
Event-based Synchronization of Model-Based Multimodal
User Interfaces

Marco Blumendorf, Sebastian Feuerstack, Sahin Albayrak
DAI-Labor, Technische Universität Berlin

Franklinstrasse 28/29, D-10587 Berlin, Germany
[Marco.Blumendorf, Sebastian.Feuerstack, Sahin.Albayrak]@dai-labor.de

ABSTRACT
Smart environments utilize computers as tools supporting the user
in his daily life, moving interaction with computers from a single
system to a complex, distributed environment. User interfaces
available in this environment need to adapt to the specifics of the
various available devices and are distributed across several
devices at the same time. A problem arising with distributed user
interfaces is the required synchronization of the different parts. In
this paper we present an approach allowing the event-based
synchronization of distributed user interfaces based on a multi-
level user interface model. We also describe a runtime system we
created, allowing the execution of model-based user interface
descriptions and the distribution of user interfaces across various
devices and modalities using channels established between the
system and the end devices.

Categories and Subject Descriptors
H.5 [Information Interfaces and Presentation]: User interfaces;
D.2.2 [Software Engineering]: Design Tools and Techniques-
User Interfaces; H.1.2 [Models and Principles]: User/Machine
Systems-Human factors; H.5.2 [Information Interfaces and
Presentation]: User Interfaces-graphical user interfaces,
interaction styles, input devices and strategies, voice I/O.

General Terms
Design, Human Factors

Keywords
Multimodal interaction, user interface model, distributed user
interfaces, synchronization, ubiquitous computing, smart
environments

1. INTRODUCTION
The ever increasing processing power of current personal
computers supports the development of increasingly complex
applications. The focus is moved from interacting with the
computer to utilizing the computer as a tool supporting users in
solving everyday problems. Computer systems increasingly move
to the background and change to silent servants ubiquitously

available in smart environments. In combination with the
emergence of new devices supporting different interaction
modalities (pen-based input, voice-, mouse-, touch-, and gesture-
based interaction) this offers new interaction possibilities
allowing the user to choose the most feasible device for a specific
task. The simultaneous availability of these capabilities also
allows the combination of multiple devices and modalities,
increasing the available communication bandwidth to interact
with the computer system. However, the dynamic distribution of
user interfaces that is required for this kind of interaction is a task
facing several technical problems. The device independent
description and the decomposition of user interfaces are currently
tackled by several model-based approaches [3][4][10][2],
researching for new ways to define user interfaces in a device
independent manner. Such a system is required to dynamically
adapt to changes in the environment to support flexible human-
computer interaction, allowing the user to change, add and
remove interaction devices according to the executed task.
Distributing user interfaces in such a manner requires the
coordination of the different presentations and the resulting input
from the user. A mechanism to synchronize the views and update
the presentation is needed, as well as a mechanism allowing the
interpretation of the user input. The system has to assure that the
different views are consistent and provide a usable view of the
system.
In this paper we present an approach supporting multimodal
human-computer interaction allowing the user to increase
interaction capabilities and expressiveness by dynamically
combining multiple modalities. The coordination of the different
parts of the user interface takes place via event propagation
through a multi-level model-based user interface as defined in the
Cameleon reference architecture proposed in [2]. An
implementation of the approach is described, based on our
runtime environment for model-based multimodal user interfaces,
supporting event-based coordination, the Multi-Access Service
Platform (MASP).
The remainder of this paper is structured as follows. In section 2
we present the related work in this area. Section 3 describes our
approach to multi-level event propagation allowing the
coordination of distributed user interfaces. Afterwards we
describe our implementation of the Multi-Access Service
Platform, incorporating a first prototype of the approach. We
conclude with a summary and outlook in the final section.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

2. RELATED WORK
Common authoring approaches rely on model-based mechanisms
such as [8][10][6] and use transformations on different levels of
abstraction to generate multi-modal user interfaces. The basis for
most approaches is a task tree notation based on the Concurrent

MDDAUI’06, October 2, 2006, Genova, Italy.
Copyright 2004 ACM 1-58113-000-0/00/0004…$5.00.

