
Concurrency Oracles for Free

Georgy Lukyanov and Andrey Mokhov

School of Engineering, Newcastle University, United Kingdom

Abstract. This paper presents an approach to deriving concurrency
oracles for processor instructions whose behaviour is formally specified
using a state transformer semantics. The presented approach does not
require any modification of the existing semantics, nor does it rely on
writing a parser for the language in which the semantics is described,
thus justifying the “for free” part of the title.
The main tool in our arsenal is ad-hoc polymorphism: the presented ap-
proach is only applicable when the semantics of processor instructions is
expressed using state transformation functions that can be reinterpreted
in different contexts. As we show in the paper, such semantics can be in-
terpreted not only for instruction simulation or verification, but also for
extracting the information about instruction dependencies, thus allowing
us to identify concurrency as well as various types of conflicts between
instructions or blocks of instructions.

Keywords: concurrency oracle · instruction set architecture · functional
programming · polymorphism

1 Introduction and motivation

Deciding whether two given events in a trace are concurrent, i.e. have no causal
or data dependencies between them, is a major problem in the process discov-
ery field [3]. Various methods for concurrency extraction, often referred to as
concurrency oracles, have been introduced, including the classic α-algorithm [4],
as well as a few less widely known methods, e.g. see [7], [15] and the review
paper [5]. A good example of treating a concurrency oracle as a self-contained
problem can be found in [8].

In this paper we present an approach for deriving concurrency oracles for
events that correspond to processor instructions and blocks of instructions. The
input to the proposed approach is the microarchitectural semantics of instruc-
tions, which gives a precise description of how an instruction execution changes
the state of the processor. We show how the presented approach can be applied
for program analysis and for synthesis of efficient hardware microcontrollers.

A popular method to describe microarchitectural semantics is to use a ded-
icated domain-specific language embedded in a high-level general-purpose host
language, such as Haskell or Coq. Two pioneering works in this domain are [9],
where the Arm v7 instruction set architecture is formalised in HOL4, and [10],
where x86 architecture is formalised in Coq.

112

The authors of this paper have also used an embedded domain-specific lan-
guage to describe the semantics of a space-grade microarchitecture [16]. In par-
ticular, it was demonstrated that the same semantics can be reused in different
contexts: to simulate the processor and to perform formal verification of pro-
grams executed by the processor. In this paper we take this work further, by
demonstrating that the very same semantics can be reused for deriving concur-
rency oracles that given two instructions, or blocks of instructions, can determine
whether they are concurrent and, if not, report the data dependency conflicts.

We start by studying several common examples of processor instructions,
noticing that different instructions require different features from the language
used to describe them; see §2. We proceed by introducing the language for speci-
fying semantics in more detail and then describe the semantics of a small instruc-
tion set (§3). The approach to deriving concurrency oracles is presented in §4.
Precise analysis of data dependencies between program instructions allows us to
synthesise efficient hardware controllers for executing predefined collections of
programs, as demonstrated in §5, followed by a discussion.

2 Instruction set architecture semantics

In this section we introduce a metalanguage for describing the semantics of pro-
cessor instructions by following a few examples. We will use the metalanguage to
describe the semantics of a part of a simple generic instruction set architecture.
The later sections will introduce a formal definition of the metalanguage, instruc-
tion semantics and present a method for extracting static data dependencies of
instructions with certain properties from the semantic definitions leading to a
construction of a concurrency oracle. Fig. 1 shows three example dependency
graphs that can be automatically produced by the presented method.

Load Loading a data word from memory to a register is one of the simplest pro-
cessor instructions. Here is how1 we encode its semantics in our metalanguage:

load reg addr = \read write -> Just $

write (Reg reg) (read (Addr addr))

In this definition we use two metalanguage terms read and write to specify the
behaviour of the instruction, specifically to read the memory location at address
addr, and write the result into the register reg. Crucially, read and write are
polymorphic over the computational context f and have the following types:

read :: forall f. Key -> f Value

write :: forall f. Key -> f Value -> f ()

Here Key is used to identify a particular component of the processor state, such
as a memory location or a register, and Value is the type of data the processor
operates on, e.g. Value for a 64-bit processor.

