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Abstract. k-plexes are a formal yet flexible way of defining commu-
nities in networks. They generalize the notion of cliques and are more
appropriate in most real cases: while a node of a clique C' is connected
to all other nodes of C, a node of a k-plex may miss up to k connec-
tions. Unfortunately, computing all maximal k-plexes is a gruesome task
and state-of-the-art algorithms can only process small-size networks. In
this paper we propose a new approach for enumerating large k-plexes
in networks that speeds up the search by several orders of magnitude,
leveraging on efficient techniques for the computation of maximal cliques.

1 Introduction

In the vast majority of networks representing real-world scenarios the distribu-
tion of edges is not uniform and it is often possible to clearly distinguish groups
of nodes that are highly connected. The automatic detection of these groups,
often called communities, helps to discover fundamental properties of large net-
works in a variety of different domains. For this reason this problem has been
largely investigated [I4]. A clique is a set of nodes in a network with all possible
edges among them, and is a formal and strict way of defining a community. So
strict, in fact, that cliques are generally thought to be too rigid to be used in
practice [I7]. A more appropriate notion in many practical cases is the k-plez:
a set of nodes such that each of them has edges with all the others, with the
possible exception of up to k missing neighbors (including itself). So, for exam-
ple, for k = 1, k-plexes are cliques, for k = 2, each node may miss one edge, etc.
Hence, k-plexes are a simple and intuitive generalization of cliques.

The problem of finding k-plexes arises in social network analysis [4], but it
has wider applicability in several important areas employing graph-based data
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mining [I9]. Unfortunately, the detection of all maximal k-plexes is unpractical
being hindered by two main problems: (i) maximal k-plexes are even more nu-
merous than maximal cliques, even if most k-plexes are small and not significant;
(ii) the most efficient algorithms in the literature, such as [6], can only be used
on small-size graphs: our experiments shows that the largest networks we were
able to analyze with such algorithms have a few hundred nodes] In this paper
we propose a solution to the first issue that is also a solution to the second one.
Namely, if we restrict the search to large k-plexes, which are the most meaningful
in practice, we can devise efficient algorithms to detect them.

Indeed, computing all maximal k-plexes does not make sense when the pur-
pose is that of detecting communities. In this respect, it is useful to focus on the
relationship between s, the size of a k-plex, and k itself. Starting from k = 1,
which corresponds to cliques, if we increase the value of k, we obtain progressively
sparser communities that are clearly less interesting in practice. (For s < k, a
k-plex can be composed of isolated nodes, and there exist many disconnected
k-plexes for s < 2k.) In this framework, our strategy for finding large k-plexes
relies on two main observations. First, the complexity of the problem can be
reduced in the vast majority of cases on the basis of certain properties of large
k-plexes that can be efficiently checked and that allows us to filter out a large
portion of the network before starting their search. The second consideration
is that, differently to what happens for k-plexes, the state-of-the-art techniques
to compute all maximal cliques are able to scale up to millions of nodes by de-
composing the network into small blocks [12]. Unfortunately, the decomposition
approach cannot be easily adapted to the detection of k-plexes. However, we
demonstrate that we can find all k-plexes non-smaller than m by looking in
the neighborhood of cliques of a size that depends on k£ and m. The knowledge
of cliques in a network provides a hint for finding all the significant k-plexes.

Structure of this paper. Section [2| contains an informal overview of our ap-
proach. Detailed description of our algorithms and their theoretical basis can be
found in [10]. Main experimental results of [10] are reported in Section 3] Finally,
Sections [] and [f] contain related work and our concluding remarks.

2 Overview

Our approach is based on two main ideas: (i) before starting the search of k-
plexes, we can filter out a relevant portion of the network in which necessary
conditions for the presence of large k-plexes do not hold, and (ii) in large net-
works, cliques can drive the search of k-plexes. While the first point provides an
effective way to simplify the problem at hand, the second can lead to an efficient
strategy for finding k-plexes. Let us elaborate on these ideas starting with the
problem of finding all k-plexes of mazimum size. Assume that we have computed
all the maximal cliques of a network and let w be the size of the maximum clique.
Then, a maximum k-plex has size at least w, since cliques are also k-plexes. For

We recall that the problem of enumerating maximal k-plexes is NP-Hard.
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Fig.1: An example network.

example, suppose we are searching for k-plexes in the network in Fig. which
we will use as a running example in this section: we have that w = 5, since the
maximum clique (the blue subgraph on the left hand side) involves five nodes.

