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Abstract. This paper describes the participation of the WBI team in
the CLEF eHealth 2018 shared task 1 (“Multilingual Information Ex-
traction - ICD-10 coding”). Our contribution focus on the setup and
evaluation of a baseline language-independent neural architecture for
ICD-10 classification as well as a simple, heuristic multi-language word
embedding space. The approach builds on two recurrent neural networks
models to extract and classify causes of death from French, Italian and
Hungarian death certificates. First, we employ a LSTM-based sequence-
to-sequence model to obtain a death cause from each death certificate
line. We then utilize a bidirectional LSTM model with attention mech-
anism to assign the respective ICD-10 codes to the received death cause
description. Both models take multi-language word embeddings as in-
puts. During evaluation our best model achieves an F-score of 0.34 for
French, 0.45 for Hungarian and 0.77 for Italian. The results are encour-
aging for future work as well as the extension and improvement of the
proposed baseline system.
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1 Introduction

Automatic extraction, classification and analysis of biological and medical con-
cepts from unstructured texts, such as scientific publications or electronic health
documents, is a highly important task to support many applications in research,
daily clinical routine and policy-making. Computer-assisted approaches can im-
prove decision making and support clinical processes, for example, by giving
a more sophisticated overview about a research area, providing detailed infor-
mation about the aetiopathology of a patient or disease patterns. In the past
years major advances have been made in the area of natural-language process-
ing (NLP). However, improvements in the field of biomedical text mining lag



behind other domains mainly due to privacy issues and concerns regarding the
processed data (e.g. electronic health records).

The CLEF eHealth lab1 attends to circumvent this situation through organi-
zation of various shared tasks to exploit electronically available medical content
[34]. In particular, Task 12 of the lab is concerned with the extraction and
classification of death causes from death certificates originating from different
languages [27]. Participants were asked to classify the death causes mentioned in
the certificates according to the International Classification of Disease version 10
(ICD-10)3. The task was concerned with French and English death certificates
in previous years. In contrast, this year the organizers provided annotated death
reports as well as ICD-10 dictionaries for French, Italian and Hungarian. The
development of language-independent, multilingual approaches was encouraged.

Inspired by the recent success of recurrent neural network models (RNN)
[6,20,10] in general and the convincing performance of the work from Miftahut-
dinov and Tutubalina [21] in the last edition of the lab, we opt for the develop-
ment of a deep learning model for this year’s competition. Our work introduces
a prototypical, language independent approach for ICD-10 classification using
multi-language word embeddings and long short-term memory models (LSTMs).
We divide the proposed pipeline into two tasks. First, we perform named entity
recognition (NER), i.e. extract the death cause description from a certificate
line, with an an encoder-decoder model. Given the death cause, named entity
normalization (NEN), i.e. assigning an ICD-10 code to extracted death cause,
is performed by a separate LSTM. Our approach builds upon a heuristic multi-
language embedding space and therefore only needs one single model for all three
data sets. With this work we want to experiment and evaluate which performance
can be achieved with such a simple shared embedding space.

2 Related work

This section highlights previous work related to our approach. We give a brief
introduction to the methodical foundations of our work, RNNs and word embed-
dings. The section concludes with a summary of ICD-10 classification approaches
used in previous eHealth Lab competitions.

2.1 Recurrent neural networks (RNN)

RNNs are a widely used technique for sequence learning problems such as ma-
chine translation [1,6], image captioning [2], NER [20,40], dependency parsing
[10] and part-of-speech tagging [39]. RNNs model dynamic temporal behaviour
in sequential data through recurrent units, i.e. the hidden, internal state of a
unit in one time step depends on the state of the unit in the previous time step.

1 https://sites.google.com/site/clefehealth/
2 https://sites.google.com/view/clef-ehealth-2018/task-1-multilingual-information-

extraction-icd10-coding
3 http://www.who.int/classifications/icd/en/

https://sites.google.com/site/clefehealth/
https://sites.google.com/view/clef-ehealth-2018/task-1-multilingual-information-extraction-icd10-coding
https://sites.google.com/view/clef-ehealth-2018/task-1-multilingual-information-extraction-icd10-coding
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These feedback connections enable the network to memorize information from
recent time steps and add the ability to capture long-term dependencies.

