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Abstract

Let C = (ci,j)(i,j)∈Z2 where ci,j are independently distributed Bernoulli
variables with parameter (1− q). We study the law of the semiperime-
ter of the smallest rectangle for which all neighbours have value 0 and
that contains the origin. Assuming symmetries on the distribution (for
instance ci,j = cj,i) leads to a hierarchy of systems of equations de-
scribing the probability that the semiperimeter of this rectangle is n.
We propose a probabilistic algorithm common to all symmetries, lead-
ing to these equations. This algorithm is related to a local bootstrap
percolation model presented by Gravner and Holroyd. For cases with
most symmetries, this probability is also described by statistics such as
the number of inversions on (partial) permutations. As a byproduct,
we propose a positivity result concerning a polynomial involving inv
and maj statistics on some linear extensions of some partial orders and
a symmetric statistic on partial permutation inherited from a simple
symmetry on the algorithm.

1 Introduction

Let C = (ci,j)(i,j)∈Z2 ∈ {0, 1}Z2

be a configuration of the square lattice Z2. A rectangle is a interval product
Ji, jK × Jk, lK. A segment is a rectangle with at least one dimension equal to 1. Each vertex (x, y) ∈ Z2 has
four neighbours {(x ± 1, y), (x, y ± 1)}. The neighbourhood of a rectangle is the set of the neighbours of the
rectangle’s vertices that are outside the rectangle. Then this neighbourhood, called border, is an union of 4
segments. A rectangle is stable in C if it contains the origin and all vertices of its border have value 0. For
instance, the blue rectangle of fig. 1 is a stable rectangle of the underlying configuration and the gray vertices
are its neighbourhood.

Given a configuration C, we have a deterministic algorithm to find this rectangle that terminates if and only if
such rectangle exists. Assuming C is a random variable given by independent Bernoulli random variables ci,j of
parameter 1− q ∈ [0, 1]. Then the probability that the rectangle associated to C has semiperimeter n is also the
probability that the algorithm terminates on a rectangle of semiperimeter n. The study of the algorithm induces
a system of linear q-difference equations that describes the probability (similar to those in section 3). We can
evaluate the power series of probability by iteration of this system but we do not have any direct formula for
each probability.
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Figure 1: Smallest stable rectangle J−3, 2K×J−1, 2K
with the origin in black
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Figure 2: Example certificate with all the square
symmetries with corresponding permutation
(1, 6, 5, 9, 2, 11, 8, 4, 3, 7, 10)

This problem comes from a study on the sandpile model [Dha95] in the square lattice. A stable rectangle is
related to the bounding box of the stabilization when 4 grains are placed to the origin in a random configuration
where each vertex independently has 2 grains with probability q and 3 grains otherwise. Hough, Jerison and
Levine [HJL17] list known results in a slightly different setting. This problem can also be seen as a percolation
model presented by Gravner and Holroyd [GH08] as the local Froböse model. The related non-zero probability
of undefined stable rectangle is bounded by the [GH08][Theorem 1].

We consider here simplified models imposing some square’s symmetries on the sampling of values. More
explicitly, in these models, we restrict the original distribution of values toward i.i.d. Bernoulli only on a
part of Z2 and repeat these values according to the symmetries on the remaining part. For example with all
the square symmetries (fig. 3), for 0 ≤ j ≤ i the ci,j are independent Bernoulli with parameter 1 − q and
c±j,±i = c±i,±j(= ci,j) (illustrated by the black boxes on the figure). Our main results are that the exact
probabilities in several of these models are also described by classical statistics on some (partial) permutations.

A statistic on the permutations is an integer given to every permutation. A first classical statistic on the
permutation σ is the statistic counting the number of inversions, denoted inv σ = |{(i, j) | i < j, σ(i) > σ(j)}|.
We define desc σ = {i | σ(i) > σ(i+ 1)} the set of descents of σ and maj σ =

∑
i∈desc σ i the major index of σ.

MacMahon [Mac15] showed that the statistics inv and maj are equally distributed on the set Sn of permutations
of size n, ie

∑
σ∈Sn q

inv σ =
∑
σ∈Sn q

maj σ.