Filtering. At this point, we observe that two filtering criteria can be applied.

1. CORENESS. Our first intuition follows from the very definition of k-plex: all
the nodes of a k-plex of size m must have degree non-smaller than m — k.
If we know that the size of a maximum k-plex is at least w, this means
that we can iteratively filter out any node that has degree lower than w — k.
This corresponds to computing the coreness of all the nodes of the network
(Lemma 2 of [10]), a process that can be executed in linear time [5]. For
example, suppose we are searching for 2-plexes in the running example of
Fig. for which w = 5: we can filter out the three black nodes on the top
of the picture since they have coreness 2, which is less than w — k = 3. In
larger networks, this criterion allows us to cut up to 99% of the nodes.

2. CLIQUENESS. The second intuition is that any node of a k-plex of size m must
be included in a clique of a size that depends on m. This is confirmed by
Corollary 5.5 of [I0] stating that any node of a k-plex larger or equal to m is
included in a clique of size at least [m/k]. Then, if the size of the maximum
k-plex is at least w, we can cut out all nodes that do not belong to any clique
of size at least [w/k]. For example, if we are searching for 2-plexes in the
network depicted in Fig. we can filter out all nodes that do not belong
to cliques of size at least [5/2] = 3, that is, the pair of black nodes in the
bottom of the network. In large instances in our experiments this criterion,
can be tested efficiently and is able to cut up to 98% of the nodes.

Even if some nodes can be filtered out both because their low cliqueness and
low coreness, the network in Fig. shows that the two filtering criteria are
indeed independent. When both criteria are applied, the size of the network is
reduced of magnitude and standard k-plexes algorithms may become feasible.

Once we have found the largest k-plexes, we may be interested into searching
smaller ones. We have noted in the introduction that an exhaustive search does



lGraph [ n [ density [ w [ type ‘

jazz 198 [1.41-10 '] 30 [collaboration
grQc 5.241 |1.05 - 1073| 44 |collaboration
geom 6.158 [6.28 - 10™*| 22 |collaboration

advogato| 7.418 |1.75 - 10™3| 19 |collaboration
hepPh 12.006 |1.64 - 10~3|239|collaboration
astroPh | 18.771 |1.12 - 1073| 57 |collaboration
newm 22.015 2.42 - 107*| 3 |collaboration
mathSci [391.529(1.14 - 107°| 25 |collaboration
dblp 511.163|1.43 - 10~°|115|collaboration
patents | 3.8 M [2.32-107% 11| citation

Table 1: Real-world networks in our experiments. Networks are sorted by size n.

not make much sense, since very small k-plexes are not significant, to the point
that they may be even disconnected or composed by a set of isolated nodes.
Hence, the second problem we tackle is to find all maximal k-plexes in the
network of size bigger than a threshold m.

Local search. As mentioned above, our idea is to start from cliques, which are
k-plexes but not necessarily maximal, and possibly enlarge them to find maximal
k-plexes. Building on the cliqueness criterion, which ensures that each node of
a k-plex C of size s is included into a clique of size at least [s/k], we start
from each of such cliques K. If we set m > k%, we have that |K| > [s/k] > k,
which implies that any other node of C' must be adjacent to at least one node
of K (in other words, K is a dominating set of C'). Hence, we can search for
C restricting to a block including K and all its adjacent nodes. For example,
suppose you are searching for all maximal 2-plexes of size at least 5 in the network
in Fig. Consider any clique of size at least [s/k] = [5/2] = 3, for example
the clique K = {a,b,e} (yellow triangle in Fig. [Lb]). The nodes of any k-plex of
size at least 5 containing K are adjacent to K (surrounded nodes of Fig. .
We further reduce the size of the block by proving that C' can be obtained by
considering only nodes belonging to K and to other cliques of size at least [s/k]
intersecting with K (Lemma 5 of [10]). For example, the rightmost 2-plex of
size 6 of Fig. is all contained into the clique {a,b, e} and three other cliques
of size 3 intersecting with K (surrounded nodes of Fig. . This gives rise to
an efficient searching algorithm that decomposes the network into blocks each
composed of one clique as the core, and all intersecting cliques as the boundary.
Each block can be separately processed, possibly in a distributed environment.