However, training of RNNs can be difficult due to the vanishing gradient
problem [16,3]. The most widespread modifications of RNNs to overcome this
problem are LSTMs [17] and gated recurrent units (GRU) [6]. Both modifications
use gated memories which control and regulate the information flow between two
recurrent units. A common LSTM unit consists of a cell and three gates, an input
gate, an output gate and a forget gate. In general, LSTMs are chained together
by connecting the outputs of the previous unit to the inputs of the next one.

A further extension of the general RNN architecture are bidirectional net-
works, which make the past and future context available in every time step. A
bidirectional LSTM model consists of a forward chain, which processes the in-
put data from left to right, and and backward chain, consuming the data in the
opposite direction. The final representation is typically the concatenation or a
linear combination of both states.

2.2 Word Embeddings

Distributional semantic models (DSMs) have been researched for decades in NLP
[37]. Based on a huge amount of unlabeled texts, DSMs aim to represent words
using a real-valued vector (also called embedding) which captures syntactic and
semantic similarities between the words. Starting with the publication of the
work from Collobert et al. [7] in 2011, learning embeddings for linguistic units,
such as words, sentences or paragraphs, is one of the hot topics in NLP and a
plethora of approaches have been proposed [4,23,28,30].

The majority of todays embedding models are based on deep learning models
trained to perform some kind of language modeling task [29,30,32]. The most
popular embedding model is the Word2Vec model introduced by Mikolov et
al. [22,23]. They propose two shallow neural network models, continuous bag-of-
words (CBOW) and SkipGram, that are trained to reconstruct the context given
a center word and vice versa. In contrast, Pennington et al. [28] use the ratio be-
tween co-occurrence probabilities of two words with another one to learn a vector
representation. In [30] multi-layer, bi-directional LSTM models are utilized to
learn word embeddings that also capture different contexts of it.

Several recent models focus on the integration of subword and morpholog-
ical information to provide suitable representations even for unseen, out-of-
vocabulary words. For example, Pinter et al. [32] try to reconstruct a pre-trained
word embedding by learning a bi-directional LSTM model on character level.
Similarly, Bojanowski et al. [4] adapt the SkipGram by taking character n-grams
into account. Their fastText model assigns a vector representation to each char-
acter n-gram and represents words by summing over all of these representations
of a word.

In addition to embeddings that capture word similarities in one language,
multi- and cross-lingual approaches have also been investigated. Proposed meth-
ods either learn a linear mapping between monolingual representations [12,41]



or utilize word- [13,38], sentence- [31] or document-aligned [36] corpora to build
a shared embedding space.

2.3 ICD-10 Classification

The ICD-10 coding task has already been carried out in the 2016 [26] and 2017
[25] edition of the eHealth lab. Participating teams used a plethora of differ-
ent approaches to tackle the classification problem. The methods can essentially
be divided into two categories: knowledge-based [5,18,24] and machine learning
(ML) approaches [8,11,15,21]. The former relies on lexical sources, medical ter-
minologies and other dictionaries to match (parts of) the certificate text with
entries from the knowledge-bases according to a rule framework. For example, Di
Nunzio et al. [9] calculate a score for each ICD-10 dictionary entry by summing
the binary or tf-idf weights of each term of a certificate line segment and assign
the ICD-10 code with the highest score. In contrast, Ho-Dac et al. [14] treat the
problem as information retrieval task and utilize the Apache Solr search engine4

to classify the individual lines.
The ML-based approaches employ a variety of techniques, e.g. Conditional

