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Abstract. In this paper, we present an ontology-based approach to gen-
erate workflows which are core in adaptive data processing by taking ad-
vantage of ontologies in characterizing implicit relations among tasks of
data processing. Moreover, compared with manual configurations of cur-
rent approaches, ontology reasoning can automatically infer preference
orders of tasks and overcome the limitation of manual configurations.
Experimental results show that our proposal is effective and efficient.

1 Introduction

Adaptive data processing, as an advanced automatic data processing, can select
models and parameters by a system itself when processing variable data from
applications [1]. The core problem of adaptive data processing is to design a
“smart” mechanism in generating dynamically optimal workflows for variable
requirements. There are some existsing approaches to generate workflows, which
are mostly based on manual configurations, such as Apache Oozie [5]. They are
often taxing and poor in reusability due to the limitation of single developer. It
becomes interesting in generating workflows to support adaptive data processing.

In this paper, we present an ontology-based approach to generating workflows
for adaptive data processing overcome the limitation of manual configurations.
In our proposal, ontologies integrated with SWRL rules [2] are applied to charac-
terize implicit relations among tasks of data processing and ontology reasoning
can automatically infer preference orders of tasks. Experimental results show
that our proposal is effective and efficient. For instance, in the New York Citi-
bike, our approach can generate an optimal workflow (shown in Fig. 2) where
optimal models and parameters can be selected.

2 Ontology Construction for Generating Workflows

The first step of our proposal is constructing ontologies in Protégé [4]. In the
following, we introduce the four steps of ontology construction.



Class Definition There are three classes, namely, ML Process, ML Process Service,
and Parameters. Each of them has some subclasses.
– The ML Process class represents the whole procedure of data processing and

it contains four main subclasses, namely, Data Preprocess, Feature Preprocess,
Modeling, and Evaluation.

– The ML Process Service class represents a set of all services and it contains
four subclasses, namely, Data Preprocess Service, Feature Preprocess Service,
Modeling Service, and Evaluation Service.

– The Parameters class represents a set of all parameters and it contains many
subclasses of parameters w.r.t. variable models.

Property Definition There are two kinds of properties, namely, object (relations
among classes) and data (relations between entities and datatype). There are 14
object properties as well as 7 data properties.

Note that getModelRequirement and getParameters contain many subproper-
ties which are used to select models and parameters. Besides, three subproperties
hasC, hasGamma and hasClass Weight of getParameters are used to select pa-
rameters which are important to SVM.

Entity Definition According to a specific application scenario, we create some
entities as normal [6], and these entities can be used with some rules to do some
reasoning to get more facts about the specific application scenarios. The usage
of the entity is shown at Section 3 clearly.
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Fig. 1. An example of ontology for Citi-bike prediction.

Rule Definition We adopte SWRL [2] that is intended to be the rule language of
semantic web to express the statements that can not be achieved with OWL[2].
Some SWRL rules generate the workflow according to the user requirements and
the properties of the data set. Part of the rules are shown in Section 3.



Ontology Construction Finally, we apply Protégé [4] in constructing ontology
and employ VOWL[3] to visualize the ontology schema shown in Fig. 1.

3 Experiments and evaluations

New York Citi-bike parking quanlity predication (www.citibikenyc.com/system-
data): As the rents/returns of bikes at different stations in different periods are
unbalanced, it is interesting to predict the number of bike parking spots to be
rent from/returened to each station cluster.

Table 1. An example of SWRL rules for Citi-bike parking quantity predication

ML Process(?a) –>
Rule 1 doDataPrepare(?a,datapreparation), doFeaturePrepare(?a,featurepreparation),

doModel(?a,model), doEvaluation(?a,evaluation), hasNextStep(model,evaluation),
hasNextStep(datapreparation,featurepreparation),
hasNextStep(featurepreparation,model).

Rule 2 accuracy in general(regression service1,?a), equal(?a,true)–>
get(regression service1,svm service), getParameters(svm service,svm parameters).
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Fig. 2. An example of workflow for Citi-bike parking quantity predication

There are 3 steps to generate an optimal workflow as follows:

Step 1 Instantiating a Citi-bike parking quanlity predication, named citibike,
which have three properties, namely, isCase (to a string “citibike”), for-
matOfData (to a string “SQL”), and accuracy in general (to a boolean value
“ture”) shown in Fig. 2 as well as SWRL rules (e.g., rules in Table 1).

Step 2 Generating a workflow by ontology reasoning via Protégé as follows:
data preprocess → feature preprocess → modeling → evaluation shown Fig. 2.

Step 3 Executing the workflow through properties in red from data preprocess
to feature preprocess, modeling, and evaluation.

As we can see, the results of Citi-bike parking quanlity predication via the
generated workflow are the same as the results via optimally manual configura-
tions shown in Fig. 3.



Fig. 3. Results of Citi-bike parking quantity predication

4 Conclusions

In this paper, we presente an ontology-based approach to generate workflows
so that optimal models and parameters can be automatically selected in data
processing. Our proposal provides a novel way for adaptive data processing via
ontologies and is helpful to apply ontology techniques for data processing.
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