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1 ABSTRACT
In this talk, we will discuss recent work on managing tradeoffs be-
tween efficiency and effectiveness in modern multi-stage ranking
architectures which are comprised of a candidate generation stage
followed by one or more reranking stages. In such an architecture,
the quality of the final ranked list is often sensitive to the quality of
initial candidate pool. We will briefly discuss a few recent related
papers from my group, and then discuss future directions. First,
we will explore dynamic cutoff prediction in early stage retrieval
using query difficulty pre-retrieval features. We will then turn our
attention to efficiency and effectiveness trade-offs in the later stage
cascaded learning-to-rank algorithms. Specifically, we reexamine
the importance of tightly integrating feature costs into multi-stage
learning-to-rank (LTR) IR systems, and we present a novel approach
to optimizing cascaded ranking models which can directly leverage
a variety of different state-of-the-art LTR rankers such as Lamb-
daMART and Gradient Boosted Decision Trees. Finally, we discuss
interesting future research directions in multi-stage retrieval sys-
tems as modern retrieval tasks continue to evolve towards more
complex interactive search systems.
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