The main results are the following theorems (if needed, see section 2 for details on examples of symmetries).

Proposition 1.1. When having the symmetries of axes x = y and y = 0 (fig. 3). The probability that the
smallest stable rectangle has semi-perimeter 4n+ 2 is

qn+1(1− q)n
∑
σ∈Sn

qinv σ.

Proposition 1.2. The symmetries x = y and x = −y (fig. 5), and the rotational symmetry by an angle of π/2
(fig. 4) reveal fixed point free involution. The probability that the smallest stable rectangle has semi-perimeter
4n+ 2 is

q2n+1(1− q)n
∑
σ∈I2n

q
inv σ−n

2

where I2n is the set of fixed point free involutions of S2n.
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Figure 3: Sampling for all symme-
tries
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Figure 4: Sampling for rotation π/2
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Figure 5: Sampling for symmetries
x = y and x = −y
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The symmetry x = −y (fig. 6) leads to a close result to the case of the axes x = y and y = 0 (Proposition 1.1).
It involves all the permutations with a multiplicity which is the number of decreasing subsequences in each
permutation. Each subsequence can be seen as a marking on the permutation.

Theorem 1.1. With symmetry x = −y (fig. 6), the probability that the smallest stable rectangle has semi-
perimeter 2n+ 2 is

q2n+2(1− q)n
∑
σ∈Sn

mult(σ)qinv σ

where mult(σ) is the number of decreasing subsequences in σ including the empty subsequence.
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Figure 6: Sampling for symmetry x = −y
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Figure 7: Sampling for symmetry y = 0

0000
00

00

00

00

00

00

00 00
11

11

11

11

11

11

11 11
11

11

00

00

00

00

00 00
11

11

11

11

00

00

Figure 8: Sampling for symmetries x = 0 and
y = 0
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Figure 9: Sampling for rotation π

Roughly speaking, these results can be obtain by identify the expected permutations with runs of the algorithm
computing the stable rectangle. We only present the algorithm in a specialization for the axial symmetry in the
line x+ y = 0 (see section 3.1). With the axes x = 0 and y = 0 (fig. 8), we similarly identify permutations of size
n sorted in 2n−1 − 1 stepŝ by Homing sort from Elizalde and Winkler [EW09] but unlike the previous results,
we didn’t find any statistic counted by q to get an expression of the probability of semi-perimeter 2n + 2. The
rotational symmetry by π (fig. 9) gives close results to the precedent case in terms of equation. The relation
between those two is the same as the relation between the case with all symmetries and the case with the
rotational symmetry by π/2 (Propositions 1.1 and 1.2). But the rotational symmetry by π does not lead us to
relation with permutations. We have no result about the remaining axial symmetry in the line y = 0 (fig. 7).

This enumerative study also has two byproducts on the study of permutations.
First, the Theorem 1.1 may be refined to take into account the relative position of the origin inside the stable

rectangle via its distances to the top and right sides. Our proof translates these two distances into statistics on
related permutations with a marked decreasing subsequence: stat1 := |{i | ∃j ≤ i, σ(j) is marked , σ(j) ≤ σ(i)}|
and stat2 := |{i | ∀j ≤ i, σ(j) is marked , σ(j) > σ(i)}|. A compatibility not detailed here of our algorithm with
the symmetry of axis x = −y (see section 3.4), implies an involution on those permutations which exchange the
two statistics while preserving the number of inversions.

Then still following Theorem 1.1, more work was given to the expression of the probability. We are interested
in
∑
σ∈Sdn

qinv (σ) where d is a subsequence of (n, n−1, . . . 2, 1) and Sdn the set of permutations of Sn that contain

the subsequence d. This kind of sum can be found in Björner and Wachs [?] with either the number of inversions
or the major index statistic. The section 4 presents the following result.