Task Tree notation [7]. Most of the current approaches focus on
the definition of models for the creation of user interfaces at
design time, but there are also ongoing efforts to realize the user
interface generation using a model interpreter at runtime [5][6] to
dynamically adapt to the interaction capabilities offered by the
connected modalities.
Most multimodal approaches we are aware of render the user
interface model to a single multimodal final user interface
definition like XHMTL+Voice as it is done described in [10] for
example. These approaches are limited to single devices, handling
internally the synchronization of input and output-modalities.
Other frameworks offering comprehensive multi-modal user
interfaces such as [1] concentrate on specific environments like
cockpit control or on multi-modal interaction with an avatar [9].
These approaches have a strong focus on specific domains and are
usually connecting the supported modalities closely together, as
all participating modalities are known in advance.
The availability of dynamic environments, providing a
combination of devices unknown at design time requires
approaches allowing the dynamic derivation of user interfaces at
runtime and their distribution and fission based on the available
devices [11]. In most cases bridging different technical standards
to connect all devices available in smart environments is still a
challenge, especially when devices are dynamically selected and a
synchronization of the distributed user interface is required.
The various approaches allow the definition of user interfaces that
can be delivered to different devices as well as the design of
distributed user interfaces. However, it is yet unclear how the
dynamic (re-) distribution of user interfaces at runtime and the
coordination of the distributed parts can be realized in detail. In
the next section, we present our approach to dynamic
coordination of distributed multimodal user interfaces.

3. MULTILEVEL EVENT PROPAGATION
Our approach to the synchronization of distributed user interfaces
is based on a messaging mechanism, allowing the propagation of
events through a multi level user interface model. The model our
approach is based on incorporates the following levels:
conceptual level, abstract UI, concrete UI, and final UI, as
proposed by the cameleon reference framework in [2]. The
different levels of the user interface model and the mappings
between the levels refine the presentation of the UI when moving
from the conceptual model to the final user interface (FUI) and
add semantic meaning to the presented elements when moving
from the FUI to the conceptual model. Final user interfaces
(FUIs) are thereby generated by top-down reification
mechanisms, refining the presentation information based on the
different abstraction levels of the model. As we focus on smart
environments we target the combination of multiple interaction
devices to simultaneously access one application. The actual view
to the system is thus defined by a set of generated FUIs,
distributed across multiple devices with each FUI being adapted
to the specific capabilities of the device. This system of
distributed FUIs forms a highly dynamic and complex
environment that requires the synchronization of the different
parts at runtime.
In our approach we realize the required synchronization via the
propagation of messages through the defined user interface
model. In the same way the reification can be used to derive user

Figure 1: Hierarchical multilevel event propagation using the

Cameleon Reference Architecture
interface presentations for specific devices, the abstraction can be
used to interpret user input events communicated bottom-up.
Input events issued by the FUI are propagated step by step
through the user interface levels being semantically enriched, to
allow their interpretation on the abstract and conceptual level of
the model. In the same way events from the FUI are abstracted it
is also possible to use the reification to derive output messages,
updating the specific presentation from abstract events resulting
from the user input interpretation. The combination of the two
mechanisms allows the coordination of the different parts of the
distributed user interface based on event propagation mechanisms.
The fact that events are either directly interpreted by the specific
layer or propagated to the next layer without directly affecting it
avoids event conflicts occurring when different FUIs receive
conflicting input. This allows recognizing and handling conflicts
at the affected layer before lower layers have been altered. Figure
1 depicts the model responsible for the creation of the distributed
FUI, which spans a tree across the different levels of abstraction.
This entails that the different final user interfaces share a common
root node allowing the synchronization of the different
representations via the propagation of events through this root
node.
As illustrated in Figure 1 an event fired by user interaction (for
instance moving the mouse over a widget) is first processed by
the final user interface and mapped to a concrete interaction
object (CIO). The platform specific “onmouseover” event could
thus be transformed to a more abstract focus event on the concrete
UI model (1). This abstraction involves looking up the CIO that
has been associated to the widget that fired the “onmouseover”
event. In our approach each CIO knows its parent abstract
interaction object (AIO) on the next abstraction level (whereas the
AIO does not know all its derived CIOs). Before the event is
propagated to the abstract UI layer, it is abstracted to a “focus”
event and associated to an AIO (2). On the next level, the abstract
UI processes the event and relates it to the task model of the user
interface (3). A specific task receiving the focus, results in a
“setfocus” event, propagated the same path backwards, as all final
user interfaces displaying the element now have to be notified
about the changed focus. During this top-down event propagation
(reification) the “setfocus” event issued from the task level is
propagated to the derived abstract UIs (4). On the AUI level, the
events are related to the involved AIOs and then further
propagated to the CUI level (5). Here the events are again mapped
to the associated CIOs and interpreted depending on the targeted

Figure 2: Synchronization via coordination topics of loosely

coupled connections in MASP architecture
output modality. Finally the adapted events are delivered to the
FUI level (6.1+6.2), where they result in an update of the specific
presentation. In a visual modality, the “setfocus” event
could result in a highlighting of a widget, whereas in a voice-
based modality, the event could result in a speech output.
To evaluate the described event propagation mechanism and the
classification of the events for the dynamic coordination of
distributed user interfaces we developed a runtime system for a
model based user interface. Based on a task tree model the event
abstraction and reification mechanisms as well as an event
classification are combined to provide multimodal user interfaces,
allowing the multimodal usage of web-based application via
multiple interaction channels that can be added and removed
independently at runtime. In the following section we describe
our implementation of the Multi-Access Service Platform,
allowing accessing an application described by a user interface
model via various channels.