1 We use Haskell throughout the paper, not only because it is one of the most popular
functional programming languages, but also because it provides support for higher-
rank polymorphism [17], which is essential for the presented approach.

113

The read term queries the microarchitectural state for the value of a key
and returns it wrapped in a context f, which in this case captures the effect of
reading from the state. The write term takes a key and a value, and modifies the
microarchitectural state, returning no information (the unit ()), but capturing
the effect of writing in the context f.

Reg R0

Reg R1

0 Add R1 1

Addr 0

0 Load R0 0

Addr 1

Flag Zero

IC

0 Jump 42

Fig. 1. Static data dependencies of Load R0 0, Add R1 1 and Jump 42 instructions3.
The ‘0’ inside the instruction boxes corresponds to the address of an instruction in the
program and will be useful for visualising blocks of instructions.

Jump Another simple instruction is the unconditional control flow transfer:

jump offset = \read write -> Just $

write IC ((+ offset) <$> (read IC))

This instruction adds an offset to the instruction counter IC to transfer the
control to another instruction in the program. This definition has a crucial dif-
ference from load: it uses the function <$> of the Functor type class4, thus
restricting f of the read and write terms to be a Functor:

read :: forall f. Functor f => Key -> f Value

write :: forall f. Functor f => Key -> f Value -> f ()

3 We used the algebraic-graphs Haskell library [14] to export dependency graphs into
the DOT format, and then applied GraphViz [18] for automated layout.

4 Function <$> (pronounced “fmap”) of type Functor f => (a -> b) -> f a -> f b

transforms the values in a computational context f using a pure function.

114

In this definition the functorial constraint is required to apply the addition
function (+ offset) :: Value -> Value to the instruction counter value en-
closed in a computational context f. We therefore say that jump has functorial
semantics, whereas load has unconstrained semantics, since the read and write

terms had no constraint.
Later in the paper we will instantiate f with an appropriate context for data

dependency tracking. As it turns out, instructions that have unconstrained or
functorial semantics can have at most one read dependency: there is no way
to combine multiple read results. To do that, we need applicative semantics, as
demonstrated by the next example.

Add The add instruction performs the addition of the values of a register and
a memory cell, writing the result back into the same register. If the result of
the addition is equal to zero, the instruction sets the Zero flag of the processor
to True, and to False otherwise.

The semantics definition is a bit more involved than the previous ones, be-
cause the Functor context is not expressive enough and a more powerful ab-
straction is needed. The following definition of add requires f to be at least
an Applicative:

add reg addr = \read write -> Just $

let result = (+) <$> read (Reg reg) <*> read (Addr addr)

isZero = (== 0) <$> result

in write (Reg reg) result *>

write (Flag Zero) (boolToValue <$> isZero)

Let us elaborate on what is going on here. The definition may be broken down
into three parts: reading data, processing it, and writing data back in the pro-
cessor state.

The first let-binding uses Applicative notation to read the values from the
register reg and memory address addr and add them up. Note that this notation
is declarative, hence it rather states that the result is supposed to be a sum of
values of two entities than performs actual computation. This intuition is very
important for understanding the static dependency tracking of instructions: keys
Reg reg and Addr addr are declared as static input dependencies of the add

instruction. However, since the semantics may be executed in any Applicative

context, this dependency-tracking interpretation does not prevent other possible
interpretations of the very same definition of the semantics. For instance, in a
simulation context, the result will be computed based on concrete data values
read from the current processor state.

The second line of the let-binding is quite similar to the expression in the
semantics of the jump instruction. The type of the result is f Value, hence the
zero testing function (== 0) of type Value -> Bool must be mapped over the
context f with the operator <$> to obtain the value of type f Bool.

The last two lines of the definition perform two write operations chained with
the applicative operator *> of type Applicative f => f a -> f b -> f b.