Theorem 1.2. Let n ∈ N, d is a subsequence of (n, n− 1, . . . 2, 1) and D ⊂ {1, 2, . . . n− 1}, then the following
sum is a polynomial with positive integer coefficients, where Sd,Dn is the set of permutations of Sdn whose descent
set of the inverse desc (σ−1) is D. ∑

σ∈Sd,Dn

qmaj σ − qinv σ

1− q
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In section 2 we sketch the proofs of Propositions 1.1 and 1.2. In section 3 we present the proof of Theorem 1.1
based on a parallel between runs of an algorithm and insertion rules on relevant permutations.

2 Permutation statistics

We let R(C) be the smallest stable rectangle with respect to C and |R(C)| its semiperimeter. Then the probability
that the semiperimeter of the smallest stable rectangle of C is n ≥ 2 is P[|R(C)| = n].

2.1 Square symmetries

When assuming all symmetries of the square, the smallest stable rectangle is a square with centre the origin.
The problem is reduced to the first octant.

Then P[|R(C)| = 4n+ 2] is the probability that there is at least one 1 in each one of the n first segments and

that the n + 1 segment contains only 0’s. Thus P[|R(C)| = 4n + 2] = qn+1
∑n
i=1(1 − qi). The sum

∑n
i=1

(1−qi)
1−q

is well known to be
∑
σ∈Sn q

inv σ.
We denote by certificate the set of position of the first 1’s in each segment, from the bottom. This certificate can

be interpreted as an inversion table of a permutation on n elements. The figure 2 illustrates an example certificate.
The certificate is the sequence of vertices of ordinates ci where c = (0, 0, 0, 1, 3, 4, 0, 3, 5, 0, 5). The probability to

obtain it is q12
∏11
i=1(1− q)qci = q12(1− q)11

∏11
i=1 q

ci . The vector c is also the inversion table of the permutation
σ = (1, 6, 5, 9, 2, 11, 8, 4, 3, 7, 10). Thus the probability to observe this certificate c is q12(1 − q)11qinv σ. In the
general case we have the Proposition 1.1.

2.2 Axial symmetries in the lines x = y and x = −y

As the previous case, the smallest stable rectangle is square with centre the origin. Here, the problem is reduced
to the sector {(x, y) | 0 ≤ |y| ≤ x} (fig. 5).

We have that P[|R(C)| = 4n+ 2] = q2n+1
∑n
i=1(1− q2i−1).

We can define the certificate the same way. Then there are (2n− 1)!! different certificates.
A subset of permutations of size (2n − 1)!! is the set of fixed point free permutations on {1 . . . 2n}. In the

same way as before, we showed a bijection between certificates and fixed point free involutions with an insertion
rule. This leads to the Proposition 1.2.

3 Axial symmetry in the line x+ y = 0

In this case, we only consider the upper half-plane delimited by x = −y (fig. 6). We prove the following theorem.

Theorem 1.1. P[|R(C)| = 2n+2] = q2n+2(1−q)n
∑
σ∈Sn

mult(σ)qinv σ where mult(σ) is the number of decreasing

subsequences in σ including the empty subsequence.

First, we demonstrate that the probability P[|R(C)| = 2n + 2] follows a linear recurrence from a system of
q-linear equations. Then we remark that this recurrence corresponds to a q−analogue of the recurrence satisfied
by the number of partial permutations. Finally we show that this q− analogue counts the number of inversions
of the permutations involving in the theorem.

3.1 Algorithm

In the previous cases, it is enough to read C on the right border. We read the grid from the origin to the right,
expanding a rectangle until the right border contains only 0’s. In the case of axial symmetry in the line x+y = 0,
we have to read two border.

In order to compute the size of a rectangle R(C), we define the deterministic algorithm 1 running on the grid.
The algorithm reads the right border and the top border. Starting from the rectangle [0, 0]2, at each step, if a 1
is found in the right border or the top border, we know that this border is in R(C) so we expand the rectangle
by merging the border to it. The fig. 10 shows an example of configuration with the segments (red boxes) and
the associated certificate (in blue) given by the algorithm.