Random Fields (CRFs) [15], Labeled Latent Dirichlet Analysis (LDA) [8] and
Support Vector Machines (SVMs) [11] with diverse hand-crafted features. Most
similar to our approach is the work from Miftahutdinov and Tutubalina [21],
which achieved the best results for English certificates in the last year’s com-
petition. They use a neural LSTM-based encoder-decoder model that processes
the raw certificate text as input and encodes it into a vector representation. Ad-
ditionally, a vector which captures the textual similarity between the certificate
line and the death causes of the individual ICD-10 codes is used to integrate
prior knowledge into the model. The concatenation of both vector representa-
tions is then used to output the characters and numbers of the ICD-10 code in
the decoding step. In contrast to their work, our approach introduces a model
for multi-language ICD-10 classification. Moreover, we divide the task into two
distinct steps: death cause extraction and ICD-10 classification.

3 Methods

Our approach models the extraction and classification of death causes as two-step
process. First, we employ a neural, multi-language sequence-to-sequence model
to receive a death cause description for a given death certificate line. We then
use a second classification model to assign the respective ICD-10 codes to the
obtained death cause. The remainder of this section gives a detailed explanation
of the architecture of the two models.

3.1 Death Cause Extraction Model

The first step in our pipeline is the extraction of the death cause from a given
certificate line. We use the training certificate lines (with their corresponding

4 http://lucene.apache.org/solr/
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ICD-10 codes) and the ICD-10 dictionaries as basis for our model. The dictio-
naries provide us with death causes for each ICD-10 code. The goal of the model
is to reassemble the dictionary death cause text from the certificate line.

For this we adopt the encoder-decoder architecture proposed in [35]. Figure
1 illustrates the architecture of the model. As encoder we utilize a unidirectional
LSTM model, which takes the single words of a certificate line as inputs and scans
the line from left to right. Each token is represented using pre-trained fastText5

word embeddings [4]. We utilize fastText embedding models for French, Italian
and Hungarian trained on Common Crawl and Wikipedia articles6. Indepen-
dently from the original language a word we represent it by looking up the word
in all three embedding models and concatenate the obtained vectors. Through
this we get a simple multi-language representation of the word. This heuristic
composition constitutes a naive solution to build a multi-language embedding
space. However we opted to evaluate this approach as a simple baseline for fu-
ture work. Encoders’ final state represents the semantic representation of the
certificate line and serves as initial input for decoding process.

 Encoder  Decoder  

Input colite infectieuse ou ischemique  \s colite infectieuse Input 

Embedding      
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Fig. 1. Illustration of the encoder-decoder model for death cause extraction. The en-
coder processes a death certificate line token-wise from left to right. The final state of
the encoder forms a semantic representation of the line and serves as initial input for
the decoding process. The decoder will be trained to predict the death cause text from
the provided ICD-10 dictionaries word by word (using special tags \s and \e for start
resp. end of a sequence). All input tokens will be represented using the concatenation
of the fastText embeddings of all three languages.

For the decoder we utilize another LSTM model. The initial input of the
decoder is the final state of the encoder model. Moreover, each token of the

5 https://github.com/facebookresearch/fastText/
6 https://github.com/facebookresearch/fastText/blob/master/docs/crawl-

vectors.md
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dictionary death cause text (padded with special start and end tag) serves as
(sequential) input. Again, we use fastText embeddings of all three languages
to represent the input tokens. The decoder predicts one-hot-encoded words of
the death cause. During test time we use the encoder to obtain a semantic
representation of the certificate line and decode the death cause description
word by word starting with the special start tag. The decoding process finishes
when the decoder outputs the end tag.

3.2 ICD-10 Classification Model

The second step in our pipeline is to assign a ICD-10 code to the generated
death cause description. For this we employ a bidirectional LSTM model which
is able to capture the past and future context for each token of a death cause
description. Just as in our encoder-decoder model we encode each token using the
concatenation of the fastText embeddings of the word from all three languages.
To enable our model to attend to different parts of the death cause we add
an extra attention layer [33] to the model. Through the attention mechanism
our model learns a fixed-sized embedding of the death cause description by
computing an adaptive weighted average of the state sequence of the LSTM
model. This allows the model to better integrate information over time. Figure 2
presents the architecture of our ICD-10 classification model. We train the model
using the provided ICD-10 dictionaries from all three languages.
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Death Cause Emb. 

