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Abstract. Accurately determining pain levels in children is difficult,
even for trained professionals and parents. Facial activity and electro-
dermal activity (EDA) provide rich information about pain, and both
have been used in automated pain detection. In this paper, we discuss
preliminary steps towards fusing models trained on video and EDA fea-
tures respectively. We demonstrate the benefit of the fusion with a special
test case involving domain adaptation and improved accuracy relative to
using EDA and video features alone.
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1 Introduction
Accurate pain assessment in children is basic to safe and efficacious pain man-
agement. Under-estimation leads to patient suffering and inadequate care while
over-estimation leads to adverse side-effects, including opioid addiction [1]. The
most widely used method to assess clinical pain is patient self-report [2]. How-
ever, this method is subjective and vulnerable to social biases, and requires
substantial cognitive, linguistic, and social competencies [2]. Objective pain es-
timation is required for appropriate pain management in the clinical setting.

In previous work, features extracted from facial action units (AUs) and EDA
signals have both been used to automatically detect pain events using machine
learning methods [3–6].

2 Methods

2.1 Participants

Forty-two pediatric research participants (30 males, 12 females) aged 13[10,15]
(median [25%, 75%]) years and primarily Hispanic (79%) who had undergone
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medically necessary laparoscopic appendectomy were recruited for a study ex-
amining automated assessment of children’s post-operative pain using video and
body sensors. Children and their parents provided assent and parental consent
prior to study evaluations.

2.2 Experimental Design and Data Collection

Data were collected over 3 visits (V): (V1) within 24 hours after appendectomy
in hospital; (V2) in hospital one calendar day after V1; and (V3) a follow-up
visit in an outpatient lab up to 42 days postoperatively. At each visit, videos (60
fps at 853x480 pixel resolution) of the patient’s face and EDA responses (using
Affectiva Q sensor) were recorded while manual pressure was exerted at the
surgical site for 10 seconds (equivalent of a clinical examination). Participants
rated their pain level using a 0-10 Numerical Rating Scale, where 0 = no pain and
10 = worst pain ever. Following convention for recognizing clinically significant
pain [7], videos and EDA with ratings of 0-3 were labeled as no pain, and videos
with ratings of 4-10 were labeled as pain. We obtained 22 pain samples from V1,
8 pain and 8 no pain samples from V2, and 22 no pain samples from V3.

2.3 Feature Extraction

Video Features: Each 10-second video was processed with iMotions software
which automatically estimates the log probabilities of 20 AUs (AU 1, 2, 4, 5, 6,
7, 9, 10, 12, 14, 15, 17, 18, 20, 23, 24, 25, 26, 28, 43) and 3 head pose indicators
(yaw, pitch and roll) from each frame. We then applied 11 statistics (mean, max,
min, standard deviation, 95th, 85th, 75th, 50th, 25th percentiles, half-rectified
mean, and max-min) to each AU over all frames to obtain 11× 23 features.

EDA Features: EDA signals were trimmed to 30 seconds (10 seconds before,
during, and after the pressure respectively), smoothed by a 0.35 Hz FIR low
pass filter, down-sampled to 1 Hz, and normalized with z-score normalization.
We then applied timescale decomposition (TSD) with standard deviation metric,
and computed the mean, SD, and entropy of each row of each TSD, to obtain a
feature vector of length 90 [5].

2.4 Machine Learning Models

Support Vector Machine (SVM): A linear SVM was used to obtain a pain
score as well as a pain prediction for each sample using video/EDA features after
PCA. The number of principal components was chosen using cross-validation.
In other ways, training was as in [5] (Inputs were normalized with z-score nor-
malization over the full dataset).

Linear Discriminant Analysis (LDA): LDA was used to differentiate be-
tween pain and no pain using pain scores from the SVMs. Inputs were either one
single pain score from one SVM, or a fusion of pain scores from both SVMs.
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Fig. 1. Graph of Model Hierarchy

Table 1. Accuracy for Classification on V2

Video EDA Fusion-Feature Fusion-Model Video-V2 EDA-V2 Fusion-Model-V2

0.5 0.75 0.56 0.56 0.69 0.71 0.84

3 Preliminary Results and Discussion

In this work, we focused on V2 (in-hospital) pain v. no pain classification (a
priority clinical concern), and used accuracy to evaluate model performance.

3.1 Performance Using Video/EDA Features

We first used V1 pain and V3 no pain samples to train an SVM for classification,
following 1⇒ 3 and 2⇒ 4 in Figure 1. Table 1 shows the performance on V2 was
fine for EDA, but suboptimal for video features. We hypothesized that this was
due to iMotions feature sensitivity to environmental differences between V1/2
(in hospital) and V3 (in outpatient lab) [6]. One solution to this problem was
to use V2 to train the model. However with only 16 datapoints in V2, results
had very large variance. Likewise, training with V1/3 and V2 data together
did not improve V2 performance. Consequently, we needed to solve the domain
adaptation problem which learns a model from a source domain (V1/3) and
performs it on a different target domain (V2).

3.2 Fusion of Video and EDA

We hoped to improve performance on V2 by combining video and EDA features.
Our first simple attempt at fusion was to fit an LDA model to distinguish between
pain v. no pain using the output pain scores from each of the SVM models trained
with video and EDA features respectively (1, 2 ⇒ 5, 6 ⇒ 7, 8 ⇒ 9 in Figure 1).
However, this method performed poorly (0.56) compared to using EDA features
alone.

3.3 Training with V2 Scores

In the fusion, our LDA classifier had only two inputs: video and EDA SVM
pain scores. Since the dimension of features was greatly reduced by SVM, it
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became feasible to train a classifier using only V2 samples. Relative to Figure 1,
we thus trained 1,2 with V1/3, and 7,8 with V2 data using cross-validation.
The accuracy using video scores was 0.69, much higher than 0.5, showing the
benefit of training on target domain V2, even if the features, V2 scores, were
obtained from a model trained on V1/3. Finally with a fusion of SVM output
scores for video and EDA, we achieved the comparative best accuracy of 0.84.
For comparison, directly concatenating video and EDA features (fusion at the
feature level) did not perform well (0.56).

4 Conclusion

We present preliminary results from a fusion approach to detecting pain in chil-
dren. While the results demonstrate improvement with our domain adaptation
fusion approach than with video or EDA features alone, we believe these results
can be further improved by tailoring the two modalities to be more sensitive to
their relative benefits and limitations.
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