3 Experiments

In this section, we compare our and previous algorithms over different real-world
networks, and show the advantages and limitations of our approach. We use the
algorithm in [12] for enumerating all the maximal cliques of the input graph
G, and the algorithm in [6] for enumerating all the maximal k-plexes of the
targeted graph block. Our code is publicly available [I]. We considered a mix of
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Fig.2: (a) Number of nodes (log scale) in the sub-graph H, setting m = w. (b)
Number of nodes (log scale) surviving the CORENESS criterion.

real-world networks with various sizes and characteristics. All our networks are
publicly available on the LASAGNE meta-repository [2], and come from different
human activities. The networks considered in our experiments, together with
their number of nodes (n), density, maximum clique size (w), and their type, are
listed in Table[T[] We compare the execution of our methods for enumerating large
k-plexes, with the most recent method for enumerating all k-plexes of the input
graph [6]. All our executions have a reasonable 6 hours timeout, after which they
are interrupted.

Filtering. In Figure we show the number of nodes in the residual sub-graph
H, resulting from the application of CORENESS and CLIQUENESS criteria. We
use different values of k£ and m = w, i.e, the maximum clique size. As frame
of comparison, we show the number of nodes in G (i.e., n). The figure shows
that, except for newm where w = 3, the sub-graph H is order of magnitudes
smaller than G. Notably, for different networks (jazz, geom, hephPh, newn, and
dblp), H is left with only the nodes of the maximum k-plex. In such lucky cases
we can even skip the execution of the enumeration step. Since the sub-graph
produced by a given k is included in the sub-graph produces by k + 1, is not
surprising that higher values of k yield more nodes in H. (Remember that for
k = n we have G = H.) However, for most instances, the sub-graph is small
with respect to G (thus allowing for faster enumeration of k-plexes) for different
values of k. Finally, our criteria have little impact on the newm network, because
its maximum clique size is only 3. Figure reports the number of nodes of
G residual after the CORENESS criterion, applied separately. For the considered
networks, most nodes are filtered out by CORENESS. Then, the structures that
are too connected to be filtered by CORENESS but too small to play a role in the
search for k-plexes non-smaller than w, are filtered out by CLIQUENESS. Such an
additional CLIQUENESS step has bigger impact in advogato and patents.

Maximum k-plexes. In Table [2] we show running times for different steps of
our algorithm max_plexes(G, k) for finding the maximum k-plex, compared
to the time required for enumerating all k-plexes (column “FULL ENUM”), over
the same input graph. For this experiment, we set £ = 2 and report in column



FULL OUR APPROACH
ENUM | CORE | CLIQUE | ENUM
jazz 2h 0,008 s| 0,091 s | no need
grQc > 6h (0,001 s| 0,026 s | 1,99 s
geom | > 6h |0,001 s| 0,086 s | no need
advogato| > 6h (0,003 s/ 0,234 s |1 h 45 m
hepPh | > 6h |0,001 s| 0,421 s | no need
astroPh | > 6h (0,046 s| 0,892 s| 2,92 s
newm > 6h [ 0,22 s]0,167s| > 6h
mathSci | > 6h (0,009 s| 2,535 s| 0,11 s
dblp | > 6h |0,005 s| 4,336 s | no need
patents | > 6h |1,148 5|63,258 s| > 6h
Table 2: Running time for finding all the largest 2-plexes.

GRAPH

— CORE: running time of CORENESS criterion, and computing a sub-graph G’;
— CLIQUE: running time of CLIQUENESS criterion over G', and computing H;
— ENUM: the execution time of the enumeration step over H.