Hungarian Embedding Italian Embedding French Embedding 

Fig. 2. Illustration of the ICD-10 classification model. The model utilizes a bi-
directional LSTM layer, which processes the death cause from left to right and vice
versa. The attention layer summarizes the whole description by computing an adap-
tive weighted average over the LSTM states. The resulting death cause embedding
will be feed through a softmax layer to get the final classification. Equivalent to our
encoder-decoder model all input tokens will be represented using the concatenation of
the fastText embeddings of all three languages.



4 Experiments and Results

In this section we will present experiments and obtained results for the two
developed models, both individually as well as combined in a pipeline setting.

4.1 Training Data and Experiment Setup

The CLEF e-Health 2018 Task 1 participants where provided with annotated
death certificates for the three selected languages: French, Italian and Hungarian.
Each of the languages is supported by training certificate lines as well as a
dictionary with death cause descriptions resp. diagnosis for the different ICD-10
codes. The provided training data sets were imbalanced concerning the different
languages: the Italian corpora consists of 49,823, French corpora of 77,3487 and
Hungarian corpora 323,175 certificate lines. We split each data set into a training
and a hold-out evaluation set. The complete training data set was then created by
combining the certificate lines of all three languages into one data set. Beside the
provided certificate data we used no additional knowledge resources or annotated
texts.

Due to time constraints during development no cross-validation to optimize
the (hyper-) parameters and the individual layers of our models was performed.
We either keep the default values of the hyper-parameters or set them to rea-
sonable values according to existing work. During model training we shuffle the
training instances and use varying instances to perform a validation of the epoch.

Pre-trained fastText word embeddings were trained using the following pa-
rameter settings: CBOW with position-weights, embedding dimension size 300,
with character n-grams of length 5, a window of size 5 and 10 negative sam-
ples. Unfortunately, they are trained on corpora not related with the biomedical
domain and therefore do not represent the best possible textual basis for an
embedding space for biomedical information extraction. Final embedding space
used by our models is created by concatenating individual embedding vectors
for all three languages. Thus the input of our model is embedding vector of size
900. All models were implemented with the Keras8 library.

4.2 Death cause extraction model

To identify possible candidates for a death cause description, we focus on the use
of an encoder-decoder model. The encoder model uses an embedding layer with
input masking on zero values and a LSTM layer with 256 units. The encoders’
output is used as the initial state of the decoder model.

Based on the input description from the dictionary and a special start token,
the decoder generates a death cause word by word. This decoding process con-
tinues until a special end token is generated. The entire model is optimized using
the Adam optimization algorithm [19] and a batch size of 700. Model training

7 For French we only took the provided data set from 2014.
8 https://keras.io/
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was performed either for 100 epochs or until an early stopping criteria is met
(no change in validation loss for two epochs).

As the provided data set are imbalanced regarding the tasks’ languages,
we devised two different evaluation settings: (1) DCEM-Balanced, where each
language was supported by 49.823 randomly drawn instances (size of the smallest
corpus) and (2) DCEM-Full, where all available data is used. Table 4.2 shows
the results obtained on the training and validation set. The figures indicate that
the distribution of training instances per language have a huge influence on the
performance of the model. The model trained on the full training data achieves
an accuracy of 0.678 on the validation set. In contrast using the balanced data
set the model reaches an accuracy of 0.899 (+ 32.5%).

Setting Trained Epochs
Train Validation

Accuracy Loss Accuracy Loss

DCEM-Balanced 18 0.958 0.205 0.899 0.634

DCEM-Full 9 0.709 0.098 0.678 0.330

Table 1. Experiment results of our death cause extraction sequence-to-sequence model
concerning balanced (equal number of training instances per language) and full data
set setting.

