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Abstract. Nowadays tuberculosis is still a widespread disease that causes
worldwide more than one million deaths and ten million new infections
every year. As part of ImageCLEF 2018, we investigated whether the
severity of the disease can be determined from CT scans, only. We there-
fore extracted features from the images which we then tested with several
classifiers. Afterwards we chose the best combinations of different feature
sets and classification models. Our best approach is based on three fea-
tures, namely cavitation, cavity tissue, and infection ratio. Combined
with random forests we achieved rank 10 regarding the RMSE measure.
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1 Introduction

In 2018 tuberculosis was listed as one of the top ten causes of death worldwide [1].
Depending on the severity degree of the disease different medical treatments are
necessary. To this day the distinction of the severity degree has been executed
by medical experts based on diverse information including the results of the
mycobacterial culture test, pleural fluid and cerebrospinal fluid (CSF) analyses,
lesion patterns in radiological images of the lungs, patient’s age, duration of
treatment and others [11]. In patients with tuberculosis, computed tomography
(CT) is often performed for analyzing the lesion patterns in the lungs. The
human-based analysis of the existing data is an expensive and time-consuming
task. Additionally, a manual classification can be error-prone. In contrast to the
manual examination of CT scans, a computer-based method could lower the
error rate and simplify the procedure.

In this paper we present a feature-based approach for severity scoring of
lung tuberculosis exclusively based on CT scans. This work is a contribution
to the severity score tuberculosis task of ImageCLEF 2018 [6], [9]. Besides the
tuberculosis degree determination, the main goal of our approach was to cre-
ate a descriptive classification framework that provides information about the
influence of different kinds of irregularities in lungs on severity scores.



2 Feature Extraction

We extracted features from CT images assuming that medical experts look for
irregularities in the lungs that are typical for tuberculosis while analyzing CT
scans in the context of severity score determination. In the medical literature,
different kinds of irregularities and lesions in the lung associated with pulmonary
tuberculosis are described. Our feature choice is for the most part based on this
description. In this section, feature extraction methods are described that we
used in our approach. Since the most of our feature extraction methods worked
on binary images, we binarized all CT images using IsoData method [16] in a
preprocessing step. Hereby we also used lung masks which were extracted by the
algorithm that was published in [7].

2.1 Lung Calcification

Calcification is significant to the disease pattern of tuberculosis[2]. We assume
that the identification and quantification of chalk within lung lobes can be a
meaningful feature. Hounsfield Units (HU)[4] of chalk vary around 700 depending
on its density. These HU values overlap with those of bones (300 HU - 1500 HU),
which are often located in the boundary area of the masks. Hence, a simple
thresholding approach is not sufficient. In order to avoid misclassification, we
therefore had to adapt the size of the masks as long as parts of the bones were
contained. Finally, pixel with the value ≥ 700 are counted because we regard
those as calcifications. In detail our approach contains the following steps:

(1) Slice-wise CT scan preparation: Set values below 700 to −3024 (no density)

(2) Slice-wise boundary analysis:

2.1 Boundary identification in mask slices:
boundary[i] = mask[i]− erode(mask[i]), with i ∈ {0, slices(mask)}

2.2 Boundary extraction from CT scans:
bscan[i] = boundary[i] ∗ scan[i]

2.3 Adaption of masks:

while (max(bscan[i]) ≥ 700) do
mask[i] = erode(mask[i])
Step 2.2

end while

(3) Summation of pixels with value ≥ 700 in mask[i] ∗ scan[i]

With erode [10], the function which executes an erosion on a binarized image
slice.



2.2 Lung Wateriness

Water accumulation is a potential concomitant of an existing tuberculosis dis-
ease. Nevertheless we assumed that an existing tuberculosis infection weakens
the immune system of the patient and may lead to trace-diseases. There are
several indispositions that are associated with fluid retention within the lungs or
in the pleural space between the lungs and the ribs, such as pleural effusion[19].
Our assumption was that water effusion is a clear evidence for an advanced level
of infection or traces of a cured serious illness. The process of searching the wa-
ter retention was based on the HU[4]. The searching algorithm is the same as in
Section 2.1.