115

This declares the keys Reg reg and Flag Zero to be output dependencies of
the computation and that the writes must be both performed. The the read and
write terms now have the following types:

read :: forall f. Applicative f => Key -> f Value

write :: forall f. Applicative f => Key -> f Value -> f ()

An interesting feature of the Applicative notation is that it does not specify
the exact order of performing actions. This is useful in embedded domain-specific
languages with concurrency, for instance Facebook’s Haxl [11]. This insight can
also be used to extract concurrency from instruction descriptions.

Applicative functors are powerful enough to express the semantics of a large
class of instructions. In this paper we exploit their features to not only specify
the execution semantics but also automatically track static data dependencies
of instructions. However not every instruction can be expressed with applicative
semantics. If the behaviour depends on the actual data values, i.e. when dynamic
data dependencies emerge, a more powerful monadic semantics is required.

Indirect load The indirect memory access instruction looks up a value in a
memory cell and uses it as the effective address in the regular load instruction.
Since the effective address can not be determined statically in the general case,
this instruction has a dynamic data dependency. The polymorphic computa-
tional metalanguage requires the context f to be a Monad in order to be able to
encode such behaviour. Consider the definition of the semantics of the loadMI

instruction, which uses Haskell’s monadic do-notation:

loadMI reg addr read write = Just $ do

addr’ <- read (Addr addr)

write (Reg reg) (read (Addr addr’))

The first line extracts the effective address from the monadic context f and binds
the identifier addr’ to it. Here is the catch: expressions on left-hand-side and
right-hand-side of the <- symbol have different types. The read (Addr addr) is
of type Monad f => f Value and the identifier addr’ has type Value. The main
feature of Monad is the ability to extract a value from an effectful context and
pass it in the further computation as if it was pure. This gives us a possibility
to pass the addr’ as an argument to the next read operation.

Monadic semantics is more powerful than unconstrained, functorial and ap-
plicative ones, but we are no longer able to extract all the dependencies of the
computation if f is restricted to Monad, since some of them will not be static.
Therefore, concurrency oracles can not be built for Monad-flavoured computa-
tions, or at least, they can no longer be exact and must be approximate (for
example, one might conservatively say that loadMI has a read dependency on
every possible memory address, but no register read dependencies).

We have given examples of four types of semantic computations: unrestricted,
functorial, applicative and monadic. In every definition we used functions read

116

and write with appropriate constraints on the context f. To recap, here are the
four different types for the read function:

read :: forall f. Key -> f Value

read :: forall f. Functor f => Key -> f Value

read :: forall f. Applicative f => Key -> f Value

read :: forall f. Monad f => Key -> f Value

One can clearly see a pattern, and Haskell’s type system is powerful enough to
abstract over it. Generic read and write may be assigned the following types:

read :: forall f. c f => Key -> f Value

write :: forall f. c f => Key -> f Value -> f ()

Here, the variable c must have the kind * -> Constraint. This allows to instan-
tiate c with NoConstraint, Functor, Applicative, Monad or any other suitable
constraint, thus making the metalanguage polymorphic in the computational
context.

The next section will present a formal definition of the metalanguage, in-
struction and program semantics. The section 4 will describe the construction
of concurrency oracles for programs comprising unrestricted, functorial, applica-
tive, but not monadic instructions.

3 Polymorphic computational metalanguage

In the previous section we have described the semantics of several instructions
of a generic computer architecture in terms of a polymorphic computational
metalanguage. This section presents the formal definition of the metalanguage
and provides a more formal description of the instruction and program semantics.

A remark on formal definitions Before we start, let us make a remark
on what we consider a formal definition. We do not aim to formalise our tools in
any kind of foundational mathematical system, such as ZF5 or homotopy type
theory. We are presenting an elegant way of solving a well-known problem and
we use the Haskell programming language to implement the solution. Therefore,
we consider a concept to be formally defined if it is expressed as a Haskell data
type. This may sound hand-wavy, but since Haskell has a static type system (a
variant of System F [19]) and operational semantics, we can be formal enough.