4.3 ICD-10 Classification Model

The classification model is responsible for assigning a ICD-10 code to death
cause description obtained during the first step. Our model uses an embedding
layer with input masking on zero values, followed by a bidirectional LSTM layer
with 256 dimension hidden layer. Thereafter an attention layer builds an adap-
tive weighted average over all LSTM states. The respective ICD-10 code will
be determined by a dense layer with softmax activation function. We use the
Adam optimizer to perform model training. The model was validated on 25% of
the data. As for the extraction model, no cross-validation or hyper-parameter
optimization was performed.

Once again, we devised two approaches. This was mainly caused by the lack of
adequate training data in terms of coverage for individual ICD-10 codes. There-
fore, we defined two training data settings: (1) minimal (ICD-10 Minimal), where
only ICD-10 codes with two or more supporting training instances are used. This
leaves us with 6,857 unique ICD-10 codes and discards 2,238 unique codes with
support of one. This, of course, minimizes the number of ICD-10 codes in the
label space. Therefore, (2) an extended (ICD-10 Extended) data set was defined.
Here, the original ICD-10 code mappings, found in the supplied dictionaries, are
extended with the training instances from individual certificate data from the
three languages. This generates 9,591 unique ICD-10 codes. Finally, for the re-
maining ICD-10 codes that have only one supporting description, we duplicate
those data points.



The goal of this approach is to extend our possible label space to all available
ICD-10 codes. The results obtained from the two approaches on the validation
set are shown in Table 4.3. Using the minimal data set the model achieves an
accuracy of 0.937. In contrast, using the extended data set the model reaches an
accuracy of 0.954 which represents an improvement of 1.8%.

Setting Trained Epochs
Train Validation

Accuracy Loss Accuracy Loss

ICD-10 Minimal 69 0.925 0.190 0.937 0.169

ICD-10 Extended* 41 0.950 0.156 0.954 0.141

Table 2. Experiment results for our ICD-10 classification model regarding different
data settings. The Minimal setting uses only ICD-10 codes with two or more training
instances in the supplied dictionary. In contrast, Extended additionally takes the di-
agnosis texts from the certificate data and duplicates ICD-10 training instances with
only one diagnosis text in the dictionary and certificate lines. * Used in final pipeline.

4.4 Complete Pipeline

The two models where combined to create the final pipeline. We tested both
death cause extraction models (based on the balanced and unbalanced data set)
in the final pipeline, as their performance differs greatly. On the contrary, both
ICD-10 classification models perform similarly, so we just used the extended
ICD-10 classification model, with word level tokens9, in the final pipeline. To
evaluate the pipeline we build a training and a hold-out validation set during
development. The obtained results on the validation set are presented in Table
4.4. The scores are calculated using a prevalence-weighted macro-average across
the output classes, i.e. we calculated precision, recall and F-score for each ICD-10
code and build the average by weighting the scores by the number occurrences
of the code in the gold standard.

Although the individual models, as shown in Tables 4.2 and 4.3 are promising,
the performance decreases considerably in a pipeline setting . The pipeline model
based on the balanced data set reaches a F-score of 0.61, whereas the full model
achieves a slightly higher value of 0.63. Both model configurations have a higher
precision than recall (0.73/0.61 resp. 0.74/0.62).

This can be contributed to several factors. First of all, a pipeline architecture
always suffers from error-propagation, i.e. errors in a previous step will influence
the performance of the following layers and generally lower the performance of
the overall system. Investigating the obtained results, we found that the im-
balanced distribution of ICD-10 codes represents one the main problems. This

9 Although models supporting character level tokens were developed and evaluated,
their performance fared poorly compared to the word level tokens.



Model Precision Recall F-score

Final-Balanced 0.73 0.61 0.61

Final-Full 0.74 0.62 0.63

Table 3. Evaluation results of the final pipeline on the validation set of the train-
ing data. Reported figures represent the prevalence-weighted macro-average across the
output classes. Final-Balanced = DCEM-Balanced + ICD-10 Extended. Final-Full =
DCEM-Full + ICD-10 Extended

severely impacts the decoder-encoder architecture used here as the token genera-
tion is biased towards the available data points. Therefore the models misclassify
certificate lines associated with ICD-10 codes that only have a small number of
supporting training instances very often.