2.3 Pulmonary Cavities

One of the classic indicators of lung tuberculosis are the pulmonary cavities
which occur in 50 percent of patients [14]. According to [13] pulmonary cavitation
formed as a result of tuberculosis is a site of very high mycobacterial burden.
They may lead to transmission of the infection to other humans and they are
associated with emergence of drug resistance. Furthermore, in [12], the authors
reported about the relationship between the cavity wall thickness combined with
the diameter of the lesion and the malignancy of the disease. Therefore, we
extracted the size of pulmonary cavities and cavity walls from CT images as
further features for severity scoring of lung tuberculosis. Although pulmonary
cavities may also occur as a result of other diseases like lung cancer [14], the
presence of additional pulmonary diseases in patients with lung tuberculosis
may increase the degree of tuberculosis.

We extracted the pulmonary cavities from single CT image slices as dark
spots completely surrounded by light tissue. Since we wanted to avoid finding

(a) (b)

Fig. 1. An example of missing pulmonary cavitation in the mask: (a) CT scan showing
cavitation in the left lung, (b) corresponding lung mask.



similar structures in other parts of CT images than lungs, we used the lung masks
that were provided by the organizers of the task using the approach described
in [7]. Due to variations of Hounsfield Units in different regions of cavities and
cavity walls in different CT images, first, we binarized the CT images as described
above. We had to make some adjustments to the lung masks because they did
not cover the entire lung and often the cavities were cut out from the masks
(compare Figure 1). Therefore, we closed all holes in the masks. Since we also
closed the holes that correctly indicated bronchi, we cut out the middle part of
the lung masks to avoid incorrectly recognizing bronchi as pulmonary cavities.

After processing the lung masks we performed the pulmonary cavitation
search in binarized CT images as follows: First, we removed all objects smaller
than 20 pixels because it is unlikely for a cavitation to be of such small size and
analyzing such objects would unnecessarily require processing time. Since bron-
chioles scanned across and shadows caused by breathing and body movements
could be falsely recognized as cavities, in the second step, we closed all holes that
were smaller than two pixels. Obviously, the internal parts of undesired objects
could be larger than 2 pixels, but, on the other side, we had to prevent erro-
neously discarding parts of real cavities. Because cavity walls are usually thicker
than bronchiole walls, in the third step, we performed morphological opening
with a 2× 2 square to discard undesired objects remained after the second step.
We considered all holes that were completely surrounded by walls as pulmonary
cavities after performing these three preprocessing steps. For performance rea-
sons we estimated the volumes of pulmonary cavities by simply summing up the
pixels of found cavities and cavity walls, respectively, over all CT scan slices in
the file.

2.4 Infection Ratio

Pulmonary tuberculosis is an infectious lung disease whose bacilli spread through
the lungs and cause lung tissue damage. Depending on the type of tuberculosis
different types of lesions occur in the lungs (see Figure 2). That makes it difficult
to estimate the amount of the affected part of the lungs automatically. Since the
infection of the most tuberculosis types cause a thickening of the lung tissue

Fig. 2. Different types of lesions in the lung.



which can be recognized in CT scans, we simply estimated the ratio of the lung
tissue to the entire lung volume. In our approach we did not differentiate between
healthy and affected lung tissue which is a difficult task, our approach is based
on the assumption that the lung tissue ratio compared to the lung volume is
smaller in healthy persons than in persons suffering from tuberculosis. In order
to highlight the lung lesions, we first binarized the CT images as described above.
After the binarization we simply counted the number of white pixels and related
it to the number of pixels in the lung mask [7].