Definition (polymorphic computational metalanguage): A term of
the metalanguage is a value of the following Haskell type:

type Semantics c a =

forall f. c f => (Key -> f Value)

-> (Key -> f Value -> f ())

-> Maybe (f a)

5 Zermelo-Fraenkel set theory.

117

A Semantics is essentially a rank-2 polymorphic6 effectful computation depend-
ing on two functions, which we will usually refer to as read and write.

Let us now give some intuition for the components of the metalanguage.
The Semantics c a type may be thought as a mutable dictionary. The read

function has type Key -> f Value — it takes a key and gives back an effectful
value looked up in the dictionary. The write function takes a key and an effect-
ful value and alters the value of the key in the dictionary. The semantics can be
partial, hence the the return type f a is wrapped in the Maybe type construc-
tor. Maybe7 is an idiomatic Haskell encoding of partial definitions. The seman-
tics may become partial if we, for example, fix the constraint type variable c

to Applicative, thus losing the possibility to encode the monadic components
of the instruction set. Maybe allows us to treat such partially-defined semantics
in a safe and formal way.

Definition (Instruction Set): An instruction set is an algebraic data type
with as many data constructors as there are instructions. If an instruction has
an argument, it is defined as an argument of the corresponding data constructor.

Consider an example definition of an instruction set consisting of instructions
described in the previous sections and the related auxiliary types:

data Instruction = Load Register MemoryAddress

| LoadMI Register MemoryAddress

| Add Register MemoryAddress

| Jump Value

data Register = R0 | R1 | R2 | R3

type MemoryAddress = Value

Definition (Instruction Set Semantics): The semantics of an instruction
set is a Haskell function mapping data constructors of the instruction set to the
terms of the polymorphic computational metalanguage.

The definition of an instruction set semantics is the point where the met-
alanguage has to be made monomorphic, i.e. the context constraint has to be
instantiated with a concrete one. Below we present unrestricted, functorial, ap-
plicative and monadic semantics for the defined instruction set.

We start from the Load instruction which may be executed in any context8:

semanticsU :: Instruction -> Semantics Unrestricted ()

semanticsU (Load reg addr) = load reg addr

semanticsU _ = const (const Nothing)

6 A rank-2 polymorphic function is one taking as a parameter another function, which
is in turn (rank-1) polymorphic. This feature requires the RankNTypes language
extension of the Glasgow Haskell Compiler.

7 Defined in the Haskell’s base library as data Maybe a = Just a | Nothing.
8 The Unrestricted constraint is not exactly idiomatic Haskell and requires some

tricks to be defined.

118

Note that the Haskell wildcard pattern ‘_’ is used to match all instructions
that require a more restrictive context. The const (const Nothing) expression
is equivalent to \read write -> Nothing and constructs a stub for these more
restricted semantics. The function load has been defined in §2.

The instantiation of c with a Functor allows us to implement the semantics
of the instruction Jump:

semanticsF :: Instruction -> Semantics Functor ()

semanticsF (Jump simm) = jump simm

semanticsF i = semanticU i

Here we use the definition of jump from §2 and fall back to unrestricted semantics
definition semanticU for the Load instruction, hence avoiding code duplication.

The remaining definitions are analogous:

semanticsA :: Instruction -> Semantics Applicative ()

semanticsA (Add reg addr) = add reg addr

semanticsA i = semanticsF i

semanticsM :: Instruction -> Semantics Monad ()

semanticsM (LoadMI reg addr) = loadMI reg addr

semanticsM i = semanticsA i

We can now define the semantics of a block of instructions by reducing a
given list of instructions:

blockSemanticsA :: [Instruction] -> Semantics Applicative ()

blockSemanticsA xs = \r w ->

foldr (\x acc -> (*>) <$> acc <*> semanticsA x r w) nop xs

where nop = Just $ pure ()

The semantics of an empty block is nop (i.e. a no-op instruction). The semantics
of a non-empty list is the semantics of its head chained with the semantics of
the tail. We need to lift the applicative chaining operation since the Maybe type
constructor also is an instance of Applicative and the behaviour of *> returns
the contents of the last Just, which is would be wrong.

