this trick)

Threshold for

sequential sorting

sT

100 000 000 (it’s big-

ger than the test data

size, so no data decom-

position is applied)

50 000 10 000

Test data size 20 000 000 integers

Average sorting time 4432 ms 898 ms 1426 ms

Now let’s move to the second phase to see how the auto-tuner’s search space can

be reduced with the help of statistical analysis methods. sT parameter is excluded

from the model during primary analysis phase because of its minor impact on overall

performance: once the number of subtasks after the decomposition of input data is

couple times bigger than the parallelism level, it makes almost no difference what

value is used. This can be explained by high effectiveness of Java’s Recursive-

Action [9] mechanism that was used in the implementation. RecursiveAction is a re-

cursive ForkJoinTask, which is “a thread-like entity that is much lighter weight than a

normal thread. Huge numbers of tasks and subtasks may be hosted by a small number

of actual threads in a ForkJoinPool, at the price of some usage limitations” [10]. The

experiment proved that the computational overhead on executing new

RecursiveAction is negligible.

The primary analysis of data was performed in Python language with a help of

Scikit-learn library [11]. Further analysis was implemented by means of R [12],

which is a programming language for statistical computations, analysis and graphical

representation of data. The experiment consisted of several stages: preparation and

loading of auto-tuner results to R environment, data preparation (including normaliza-

tion), building a neural network model on a training dataset and checking the model

on a test dataset.

The data analysis process is shown in Figure 1. At first, the auto-tuner performs N

experiments and saves the result data to a separate file. The data is used by the neural

network for training. After the training, the neural network extrapolates the data, gen-

erates the new dataset, which is written into a separate file. In the end, both datasets

are analyzed and compared by a human. As a neural network, a multilayer perceptron

with three input neurons, three hidden layers (20-10-5 neurons per layer) and one

output neuron were applied. The rectified linear function) max(0, =)(xxf was used

as an activation function. The backward propagation of errors has been used as a ma-

chine learning method and the Broyden-Fletcher-Goldfarb-Shanno algorithm [13] has

been applied for optimization of weighting factors.

Fig. 1. The process of analysis

The initial neural network was built based on results of 3300 launches. Then it was

used for further data generation. The use of the neural network for initial approxima-

tion allowed to reduce the search region by 58% (from
610 to).1024 5. For esti-

mating the quality of the obtained results, more than 30000 real launches (evenly

distributed over the combinations set) of the auto-tuner was performed.

Figure 2 shows the dependency of the model accuracy Acc from 10 neural net-

works on the ratio of sample data used for training.

Fig. 2. The dependency of the model accuracy Acc on the ratio of sample data used for model

training

The evaluation of the accuracy Acc is based on a confusion matrix [14] and is cal-

culated according to the formula ,
NP

TNTP
Acc




 where TP is the number of true

positives; TN is the number of true negatives; P is the number of real positive cases

in the data; N is the number of real negative cases.

Actor

Algorithm

Auto-tuner
Data

processing

Data

processing

Neural

network

4 Related Work

Many approaches have been proposed for the problem of auto-tuner development.

Well-known examples of auto-tuners are ATLAS [15] and FFTW [16], which are

specialized libraries introducing high-performance implementation of some specific

functions. Unlike our TuningGenie framework, which provides domain independent

optimization, they are tied to domain and language. TuningGenie is quite similar to

Atune-IL [17], a language extension for auto-tuning. It also uses pragmas and is not

tied to some specific programming language. The main difference of TuningGenie is

due to term rewriting engine that is used for source code transformation. Representing

program code as a term allows modifying program structure in a declarative way.

This feature significantly increases the capabilities of the auto-tuning framework.

There are also auto-tuners based on machine learning techniques [2]. In paper [18],

an open-source self-tuning compiler Milepost GCC is described, which exploits ma-

chine learning to predict optimal setting of compilation flags for a program at using

GCC. In [19] neural networks are used to learn the behavior of a given program trans-

formation (parametric loop tiling) for different values of input parameter (tile size);

the model is then used to search for optimal parameter values. In the work [20], a

machine learning approach is applied for automatic optimization of task partitioning

for OpenCL for different input problem sizes and different heterogeneous architec-

tures consisting of CPUs and GPUs. In our work, we use neural networks for learning

on the results of tuning cycles (program execution time at different values of internal

program parameters) with subsequent replacement of some auto-tuner calls with an

evaluation from the model.

Conclusion

In this paper, we explore the promising method of software auto-tuning improved by

using statistical modeling and neural networks. The method allows substantially get

rid of the main weakness of the auto-tuning methodology, namely, significantly ac-

celerate the search for an optimal program version by automatic training a neural

network model on the results of regular tuning cycles and subsequent replacement of

some auto-tuner calls with an evaluation from the model. Furthermore, the use of a

perceptron at the primary analysis stage helps to identify the most important input

parameters (i.e. which have the largest influence on a final result). The approach is

illustrated by the example of performance tuning of a hybrid parallel sorting program

that exploits the developed earlier TuningGenie framework. The results of the exper-

iment confirmed the efficiency of the proposed approach and the usefulness of its

further development, in particular, the use of more complex approximation functions

and conducting experiments with more computationally and semantically complex

programs.