2.5 Hounsfield Histograms

Since its introduction in 1972 [17] the technology of X-Ray computed tomog-
raphy (CT) has been continuously refined. Over time several different devices
with different parameter sets were developed [5]. The different technology and
the parameters do not only concern the distance and time between images, but
also the Hounsfield Units represented in the final image [15]. That leads to the
problem, that the same object can have different Hounsfield Units on different
images [5]. As there is no information provided what hardware and what param-
eters were involved in creating the scans for the dataset, it is difficult to look for
certain Hounsfield Units which are comparable throughout all scans.

In order to overcome this problem we decided to compare intervals of Houns-
field Units with the help of histograms. As the intervals of Hounsfield Units of
different tissues overlap, it is difficult to determine reasonable bins. Therefore we
divided the interval of [−1024, 3000] into 20 equal sized bins. In the classification
task every bin has been regarded as a single feature.

2.6 Lung Shape Comparison

Since we assume that the degree of pulmonary tuberculosis can correlate with
the overall health of a patient, we considered the shape of the lungs, as well. We
also assume that the difference between the shapes of the two lungs can provide
information about the patient’s health. To obtain a comparison measure, it is
sufficient to look at the masks.

Note, that the following procedure needs all slices to be processed separately.
In order to compare the different lungs, all masks have to be divided into two
separate lung masks. Afterwards the contours of the relevant regions are calcu-
lated. In [18] a border following method is introduced to describe the contour
of an object. The silhouettes of the lungs are calculated and stored in a vec-
tor of points using the findContours-method of OpenCV [3]. They can then be
matched with OpenCV’s matchShapes-method. A measure for the match can be
computed by the following equation:

I(A,B) =

7∑
i=1

|mA
i −mB

i | (1)



with
mA

i = sign(hA
i ) · log(hA

i ) and mB
i = sign(hB

i ) · log(hB
i ) ,

where hA
i and hB

i are the Hu Moments of the contours A and B [8].
Now there are comparison values for each slice of the CT Scan but it is desired

to receive one representative measure for the match. So finally, the average value
over all slices has to be calculated.

3 Classification Methods

We used different classifiers for predicting the severity score and the severity
level of tuberculosis using the feature set obtained from the feature extraction
step described in Section 2. In the training phase of classification models, we
performed feature selection based on the cross-validation mean square error for
severity score on the training set. We tried different classification methods in-
cluding the multi-class support vector machine (SVM) with RBF kernel, the
k-nearest-neighbor (kNN) algorithm, and the multi-layer perceptron classifier
with different parameter settings. Below we describe the best classification mod-
els with respect to the mean square error on the training set and the way of
predicting the severity score and the severity level of tuberculosis.

3.1 Decision Tree

Using the Chi Square method it turned out that 13 of the 17 features are the
most meaningful. Apparently the histograms of the higher Hounsfield Units are
not very informative. Therefore, all features have been considered for the decision
tree, except for the histograms of ranges with values greater than 50.

In Figure 3 the structure of the resulting decision tree is demonstrated. The
numbers followed by an H stand for the ranges of the histograms. The assigned
classes of the leaf nodes are highlighted in blue. Arrows to the left indicate
that the condition of the parent node applies. Arrows to the right represent the
non-applicability. The classifier was fitted using the Gini Impurity, a minimum
fraction of 3% per leaf and a minimum quality gain of 0.01. The structure shows
that most scores of the same severity class (”LOW”/”HIGH”) share similar
features. But the scores 3 and 4 are often separated by only one property, as
well. According to the paths of the decision tree, the distinction between score
3 and 4 is the most difficult task and probably represents the biggest source of
errors regarding the AUC score, since both degrees belong to different severity
classes.

3.2 Random Forests and Linear Regression

Using random forests and linear regression as classifiers we interpreted the pre-
diction of the severity score and the severity level of tuberculosis as a regression
problem. In our first attempt, we converted the severity level into the numbers 0
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Fig. 3. Illustration of the decision tree using 13 features.

and 1, where 1 means ”HIGH” and 0 means ”LOW” severity level. We used the
random forest classifier with the maximum depth value of 2 because the larger
values led to overfitting of the classification model. We calculated the severity
scores from the predicted severity levels by dividing the severity level values into
intervals.