Now, with the instruction semantics defined in terms of the polymorphic
computational metalanguage, we may proceed to evaluating the metalanguage
in concrete contexts to get a practical interpretation of the instruction set.

The next section presents the interpretation of unrestricted, functorial and
applicative instructions yielding concurrency oracles for programs.

Other interpretations of the metalanguage are also possible. In the technical
report [16] we present a formal model of a processor developed for space missions,
where we use a more restricted, monadic metalanguage, making emphasis on
symbolic program execution and automated theorem proving: the framework
allows to verify functional properties of programs and automatically check if
two programs are semantically equivalent. The metalanguage presented in this
paper also allows these interpretations, but the focus of this paper is different:
automated derivation of concurrency oracles.

119

4 Concurrency oracles

In this section we present a method to derive concurrency oracles from the
instruction semantics encoded in the metalanguage (Definition 3). More specifi-
cally, we aim to reason about instructions that have only static dependencies.

We start by introducing formal definitions and Haskell encodings of the con-
cepts required for building concurrency oracles. First, we define the notions of
input and output dependencies of a computation.

Definition (input dependency): Consider a term f of an applicative met-
alanguage Semantics Applicative a. A key k is an input dependency of the
term f if the term f performs a read of the key k.

Definition (output dependency): Consider a term f of an applicative
metalanguage Semantics Applicative a. A key k is an output dependency of
the term f if the term f performs a write of the key k.

Definition (dependencies): Consider a term f of an applicative metalan-
guage Semantics Applicative a. The dependencies of the term f are sets I
and O – the input and output dependencies of the term f , respectively.

In the Haskell implementation, we do not distinguish between input and
output dependencies in the type level, thus the function determining the depen-
dencies of a computation has the following type:

dependencies :: Semantics Applicative a -> Maybe ([Key], [Key])

The Maybe type constructor comes from the definition of the metalanguage: if the
applicative semantics is partial (returns Nothing) it is impossible to extract its
static dependencies. Successful static analysis yields a pair of lists representing
the sets of input and output dependencies of a computation.

To extract the static data dependencies of an applicative computation we
need to interpret its semantics in the special context of a constant functor.

4.1 The constant functor

The Const a b data type is defined as follows [12]:

newtype Const a b = Const { getConst :: a }

A value of the Const a b is just a value of any type a wrapped in a data
constructor. However, it is important that the type constructor has a phantom
type variable. This type variable allows us to declare useful instances of standard
Haskell type classes such as Functor and Applicative for Const a. We would
like to use this data type as a computational context for applicative semantics,
hence we declare the corresponding instance9:

instance Monoid m => Applicative (Const m) where

pure _ = Const mempty

Const x <*> Const y = Const (x ‘mappend‘ y)

9 Const a also has a Functor instance, where fmap _ (Const x) = Const x.

120

This instance exactly describes the desired behaviour of static dependency
tracking computational context. Const [Key] is an applicative functor that
ignores its enclosed value, but accumulates the declared dependencies using
the Monoid instance for Haskell list data type10.

4.2 Extracting dependencies

Using the seemingly vacuous datatype Const we define the function dependencies:

dependencies :: Semantics Applicative a -> Maybe ([Key], [Key])

dependencies s = partitionEithers . getConst <$> s read write

where read k = Const [Left k]

write k fv = fv *> Const [Right k]

We instantiate the polymorphic computation context with f = Const [Key]

and supply custom tracking read and write functions. In fact, read does not
perform any reading and just tracks the key as an input dependency, whereas
write tracks the key as an output dependency and executes the effectful com-
putation fv, to appropriately track its dependencies. The resulting list of keys
gets unwrapped and unzipped by standard partitionEithers . getConst.

This whole paper is built around the above three-line implementation of the
function dependencies: the rest is just functional programming background and
folklore, which is required for understanding these three lines of code.

Fully armed with static dependency analysis, we can now define concurrency
oracles for programs written in the presented metalanguage.