4. THE MULTI-ACCESS SERVICE
PLATFORM
The Multi-Access Service Platform (MASP) has been realized as
a framework allowing event-based synchronization of distributed
user interfaces based on a hierarchical user interface model. The
delivery of final user interfaces and messages is realized via
connections to devices supporting two-way client-server
communication (Figure 2).
Connections established between the MASP and any interaction
device accessing the MASP realize event-based, two-way client-
server communication, by abstracting from the underlying
communication mechanism (i.e. HTTP). In our understanding a
connection is a way to describe the communication with a specific
device, acting as a container combining different communication
channels to abstract from the device specifics. A communication
channel is part of a connection and responsible for the one-way
communication of events. We distinguish between input channels,
providing user input events to the system and output channels
allowing the manipulation of the FUI via output events. Each
channel provides eventing capabilities and is connected to
different topics, allowing the classification of events.
Interaction with the system takes place via events fired by the
user interface through the channels. These events are processed
by our system and delivered to the affected parts of the user

Figure 3: The graphical user interface of the cooking aid

interface model. To provide a general abstraction layer from the
multiple events that can be fired by the final user interface (i.e.
onmouseover, onmouseout, onclick, onblur, etc in HTML) we
introduce three types of interaction events: focus, input and
output. Focus events have a navigational nature, covering events
that do not change the status of the system, but the status of the
current view of the system. Input events have an interaction
nature, covering selection and text input triggered by the user.
Output events are events issued by the system to adapt the
presentation of the user interface to the current status of the
system. They allow to synchronize FUIs when the presentation
changes. A FUI presented on an end-device can issue focus or
input events, whenever a user interaction occurs and receive
output events when the presentation has to be updated. The
mapping of FUI specific events to a supported interaction event is
provided by the channel, managing the communication with the
specific FUI. The interaction channel thus provides a device and
modality abstraction, introducing a common interaction
mechanism. In our implementation we are using Java Messaging
System (JMS)-based messaging, allowing the flexible distribution
of messages to the affected system components. Events received
through an interaction channel are propagated to the backend
model through a number of topics, allowing the classification of
the received events and their appropriate distribution.
In addition to the interaction events we defined additional events
on the level of the task model (task done, task disabled, task
enabled) to communicate changes on the task level. We define
that specific input events can be mapped to task done events by
the abstract user interface. Task enabled and disabled events are
mapped to output events, taking care that the specific task
presentations are shown or hidden from the specific FUIs. In our
implementation the task model is defined using the Concurrent
Task Tree notation [7], interpreted at runtime.
Using connections the runtime system can be dynamically
connected to various devices by setting up the required channels.
Once a channel is set up, the system can render a final user
interface for the channel and deliver it to the device. A user
interface can be distributed across multiple devices and modalities
when multiple channels are available. A mechanism of sending
updates to the presented user interfaces via output events allows
the redistribution and adaptation of user interfaces when new
device enter or leave the interaction environment.

5. The Virtual Cook
As an example, demonstrating the usability of our framework, we
created a Virtual Cook, presenting a cooking aid, showing the
required steps to support the user when preparing a meal. Figure 3
shows the graphical user interface of the virtual cook. As a person
usually doesn’t have the hands free for using mouse and keyboard
during cooking, we equipped the Virtual Cook with a voice based
interface, which can support the control of the visual output.
Besides the possibility to dynamically add and remove a voice
channel when using the application we also added support for a
gesture recognition channel. The voice channel is realized via
SIP-based communication, allowing a loose coupling of the voice
channel. To connect the gesture channel we created an interface
defining five gestures for navigation in the cooking aid user
interface (back, forward, up, down and step done). This interface
can be delivered to a gesture recognition device we build
ourselves, extending the possible interaction modalities via
gesture-based interaction.
Our implementation of the virtual cook application using the
MASP framework to realize an enhanced multimodal user
interface allows the distribution of the user interface across
various modalities based on the availability of the devices. The
connection abstraction allows us to dynamically add and remove
devices from the environment which results in interaction
modalities being added/removed to/from the application.