In the second test, we trained two separate classification models for the sever-
ity score and the severity level prediction. Since the severity score and the severity
level values mismatched for some data items, we adjusted the severity score val-
ues depending on the corresponding severity level values at the extreme bound-
aries of the severity level. In particular, we set the severity score values to 1
if the corresponding severity level values were higher than 0.95. If the severity
level values were below 0.22, we set the corresponding severity score values to
5 regardless the values that were predicted for the severity score before. Here,
we also used the random forest classifier with the maximum depth value of 3.
Additionally, we submitted a linear regression model which we trained on a sub-
set of the training set for which we achieved the best results with respect to
the cross-validation mean square error for the severity score. We used only a
subset of the training set because linear regression is sensitive to outliers that
we assumed in the training set due to variations in the mean square errors in
different cross-validation runs.

Due to performance variations for the severity level in different cross-validation
runs for the random forest model trained in the second test, we assumed that the
classification model for prediction of the severity level overfitted on the training
set. Therefore, in the third test, we reduced the maximum depth value to 2 for



the random forest model. Furthermore, we refrained from the adjustment of the
severity score values based on the severity level.

4 Evaluation and Results

A maximum of 10 runs could be submitted by each group per subtask in the
ImageCLEF 2018 TB task. This section shows the final performance results of
our feature-based approach in the severity scoring challenge (subtask 3). The
final ranking was based on the root mean square error (RMSE) for the severity
score. Table 1 summarizes the results for different runs of our approach ordered
by the ranking provided by the subtask organizers. Additionally, we listed the
results of the best runs with respect to the root mean square error (RMSE) and
the Area Under the ROC Curve (AUC) submitted in the competition.

The best run of our approach was obtained by the random forest classification
model with severity score adjustment described in the second test in Section
3.2 (indicated as Rnd Frst depth 3 in the table) using only three features: size
of cavity, size of cavity tissue, and the infection ratio. Although our best run
achieved the tenth rank regarding the RMSE measure, it was ranked sixteenth
according to the AUC measure. In order to improve the results regarding the
AUC measure too, we performed feature selection based on the cross-validation
AUC value for the severity level on the training set using the same classification
method. The so selected features were calcification, infection ratio, size of cavity,
and the third, the sixth and the tenth bins of the histogram. Although this run
was only ranked on the 25th placed regarding the RMSE, it achieved the eight
place regarding the AUC measure.

Our second best run was achieved by the random forest classification model
with the maximum depth value of 2 without severity score adjustment and the
linear regression model trained on the subset of the training set (indicated as
Rnd Frst depth 2 and Lin Reg part in the table) on the same feature subset
as our best run. The performance results of our approach that calculated the
severity score from the predicted severity level values by the random forest classi-
fication model (indicated as Rnd Frst score by level in the table) were the worst
among the regression based approaches described in Section 3.2. Although the
AUC value for the severity level was the same as for our best run, the RMSE
value for the severity score calculated based on the severity level was much worse
than for the separate severity scores prediction model.

The decision trees unfortunately performed worst. They only achieved the
ranks 32-34 regarding the RMSE measure. The severity class was determined
on the basis of the received scores. For this, two methods were used. In the first
approach, the values 1, 2 and 3 represent the class ”HIGH”, and 4 and 5 belong
to class ”LOW”. In the other method the probability p of a high severity was
calculated by the formula p = 5−ŷ

4 , where ŷ stands for the predicted severity score
of the decision tree. The results showed that the first method scored significantly
better AUC values. Our best decision tree even reached the ninth rank in regard
to the AUC measure.



Table 1. Results for our top 5 runs for Subtask 3 – Severity scoring.