The algorithm consists on 3 states describing the knowledge of the border of the expanding rectangle. In State
A, we did not read the border. In State B, we read the right border and it contains only 0’s. In State C, we read
the right border and the top border and they contains only 0’s.
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Algorithm 1 Axis symmetry x = −y
1: procedure SmallestStableRectangle(C)
2: Let certificate the certificate
3: i, j ← 0 the size of the current rectangle
4: State A:
5: if the right border {i+ 1} × J−i, jK contains a 1 then
6: y ← min{y ∈ J−i, jK | Ci+1,y = 1}
7: Add (i+ 1, y) to certificate
8: i← i+ 1
9: goto State A

10: State B :
11: if the top border J−j, iK× {j + 1} contains a 1 then
12: x← min{x ∈ J−j, iK | Cx,j+1 = 1}
13: Add (x, j + 1) to certificate
14: j ← j + 1
15: if Ci+1,j = 1 then
16: Add (i+ 1, y) to certificate
17: i← i+ 1
18: goto State A

19: goto State B

20: State C :
21: return certificate

From State A, either the right border contains only 0’s and we go to State B, or we read a 1 in the right
border so we go back to State A. From State B, either the top border contains only 0’s and we go to State C,
or we read a 1 in the top border. Then since we expand the rectangle toward the top, the whole right border
except its top vertex has been read. Either this vertex has value 0, then and we go to State B, or we read a 1 in
the top-right corner and we go to State A. The State C is the final state since we found a stable rectangle.
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Figure 10: Segment partitioning from algorithm 1
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Figure 11: Symmetry on the reads

3.2 System of q-linear equations

We refine the states Ai,j , Bi,j and Ci,j from the algorithm with the size of the expanding rectangle J−j,−iK×Ji, jK.
Then the probability to enter a state from another is straightforward.

From state Ai,j , we enter state Ai+1,j with probability (1 − qi+j+1), and state Bi,j with probability qi+j+1

otherwise. From state Bi,j , we enter state Bi,j+1 with probability q(1− qi+j+1), state Ai+1,j+1 with probability
(1− q)(1− qi+j+1), and state Ci,j with probability qi+j+1 otherwise. Hence we deduce this equations:

Ai,j = (1− qi+j)Ai,j−1 + (1− qi+j−1)(1− q)Bi−1,j−1

Bi,j = q(1− qi+j)Bi−1,j + qi+j+1Ai,j and Ci,j = qi+j+1Bi,j

where Ai,j and Bi,j are 0 if i or j are negative and A0,0 = 1 and B0,0 = q.
With two substitutions, we get a relation on Ci,j

Ci,j = q2(Ci−1,j + Ci,j−1)(1− qi+j)− q4Ci−1,j−1(1− qi+j−1)2
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This probability corresponds to the probability that the percolation algorithm terminates on the square of side
i+ j + 1 with the right border at distance j of the origin.

Let Cn =
∑n
i=0 Ci,n−i = P[|R(C)| = 2n+ 2] the probability to terminate in a square of semi-perimeter 2n+ 2.

Then Cn = 2q2(1 − qn)Cn−1 − q2(q(1 − qn−1))2Cn−2 where C0 = q2 and C1 = 2q4(1 − q). The polynomial Cn
can be factored by (1− q)n: Cn = q2n+2(1− q)nPn where Pn satisfies

Pn = 2
1− qn

1− q
Pn−1 −

(
1− qn−1

1− q

)2

Pn−2 (1)

3.3 Partial permutations and insertion rules

The recurrence (1) is a q−analogue of the recurrence satisfied by the number of partial permutations of {1 . . . n}
shown by Borwein, Rankin and Renner [BRR89], since its limit for q → 1 is:

|Rn| = 2n|Rn−1| − (n− 1)2|Rn−2| (2)

where we denote by Rn the set of partial permutations of {1 . . . n}. A partial permutation is an injective partial
self-maps on a set of n elements.

In order to count the number of inversions to refine the recurrence (2), we map bijectively each partial
permutation to a permutation with a decreasing subsequence marked constructed by completing the holes in
the partial permutation by the missing elements marked in decreasing order. Then we denote by the number of
inversions of a partial permutation the number of inversions of the corresponding permutation with a decreasing
subsequence marked. For instance, the partial permutation σ =?26?1? where question marks denote undefined
values maps to σ = 526413 since the missing values are {3, 4, 5}. We will note σ = 526413. The number of
inversions of σ is 10.