6. CONCLUSION
In this paper we introduced the event-based synchronization of
distributed user interfaces, based on a hierarchical user interface
model, defining the different aspects of the UI on multiple levels
of abstraction. The framework we presented allows processing of
user input events and synchronization of dynamically distributed
user interfaces. A connection-based communication mechanism
combining multiple channels can be used to communicate with
the user via multiple modalities.
However, in our work we focused on the extension of a primary
modality with additional redundant interaction capabilities. The
extension of the approach to support any mixture of modalities as
well as the usage of complementary user interfaces requires more
research considering the elimination of ambiguous events and the
fusion of multipart events.
We also did not set a strong focus on the rendering of user
interfaces for the different modalities from one common model,
but rather annotated a task tree with user interfaces for the
different supported modalities.
In the future, we also want to support more gesture and voice
commands and a more flexible definition of the user interface
model, considering the different interaction styles of the
modalities in a more appropriate way.
The presented approach provides an event-based mechanism
incorporating the multi-level structure of model-based user
interfaces to coordinate distributed user interfaces. However, the
presented implementation is still not complete and can be
extended towards better support for the new possibilities provided
by multimodal human-computer interaction in smart
environments.

7. ACKNOWLEDGMENTS
We thank the German Federal Ministry of Economics and
Technology for supporting our work as part of the Service Centric
Home project in the "Next Generation Media" program.

8. REFERENCES
[1] Bouchet, J.; Nigay, L. & Ganille, T. (2004),ICARE software

components for rapidly developing multimodal interfaces, in
'ICMI '04: Proceedings of the 6th international conference on
Multimodal interfaces', ACM Press, New York, NY, USA,
pp. 251-258.

[2] Calvary, G., Coutaz, J., Thevenin, D., Limbourg, Q.,
Bouillon, L. and Vanderdonckt, J. A Unifying Reference
Framework for Multi-Target User Interfaces. Interacting
with Computers 15, 3 (2003), 289–308.

[3] Coninx, K.; Luyten, K.; Vandervelpen, C.; den Bergh, J.V.
& Creemers, B. (2003),Dygimes: Dynamically Generating
Interfaces for Mobile Computing Devices and Embedded
Systems., in 'Mobile HCI', pp. 256-270.

[4] Eisenstein, J.; Vanderdonckt, J. & Puerta, A.R. (2001),
Applying model-based techniques to the development of UIs
for mobile computers, in 'Intelligent User Interfaces', pp. 69-
76.

[5] Klug, T. & Kangasharju, J. (2005), Executable Task Models,
in 'Proceedings of TAMODIA 2005', ACM Press, Gdansk,
Poland, pp. 119-122.

[6] Mori, G.; Paterno;, F. & Santoro, C. (2003), Tool support for
designing nomadic applications, in 'IUI '03: Proceedings of
the 8th international conference on Intelligent user
interfaces', ACM Press, New York, NY, USA, pp. 141--148.

[7] Paterno, F (1999), Model-based Design and Evaluation of
Interactive Applications. Springer Verlag. Berlin 1999.

[8] Paterno, F. & Giammarino, F. (2006), Authoring interfaces
with combined use of graphics and voice for both stationary
and mobile devices, in 'AVI '06: Proceedings of the working
conference on Advanced visual interfaces', ACM Press, New
York, NY, USA, pp. 329-335.

[9] Reithinger, N.; Alexandersson, J.; Becker, T.; Blocher, A.;
Engel, R.; Löckelt, M.; Müller, J.; Pfleger, N.; Poller, P.;
Streit, M. & Tschernomas, V. (2003), SmartKom: adaptive
and flexible multimodal access to multiple applications, in
'ICMI '03: Proceedings of the 5th international conference on
Multimodal interfaces', ACM Press, New York, NY, USA,
pp. 101-108.

[10] Stanciulescu, A.; Limbourg, Q.; Vanderdonckt, J.; Michotte,
B. & Montero, F. (2005), A transformational approach for
multimodal web user interfaces based on UsiXML, in 'ICMI
'05: Proceedings of the 7th international conference on
Multimodal interfaces', ACM Press, New York, NY, USA,
pp. 259-266.

[11] Vandervelpen, C. and Coninx, K. Towards model-based
design support for distributed user interfaces. In Proceedings
of the Third Nordic Conference on Human-Computer
interaction (Tampere, Finland, October 23 - 27, 2004).
NordiCHI '04, vol. 82. ACM Press, New York, NY, 61-70.

	1. INTRODUCTION
	2. RELATED WORK
	3. MULTILEVEL EVENT PROPAGATION
	4. THE MULTI-ACCESS SERVICE PLATFORM
	5. The Virtual Cook
	6. CONCLUSION
	7. ACKNOWLEDGMENTS
	8. REFERENCES