The time for computing our criteria has little impact on the overall running
time, which is dominated by the enumeration of 2-plexes of the residual sub-
graph when necessary. As a consequence, in all the networks where H is left
with only the nodes of the maximum clique, which is in turn also the maximum
2-plex, the computation of our algorithm ends successfully after fractions of
seconds. For such networks, we write “no need” in the “ENUM” column. As frame
of comparison, full enumeration of 2-plexes (i.e., as in [6]) requires hours even
on our smallest network (jazz), and times out on the other networks. Whenever
the enumeration step is necessary, its running time ranges from fractions of
seconds (most networks) to 2 h, proportionally to the size of H (see Figure
for comparison). The only two instances that require more than 6 h are indeed
nemw and patents, that correspond to the top two largest filtered sub-graphs.
We observed that the results for higher values of k, namely k = 3 and k = 4,
are similar. This is because the sub-graph H produced with higher valued of k
contains only few more nodes than the sub-graph produced with k = 2.

Large k-plexes. In Table [3] we show the overall running time of our algo-
rithm large plexes(G, k,m) for finding all k-plexes non-smaller than m on
different networks in our dataset. For this experiment, we use different values
of k and set m = 0.8wj, where wj is the maximum k-plex size, as computed
by max_plexes(G, k). The time required for enumerating all k-plexes (column
“FULL ENUM”) of such networks is always larger than our timeout (6 hours). The
table also show the number of k-plexes returned (column “FOUND”). All the net-
works considered contain less than a dozen k-plex non-smaller than 0.8wy, which
are quickly found by our algorithm in most cases. Note that in this experiment
CORENESS and CLIQUENESS are applied with m = 0.8wy, which is possibly dif-
ferent from the threshold than in Figure [2a] (i.e., when 0.8wy > w).



FULL OUR APPROACH
GRAPH |k
ENUM TIME #FOUND
qe |2 >0 465 3
8N [ >6n| 2,7s 1
2[>6h [5h 44 m| 10
astroPh < 6n -
12[>6h| 2,75 s 7
mathSel I —=6h > 6h 7

Table 3: Time for finding all k-plexes larger than 80% of the maximum clique.

4 Related Works

In the field of network analysis, dense substructures in graphs (aka dense sub-
graphs) are associated with communities, or more in general sets of closely re-
lated elements [I4] [I7]. The problem of finding these substructures has been
extensively studied for decades, and continues to be the object of cutting edge
research. The simplest and most rigorous definition of dense subgraph is the
clique, i.e., a subgraph in which all nodes are pairwise connected. Many algo-
rithms for finding all maximal cliques have been developed, most of them being
inspired to the Bron-Kerbosh algorithm [7], such as [I3], 18] or to the more re-
cent paradigm of reverse search [3], such as [15] [0, [IT]. McClosky [16] performs
a thorough study to devise exact algorithms for finding the largest k-plex, and
heuristics for finding lower upper bounds on its size, exploiting co-k-plexes (i.e.,
k-plexes on the complement graph) and graph coloring techniques. The usabil-
ity of the algrorithms for finding the largest k-plex is however limited to small
networks, as the running time exceeds the hour for graphs with hundreds of
nodes. Cohen et al. [8] give a generic framework for enumerating all maximal
subgraphs with respect to hereditary and connected hereditary graph properties,
i.e., properties that are closed with respect to induced subgraphs and connected
induced subgraphs, respectively. Berlowitz et al. [6] apply the framework in [§],
together with insights on the k-plex problem, to produce efficient algorithms for
the enumeration of maximal k-plexes and maximal connected k-plexes, which
are respectively hereditary and connected hereditary. Other quasi clique mod-
els include the one defined by Zhai et al. [19], that is a k-plex with additional
connectivity constraint, and more that can be found in this survey [I7].

5 Conclusions

We have proposed a novel approach to the enumeration of large k-plexes, a formal
and meaningful way to define interesting communities in real-world networks
that generalizes the notion of clique. In the future, we intend to further extend
the applicability of our approach and tackle the problem of computing large
k-plexes on real world networks with millions of nodes. Our future work also
includes experimenting with a variety of networks coming from different domains,
such as (but not limited to) biological networks, web graphs, and product co-
purchasing networks.
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