Now, we refine the proof of [BRR89] following the number of inversions. The sketch of the proof is to build
Rn from Rn−1 by using three insertion rules and to count the number of inversions that are created by each
rule. We denote by Tn the set of partial permutations that are not defined in 1. We denote by rn and tn the
q−analogues of |Rn| and |Tn| defined by: rn =

∑
σ∈Rn q

inv (σ) and tn =
∑
σ∈Tn q

inv (σ). For instance, r2 = 3+4q
and t2 = 1 + 2q.

We first get the following lemma.

Lemma 3.1. Let n ≥ 0, then rn+1 = 1−qn+1

1−q rn + qnrn + 1−qn
1−q tn.

Proof. Let σ ∈ Rn seen as a marked permutation. The insertion rules defined on permutations with a decreasing
subsequence marked will be denoted by π1, π2 and π3, and defined as follow (with σ some partial permutation):

π1 Let k ∈ {1 . . . n + 1}, we shift the value of σ that are greater or equal to k and we insert k at the first
position.

Example: σ = 526413, the rule π1 with k = 2 leads to 2637514

π2 We insert a marked n+ 1 at the first position.

Example: f = 526413, the rule π2 leads to 6526413

π3 Let k ∈ {2 . . . n+ 1}, if σ1 is marked, we insert n+ 1 at position k in σ.

Example: f = 526413, the rule π3 with k = 4 leads to 5267413

We note that π3 is only defined on Tn. The co-domains of the rules π1, π2 and π3 form a partition of Rn+1.
Since the rules π1, π2 and π3 are bijective, we proved the relation |Rn+1| = (n+ 1)|Rn|+ |Rn|+ n|Tn|.

Moreover, we can follow the number of new inversions when we insert an value in a permutation of size n.
The rule π1 with parameter k adds k− 1 inversions. The rule π2 adds n inversions. The rule π3 with parameter
k adds n+ 1− k inversions. Thus, we have

rn+1 =

n+1∑
k=1

qk−1rn + qnrn +

n+1∑
k=2

qn+1−ktn.

Noticing that the co-domains of π2 and π3 form a partition of Tn, we also get in the same way the following
lemma.

145



Lemma 3.2. Let n ≥ 0, then tn+1 = qnrn + 1−qn
1−q tn.

Using the equations of the lemma 3.1 at ranks n and n − 1 and the lemma 3.2 at rank n − 1 we obtain the
expected relation:

rn+1 = 2
1− qn+1

1− q
rn −

(
1− qn

1− q

)2

rn−1.

Thus Pn and rn satisfy the same recurrence and the same initialization. That concludes the proof of the
Theorem 1.1.

3.4 Bijection with certificates

We can construct a bijection from the set of certificates to the partial permutations using the rules π1, π2 and π3.
The rule π3 corresponds to the transition Ai,j → Ai+1,j , π2 to the transitions Bi,j → Ai+1,j+1 and Ai,j → Ai+1,j

and π1 corresponds to the transition Bi,j → Bi,j+1.
We note that if we take the reflection across the line x = y, the algorithm produces the same certificate up to

a permutation and reads the same vertices (fig. 11). Thanks to the precedent bijection, we have an involution on
the partial permutations exchanging the statistics stat1 and stat2 presented in the introduction, and preserving
the number of inversions, which is also the number of read 0’s.

4 Decreasing subsequences and q-positivity

We let the word sn = (n, n− 1, . . . , 1). Given two words u and v, u is a subsequence of v if u derives from v by
deleting some letters, denoted by u ≺ v. We reformulate the probability given by Theorem 1.1 by interchanging
the summations:

P[|R(C)| = 2n+ 2] = q2n+2(1− q)n
∑
σ∈Sn

∑
d≺sn
d≺σ

qinv σ = q2n+2(1− q)n
∑
d≺sn

∑
σ∈Sn
d≺σ

qinv σ.