4.3 Concurrency oracle

A concurrency oracle is a function taking two computations and statically de-
termining if they are data concurrent, i.e. do not share any data dependencies.

Definition (Concurrency Oracle Answer): Two terms of the metalan-
guage are concurrent if they do not share any data dependencies. They are in
a read or write conflict if they share any input or output dependencies, respec-
tively. If the share both input and output dependencies then they are considered
to be in a read-write conflict. We use the following data type is used to encode
concurrency oracle answers:

data OracleAnswer k = Concurrent

| ReadConflict [k]

| WriteConflict [k]

| ReadWriteConflict [k]

Definition (concurrency oracle): Consider two terms with applicative
semantics s1 and s2 of the type Semantics Applicative a. A concurrency
oracle is a function of the following type:

10 The empty list [] is the monoid identity element and the list concatenation (++) is
the associative binary operation.

121

concurrencyOracle :: Eq k => Semantics Applicative k v1 a

-> Semantics Applicative k v2 a

-> Maybe (OracleAnswer k)

The function is required to return Nothing when one of the given semantics is
undefined, e.g. if it corresponds to an instruction with dynamic dependencies.
Below is one possible implementation:

concurrencyOracle s1 s2 = do

(r1, w1) <- dependencies s1

(r2, w2) <- dependencies s2

let readConflicts = intersect r1 r2

writeConflicts = intersect w1 w2

readWriteConflicts = intersect (r1 ++ w1) (r2 ++ w2)

pure $ case (readConflicts, writeConflicts, readWriteConflicts) of

([], [], []) -> Concurrent

(rs, [], rws) | rs == rws -> ReadConflict rs

([], ws, rws) | ws == rws -> WriteConflict ws

(_ , _ , rws) -> ReadWriteConflict rws

The oracle determines static dependencies of two given terms and examines
several possible cases of the intersections of their input and output dependencies.

4.4 Example oracles

In this subsection we show two examples to illustrate the usage of concurrency
oracles. The examples are given in the form of interactive sessions, where ‘ghci>’
denotes the command prompt.

Two Load instructions with different arguments are concurrent as confirmed
by the oracle returning the result Just Concurrent:

ghci> concurrencyOracle (semanticsA (Load R0 0))

(semanticsA (Load R1 1))

Just Concurrent

Extending the first computation with an additional Add instruction causes a read
conflict, as desired:

ghci> p1 = blockSemanticsA [Load R0 0, Add R0 1]

ghci> p2 = semanticsA (Load R1 1)

ghci> concurrencyOracle p1 p2

Just (ReadConflict [Addr 1])

We can overlay dependency graphs of programs p1 and p2 as follows (we place
the programs at starting addresses 10 and 20, respectively):

ghci> Just g1 = programDataGraph (zip [10..] [Load R0 0, Add R0 1])

ghci> Just g2 = programDataGraph (zip [20..] [Load R1 1])

ghci> drawGraph (overlay g1 g2)

122

The resulting dependency graph is shown in Fig. 2. As one can see, the programs
have a read conflict on key Addr 1, just like the oracle has determined.

Fig. 2. An overlay of static dependency graphs of two blocks of instructions.

5 Synthesis of efficient hardware microcontrollers

In this section we present a method for extracting behavioural scenarios from
system control programs and synthesising hardware microcontrollers that can ex-
ecute these scenarios. We rely on Conditional Partial Order Graphs (CPOGs) [13]
and associated tool support for synthesis; specifically, we use the CPOG plu-
gin [1] of the Workcraft framework [2], which provides support for scenario
specification and synthesis, and handles the translation of CPOGs to circuits to
produce a physical implementation of the system microcontroller.

5.1 Extracting scenarios from programs

We define a scenario as a partial order (PO) (I,≺), i.e. a binary precedence
relation ≺ defined on a set of instructions I that satisfies two properties [6]:

– Irreflexivity: ∀a ∈ I,¬(a ≺ a)

– Transitivity: ∀a, b, c ∈ I, (a ≺ b) ∧ (b ≺ c)⇒ (a ≺ c)

123

To extract scenarios from programs, we reuse the dependency analysis that
we developed for implementing concurrency oracles in the previous section. As
one can see from our definition of scenarios, we only require to keep the informa-
tion about the (partial) ordering of instructions. We can therefore discard the
unnecessary details about which particular register, flag or memory location was
the cause of the dependency, leading to the following procedure.