References

1. Naono, K., Teranishi, K., Cavazos, J., Suda, R.: Software automatic tuning: from concepts

to state-of-the-art results. Springer, Berlin (2010)

2. Durillo, J., Fahringer, T.: From single- to multi-objective auto-tuning of programs: ad-

vantages and implications. Scientific Programming, 22(4), 285–297 (2014)

3. Doroshenko, A., Shevchenko, R.: A rewriting framework for rule-based programming dy-

namic applications. Fundamenta Informaticae, 72(1–3), 95–108 (2006)

4. Andon, F.I., Doroshenko, A.Y., Tseytlin, G.O., Yatsenko, O.A.: Algebra-algorithmic

models and methods of parallel programming. Akademperiodyka, Kyiv (2007) (in Rus-

sian)

5. Doroshenko, A., Zhereb, K., Yatsenko, O.: Developing and optimizing parallel programs

with algebra-algorithmic and term rewriting tools. In: Ermolayev, V., Mayr, H.C., Ni-

kitchenko, M., Spivakovsky, A., Zholtkevych, G. (eds.) ICTERI 2013, Communications in

Computer and Information Science, vol. 412, pp. 70–92. Springer, Cham (2013)

6. Ivanenko, P., Doroshenko, A., Zhereb, K.: TuningGenie: auto-tuning framework based on

rewriting rules. In: Ermolayev, V., Mayr, H., Nikitchenko, M., Spivakovsky, A., Zholt-

kevych, G. (eds.) ICTERI 2014. Communications in Computer and Information Science,

vol. 469, pp. 139–158. Springer, Cham (2014)

7. Mitchell, T.M.: Machine learning. 1st edn. McGraw-Hill Education, New York (1997)

8. Givens, G.H., Hoeting, J.A.: Computational statistics. 2nd edn. Wiley, Chichester (2012)

9. Class RecursiveAction (Java SE 9 & JDK 9) – Oracle Help Center,

https://docs.oracle.com/javase/9/docs/api/java/util/concurrent/RecursiveAction.html, last

accessed 2017/12/20.

10. Class ForkJoinTask (Java SE 9 & JDK 9) – Oracle Help Center,

https://docs.oracle.com/javase/9/docs/api/java/util/concurrent/ForkJoinTask.html, last ac-

cessed 2017/12/20.

11. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V. et al.: Scikit-learn: machine learn-

ing in Python. Journal of Machine Learning Research, 12, 2825–2830 (2011)

12. Crawley, M.J.: The R book. 1st edn. Wiley, Chichester (2012)

13. Fletcher, R.: Practical methods of optimization. 2nd edn. Wiley, Chichester (2000)

14. Fawcett, T.: An introduction to ROC analysis. Pattern Recognition Letters, 27(8), 861–874

(2006)

15. Whaley, R., Petitet, A., Dongarra, J. J.: Automated empirical optimizations of software and

the ATLAS Project. Parallel Computing, 27(1–2), 3–35 (2001)

16. Frigo, M., Johnson, S.: FFTW: an adaptive software architecture for the FF. Acoustics,

Speech and Signal Processing, 3, 1381–1384 (1998)

17. Schaefer, C.A., Pankratius, V., Tichy, W.F.: Atune-IL: an instrumentation language for au-

to-tuning parallel applications. In: Sips, H., Epema, D., Lin, H.-X. (eds.) Euro-Par’2009.

LNCS, vol. 5704, pp. 9–20. Springer, Berlin, Heidelberg (2009)

18. Fursin, G., Kashnikov, Y., Memon, A.W., Chamski, Z. et al.: Milepost GCC: machine

learning enabled self-tuning compiler. International Journal of Parallel Programming

39(3), 296–327 (2011)

19. Rahman, M., Pouchet, L.-N., Sadayappan, P.: Neural network assisted tile size selection.

In: 5th International Workshop on Automatic Performance Tuning (IWAPT’2010).

Springer, Berkeley, CA (2010)

20. Kofler, K., Grasso, I., Cosenza, B., Fahringer, T.: An automatic input-sensitive approach

for heterogeneous task partitioning. In: 27th ACM International Conference on Supercom-

puting (ICS’13), pp. 149–160. ACM, New York (2013)

https://docs.oracle.com/javase/9/docs/api/java/util/concurrent/RecursiveTask.html
https://docs.oracle.com/javase/9/docs/api/java/util/concurrent/ForkJoinTask.html