We let Sdn the set of permutations σ in Sn such that d ≺ σ. For some d, the sum
∑
σ∈Sdn

qinv σ factorizes

according to a more general study of linear extensions of partial orders [?].
The number of inversions of permutations was extended by Björner and Wachs towards labelled forests. The

[?, Theorem 1.1] gives a simple relation if d has no hole, d = [min d,max d],
∑
σ∈Sdn

qinv σ = q|d|(|d|−1)/2
[n]q !
[|d|]q ! .

Otherwise, there is no known formula for other d. However, the [?, Theorem 1.2] gives a similar formula if

the major index statistic replaces the number of inversions:
∑
σ∈Sdn

qmaj σ = q|d|(|d|−1)/2
[n]q !
[|d|]q ! This suggests to

consider ∑
σ∈Sdn

qinv σ =
∑
σ∈Sdn

qmaj σ −

∑
σ∈Sdn

(
qmaj σ − qinv σ

)
The second term of the right hand side is a polynomial of which 1 is a root, thus it can be factored by (1− q).

Moreover, it satisfies the following theorem.

Theorem 4.1. Let n ∈ N, d ≺ sn, then the following sum is a polynomial with positive integer coefficients.

∑
σ∈Sdn

qmaj σ − qinv σ

1− q

In order to prove this affirmation, we use intermediate statistics on permutations. Let W = (wi,j)1≤i,j≤n be
an upper triangular matrix, Kadell [Kad85] defined the weighted inversion number invW (σ) of σ with respect to

the weight matrix W by invW (σ) =
∑

1≤i<j≤n wi,jχ(σ(i) > σ(j)). We define for 1 ≤ k < l ≤ n, W (k,l) = (w
(k,l)
i,j )

where w
(k,l)
i,j = 1 for 1 ≤ i < j < l, w

(k,l)
i,i+1 = i for l < i < n, w

(k,l)
i,l = 1 for k < i < l, w

(k,l)
k,l = k and

w
(k,l)
i,j = 0 otherwise. The [Kad85][Corollary 2] holds so W (k,l) is equally distributed with the inversion number.

Note that invW (1,n) = inv and invW (1,2) = maj . We can easily show that for any σ and any 1 < k < l ≤ n,
invW (k,l)(σ)− invW (k−1,l)(σ) = (k − 1) [χ(σ(k) > σ(l))− χ(σ(k − 1) > σ(l))].
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Lemma 4.1. Let 1 < k < l ≤ n,
∑
σ∈Sdn

q
inv
W (k,l) (σ)−qinvW (k−1,l) (σ)

1−q is a polynomial with positive integer coeffi-
cients.

Proof. We defined the involution σ → σ? by σ? = σ◦(k−1, k) if σ(k−1) < σ(l) < σ(k) or σ(k) < σ(l) < σ(k−1)
and σ? = σ otherwise. This is an instance of [Kad85][Lemma 1], thus for any σ we have invW (k,l)(σ) =
invW (k−1,l)(σ?). Let σ ∈ Sdn such that σ(k − 1) < σ(l) < σ(k), since σ(k − 1) < σ(k), σ(k − 1) and σ(k) are not
both in d. Then σ? still contains the subsequence d and σ?(k) < σ?(l) < σ?(k− 1). So, the sum is a sum on the
permutations σ such that invW (k,l)(σ) < invW (k−1,l)(σ) and such that σ? is not in Sdn.

Proof of the Theorem 4.1. For 1 < l < n, W (1,l) = W (l,l+1). Then

∑
σ∈Sdn

qmaj σ − qinv σ

1− q
=

∑
1<k<l≤n

∑
σ∈Sdn

qinvW (k,l) (σ) − qinvW (k−1,l) (σ)

1− q

Since the involution used for lemma 4.1 preserves the descents of the inverse, the theorem can be refined to
the permutation with the same inverse descent set. This positivity result gives some leads to find a structure
in the Theorem 1.1 formula. Moreover, the proof holds if the permutations are not constrained by a decreasing
subsequence but a set of decreasing pairs.
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