Extracting the behavioural scenario from a program:

1. Calculate all static data dependencies between the program instructions.
2. Construct the static dependency graph.
3. Contract data vertices, keeping the induced arcs between the instructions.
4. Perform the transitive closure of the resulting graph.

5.2 Scenario encoding and synthesis

In the context of this paper, we consider control systems which are programmed
in low-level assembly-like languages. Using the procedure from the previous sub-
section, we can extract behavioural scenarios, represented as partial orders, from
the system’s control programs. These partial orders often have some shared func-
tionality, which can be exploited by Conditional Partial Order Graphs and as-
sociated synthesis methods, leading to more efficient hardware implementations
compared to those obtained by implementing each scenario separately.

Microcontroller synthesis:

1. Extract the scenarios from a given set of system control programs.
2. Synthesise a CPOG containing all the scenarios.
3. Apply the CPOG workflow for optimisation and compilation to hardware.

In the next subsection we will illustrate the described microcontroller syn-
thesis approach on a simple example. We will consider a system with two control
programs, extract the scenarios from these programs and synthesise them into
a CPOG with some shared functionality.

5.3 Example

To illustrate the use of the scenario extraction procedure, let us sketch an ex-
ample of a system controlling a hypothetical dual-motor autonomous vehicle.
The vehicle has two motors directly driving its left and right front wheels. The
system control unit has a simple application-specific instruction set, two general-
purpose registers and a memory unit with four cells. The input to the unit is
provided in memory cells 0 and 1. The unit controls the velocity of the left and
right motors by outputting values to the cells 2 and 3, respectively. A motor’s
velocity may be adjusted with the instruction Adjust supplying the input value
in a register and referring a target motor (2 or 3).

The first program (Fig. 3, left) implements the “drive straight” behaviour,
driving both wheels with the same velocity. The graph on the right pictures the
extracted partial order.

124

1 Load R0 0

2 Adjust R0 2

3 Adjust R0 3

Fig. 3. Scenario “drive straight” and the corresponding partial order.

Another behaviour is “drive and turn”, which is implemented by adjusting
the velocities with different values (Fig. 4). In this case, the resulting partial
order contains two independent components.

1 Load R0 0

2 Load R1 1

3 Adjust R0 2

4 Adjust R1 3

Fig. 4. Scenario “drive and turn” and the corresponding partial order.

Fig. 5. Two operation scenarios and their composition.

Fig. 5 displays the Conditional Partial Order Graph which represents the
composition of the two scenarios, where the additional control input x 0 is used
to select the active scenario. The partial orders extracted from the programs are
efficiently merged, thus rendering the CPOG composition to be more compact
then a simple list of the extracted scenarios. The resulting hardware microcon-
troller, mapped to a 2-input gate library, is shown in Fig. 6.

Fig. 6. Synthesised hardware microcontroller.

125

6 Conclusion

The paper presented a metalanguage for describing the semantics of instruction
set architectures. Multiple interpretations of the metalanguage terms allow us
to evaluate the semantics in different contexts without its modification. As the
primary application, we present an approach to deriving concurrency oracles of
the instructions with only static data dependencies.

To handle instructions whose dependencies are dynamic, it is possible to
use conservative approximation of dependencies. For example, Fig. 7 shows the
dependency graph for a program implementing the Euclidean algorithm for com-
puting the greatest common divisor of two numbers that contains a conditional
branch instruction JumpZero, which modifies the instruction counter IC only
if the previous instruction set the Zero flag. In this example, we conservatively
assume that JumpZero always depends on IC. Our future work includes the appli-
cation of the presented methodology to extracting concurrency from real-world
processor specifications, as described in [16].