Classification model Features RMSE RankRMSE AUC RankAUC

– – 0.7840 1 0.7025 6

– – 0.8934 5 0.7708 1

Rnd Frst depth 3 cav., cav. tissue, inf. ratio 0.9626 10 0.6484 16

Rnd Frst depth 2 cav., cav. tissue, inf. ratio 0.9768 13 0.6620 13

Lin Reg part cav., cav. tissue, inf. ratio 0.9768 14 0.6507 15

Rnd Frst depth 3 calc., inf. ratio, cav., 1.1046 25 0.6862 8
hist. bins 3,6,10

Rnd Frst score by level cav., cav. tissue, inf. ratio 1.2040 29 0.6484 17

5 Conclusion

In this paper we have shown that our feature-based approach is competitive to
other participants of the ImageCLEF 2018 challenge [6]. With our best methods
we achieved rank 10 regarding the RMSE and rank 8 regarding the AUC mea-
sure. Almost all features in our approach were extracted using the lung masks
provided by the organizers of the task. These masks were created by an auto-
matic segmentation algorithm [7] that failed to recognize especially large lesions
in the lungs in some cases. Consequently, our feature extraction algorithms also
failed to work in such cases. Therefore, we assume that an optimization of the
masks could lead to a more precise feature extraction and improvement of the
final results of our approach. As the reproduction of Hounsfield Units of CT
scanners may vary, further information about the hardware and the used pa-
rameters could lead to an improvement of the results. These could also be used
to determine reasonable bins for the Hounsfield histograms.

Finally, the feature choice in our approach was for the most part based on
own observations that could be approved by medical studies published in the
literature in recent years. We believe that we could improve the feature extraction
and consequently the final results of our approach by consulting medical experts
specialized in treatment of pulmonary tuberculosis.
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drearczyk, V., Dicente Cid, Y., Liauchuk, V., Kovalev, V., Hasan, S.A., Ling, Y.,
Farri, O., Liu, J., Lungren, M., Dang-Nguyen, D.T., Piras, L., Riegler, M., Zhou,
L., Lux, M., Gurrin, C.: Overview of ImageCLEF 2018: Challenges, datasets and
evaluation. In: Experimental IR Meets Multilinguality, Multimodality, and Inter-
action. Proceedings of the Ninth International Conference of the CLEF Associa-
tion (CLEF 2018), LNCS Lecture Notes in Computer Science, Springer, Avignon,
France (September 10-14 2018)

10. Jankowski, M.: Erosion, dilation and related operators. In: Proceedings of 8th
International Mathematica Symposium (2006)

11. Koegelenberg, C., A Balkema, C., Jooste, Y., Taljaard, J., Irusen, E.: Validation
of a severity-of-illness score in patients with tuberculosis requiring intensive care
unit admission. South African Medical Journal 105(5), 389–392 (2015)

12. Nin, C., de Souza, V., Alves, G., do Amaral, R., Irion, K., Marchiori, E., Hochheg-
ger, B.: Solitary lung cavities: Ct findings in malignant and non-malignant disease.
Clinical radiology 71(11), 1132–1136 (2016)

13. Ong, C.W., Elkington, P.T., Friedland, J.S.: Tuberculosis, pulmonary cavitation,
and matrix metalloproteinases. American journal of respiratory and critical care
medicine 190(1), 9–18 (2014)

14. Parkar, A., Kandiah, P.: Differential diagnosis of cavitary lung lesions. Journal of
the Belgian Society of Radiology 100(1) (2016)

15. Richter, A., Hu, Q., Steglich, D., Baier, K., Wilbert, J., Guckenberger, M., Flentje,
M.: Investigation of the usability of conebeam ct data sets for dose calculation.
Radiation Oncology 3(1), 42 (2008)

16. Ridler, T., Calvard, S.: Picture Thresholding Using an Iterative Selection Method.
IEEE Transactions on Systems, Man and Cybernetics 8(8), 630–632 (1978)

17. Subburaj, K.: CT Scanning –Techniques and Applications. IntechOpen (2011)
18. Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by

border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46
(1985)

19. Vorster, M., Allwood, B., Diacon, A., Koegelenberg, C.: Tuberculous pleural ef-
fusions: Advances and controversies. Journal of Thoracic Disease 7(6), 981–991
(2015)