Results obtained on the test data set, resulting from the two submitted official
runs, are shown in Table 4. Similar to the evaluation results during development,
the model based on the full data set performs slightly better than the model
trained on the balanced data set. The full model reaches a F-score of 0.34 for
French, 0.45 for Hungarian and 0.77 for Italian. All of our approaches perform
below the mean and median averages of all participants.

Surprisingly, there is a substantial difference in results obtained between the
individual languages. This confirms our assumptions about the (un-) suitability
of the proposed multi-lingual embedding space for this task. The results also
suggest that the size of the training corpora is not influencing the final results.
As seen, best results were obtained on the Italian data set were trained on the
smallest corpora. Worst results were obtained on the middle, French, corpus
while the biggest corpus, Hungarian, is in second place.

We identified several possible reasons for the obtained results. These also rep-
resent (possible) points for future work. One of the main disadvantages of our
approach is the quality of the used word embeddings as well as the properties
of the proposed language-independent embedding space. The usage of out-of-
domain word embeddings which aren’t targeted to the biomedical domain are
likely a suboptimal solution to this problem. We tried to alleviate this by find-
ing suitable external corpora to train domain-dependent word embeddings for
each of the supported languages, however we were unable to find any significant
amount of in-domain documents (e.g. PubMed search for abstracts in either
French, Hungarian or Italian found 7843, 786 and 1659 articles respectively).
Furthermore, we used a simple, heuristic solution by just concatenating the em-
beddings of all three languages to build a shared vector space.

Besides the issues with the used word embeddings, the inability to obtain full
ICD-10 dictionaries for the selected languages has also negatively influenced the
results. As a final limitation to our approach, lack of multi-label classification
support has also been identified (i.e. not recognizing more than one death cause
in a single input text).



Language Model Precision Recall F-score

French
Final-Balanced 0.494 0.246 0.329
Final-Full 0.512 0.253 0.339
Baseline 0.341 0.200 0.253
Average 0.723 0.410 0.507
Median 0.798 0.475 0.579

Hungarian
Final-Balanced 0.518 0.384 0.441
Final-Full 0.522 0.388 0.445
Baseline 0.243 0.174 0.202
Average 0.827 0.783 0.803
Median 0.922 0.897 0.910

Italian
Final-Balanced 0.857 0.685 0.761
Final-Full 0.862 0.689 0.766
Baseline 0.165 0.172 0.169
Average 0.844 0.760 0.799
Median 0.900 0.824 0.863

Table 4. Test results of the final pipeline. Final-Balanced = DCEM-Balanced + ICD-
10 Extended. Final-Full = DCEM-Full + ICD-10 Extended

5 Conclusion and Future Work

In this paper we tackled the problem of information extraction of death causes
in an multilingual environment. The proposed solution was focused on the setup
and evaluation of an initial language-independent model which relies on a heuris-
tic mutual word embedding space for all three languages. The proposed pipeline
is divided in two steps: possible token describing the death cause are generated
by using a sequence to sequence model first. Afterwards the generated token se-
quence is normalized to a ICD-10 code using a distinct LSTM-based classification
model with attention mechanism. During evaluation our best model achieves an
F-score of 0.34 for French, 0.45 for Hungarian and 0.77 for Italian. The obtained
results are encouraging for further investigation however can’t compete with the
solutions of the other participants yet.

We detected several issues with the proposed pipeline. These issues serve
as prospective future work to us. First of all the representation of the input
words can be improved in several ways. The word embeddings we used are not
optimized to the biomedical domain but are trained on general text. Existing
work was proven that in-domain embeddings improve the quality of achieved
results. Although this was our initial approach, the difficulties of finding adequate
in-domain corpora for selected languages has proven to be to a hard to tackle.
Moreover, the multi-language embedding space is currently heuristically defined
as concatenation of the three word embeddings models for individual tokens.
Creating an unified embedding space would create a truly language-independent
token representation. The improvement of the input layer will be the main focus
of our future work.