Reg R0

1 Store R0 255

3 Sub R0 255 6 Mod R0 1

8 Store R0 1

Reg R1

9 Store R1 0

Addr 0

5 Load R0 0

Addr 1

2 Load R0 17 Load R1 1

Addr 255

F Zero

4 JumpZero 7

IC

10 Jump (-7)

0 Set R0 0

Fig. 7. Approximation of static dependencies of the Euclidean algorithm.

126

References

1. Scenco plugin repository, GitHub repository: github.com/tuura/scenco
2. Workcraft, GitHub repository: github.com/workcraft/workcraft, Workcraft

website: www.workcraft.org
3. Van der Aalst, W.: Process Mining: Discovery, Conformance and Enhancement of

Business Processes. Springer (2011)
4. Van der Aalst, W., Weijters, T., Maruster, L.: Workflow mining: Discovering pro-

cess models from event logs. IEEE Transactions on Knowledge and Data Engineer-
ing 16(9), 1128–1142 (2004)

5. Augusto, A., Conforti, R., Dumas, M., La Rosa, M., Maggi, F.M., Marrella, A.,
Mecella, M., Soo, A.: Automated discovery of process models from event logs:
Review and benchmark. arXiv preprint arXiv:1705.02288 (2017)

6. Birkhoff, G.: Lattice Theory. No. v. 25, pt. 2 in American Mathematical Society
colloquium publications, American Mathematical Society (1940), https://books.
google.co.uk/books?id=0Y8d-MdtVwkC

7. Cook, J.E., Wolf, A.L.: Event-based detection of concurrency. In: ACM SIGSOFT
Software Engineering Notes. vol. 23, pp. 35–45. ACM (1998)

8. Dumas, M., Garćıa-Bañuelos, L.: Process mining reloaded: Event structures as a
unified representation of process models and event logs. In: International Con-
ference on Applications and Theory of Petri Nets and Concurrency. pp. 33–48.
Springer (2015)

9. Fox, A., Myreen, M.O.: A trustworthy monadic formalization of the ARMv7 in-
struction set architecture. In: International Conference on Interactive Theorem
Proving. pp. 243–258. Springer (2010)

10. Kennedy, A., Benton, N., Jensen, J.B., Dagand, P.E.: Coq: the world’s best macro
assembler? In: Proceedings of the 15th Symposium on Principles and Practice of
Declarative Programming. pp. 13–24. ACM (2013)

11. Marlow, S., Brandy, L., Coens, J., Purdy, J.: There is No Fork: An Abstraction for
Efficient, Concurrent, and Concise Data Access. SIGPLAN Not. 49(9), 325–337
(Aug 2014)

12. McBride, C., Paterson, R.: Applicative programming with effects. J. Funct. Pro-
gram. 18(1), 1–13 (Jan 2008)

13. Mokhov, A.: Conditional Partial Order Graphs. Ph.D. thesis, Newcastle University
(2009)

14. Mokhov, A.: Algebraic Graphs with Class (Functional Pearl). In: Proceedings of
the International Symposium on Haskell. ACM (2017)

15. Mokhov, A., Carmona, J., Beaumont, J.: Mining conditional partial order graphs
from event logs. In: Transactions on Petri Nets and Other Models of Concurrency
XI, pp. 114–136. Springer (2016)

16. Mokhov, A., Lukyanov, G., Lechner, J.: Formal verification of spacecraft con-
trol programs using a metalanguage for state transformers. arXiv preprint
arXiv:1802.01738 (2018)

17. Peyton Jones, S., Vytiniotis, D., Weirich, S., Shields, M.: Practical type inference
for arbitrary-rank types. Journal of functional programming 17(1), 1–82 (2007)

18. Research, A.L.: Graphviz – Graph Visualization Software (1991), https://www.
graphviz.org/

19. Sulzmann, M., Chakravarty, M.M.T., Jones, S.P., Donnelly, K.: System f with
type equality coercions. In: Proceedings of the 2007 ACM SIGPLAN International
Workshop on Types in Languages Design and Implementation. pp. 53–66. TLDI
’07, ACM (2007)

127