The ICD-10 classification step also suffers from lack of adequate training
data. Unfortunately, we were unable to obtain extensive ICD-10 dictionaries for
all languages and therefore can’t guarantee the completeness of the ICD-10 label
space. Another disadvantage of the current pipeline is the missing support for
multi-label classification.
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27. Névéol, A., Robert, A., Grippo, F., Morgand, C., Orsi, C., Pelikán, L., Ramadier,
L., Rey, G., Zweigenbaum, P.: CLEF eHealth 2018 Multilingual Information Ex-
traction task Overview: ICD10 Coding of Death Certificates in French, Hungarian
and Italian. In: CLEF 2018 Evaluation Labs and Workshop: Online Working Notes.
CEUR-WS (September 2018)

28. Pennington, J., Socher, R., Manning, C.: Glove: Global vectors for word repre-
sentation. In: Proceedings of the 2014 conference on empirical methods in natural
language processing (EMNLP). pp. 1532–1543 (2014)



29. Peters, M., Ammar, W., Bhagavatula, C., Power, R.: Semi-supervised sequence
tagging with bidirectional language models. In: Proceedings of the 55th Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long Papers).
vol. 1, pp. 1756–1765 (2017)

30. Peters, M.E., Neumann, M., Iyyer, M., Gardner, M., Clark, C., Lee, K., Zettle-
moyer, L.: Deep contextualized word representations. In: The 16th Annual Con-
ference of the North American Chapter of the Association for Computational Lin-
guistics (2018)

31. Pham, H., Luong, T., Manning, C.: Learning distributed representations for mul-
tilingual text sequences. In: Proceedings of the 1st Workshop on Vector Space
Modeling for Natural Language Processing. pp. 88–94 (2015)

32. Pinter, Y., Guthrie, R., Eisenstein, J.: Mimicking Word Embeddings using Subword
RNNs. In: Proceedings of the 2017 Conference on Empirical Methods in Natural
Language Processing. pp. 102–112 (2017)

33. Raffel, C., Ellis, D.P.: Feed-forward networks with attention can solve some long-
term memory problems. In: Workshop Extended Abstracts of the 4th International
Conference on Learning Representations (2016)

34. Suominen, H., Kelly, L., Goeuriot, L., Kanoulas, E., Azzopardi, L., Spijker, R., Li,
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36. Søgaard, A., Agić, Z., Alonso, H.M., Plank, B., Bohnet, B., Johannsen, A.: Inverted
indexing for cross-lingual NLP. In: The 53rd Annual Meeting of the Association
for Computational Linguistics and the 7th International Joint Conference of the
Asian Federation of Natural Language Processing (ACL-IJCNLP 2015) (2015)

37. Turney, P.D., Pantel, P.: From frequency to meaning: Vector space models of se-
mantics. Journal of artificial intelligence research 37, 141–188 (2010)

38. Vyas, Y., Carpuat, M.: Sparse bilingual word representations for cross-lingual lex-
ical entailment. In: Proceedings of the 2016 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language Tech-
nologies. pp. 1187–1197 (2016)

39. Wang, P., Qian, Y., Soong, F.K., He, L., Zhao, H.: Part-of-speech tagging with
bidirectional long short-term memory recurrent neural network. arXiv preprint
arXiv:1510.06168 (2015)

40. Wei, Q., Chen, T., Xu, R., He, Y., Gui, L.: Disease named entity recognition by
combining conditional random fields and bidirectional recurrent neural networks.
Database: The Journal of Biological Databases and Curation 2016 (2016)

41. Xing, C., Wang, D., Liu, C., Lin, Y.: Normalized word embedding and orthogonal
transform for bilingual word translation. In: Proceedings of the 2015 Conference
of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies. pp. 1006–1011 (2015)


	WBI at CLEF eHealth 2018 Task 1: Language-independent ICD-10 coding using multi-lingual embeddings and recurrent neural networks

