
Practical Ontology Pattern Instantiation, Discovery, and
Maintanence with Reasonable Ontology Templates

Demo paper

Martin G. Skjæveland, Leif Harald Karlsen, and Daniel Lupp
{martige,leifhka,danielup}@ifi.uio.no

Department of Informatics, University of Oslo

Abstract. Reasonable Ontology Templates (OTTR) is a language for representing
ontology modelling patterns in the form of parameterised ontologies. Ontology
templates are simple and powerful abstractions useful for constructing, interact-
ing with and maintaining ontologies. The templates’ simple yet formally precise
structure allows for formal relations to be defined over templates, supporting so-
phisticated maintenance tasks for template libraries such as revealing redundancies
and suggesting new templates for representing uncaptured modelling patterns.

1 Introduction

Constructing sustainable large-scale ontologies of high quality is hard. Part of the
problem is the lack of established tool-supported best practices for ontology construction
and maintenance. Reasonable Ontology Templates (OTTR) provide a simple but powerful
abstraction mechanism based on the well-known concept of nested non-cyclic macros
and syntactic substitutions. This allows complex ontology expressions to be compactly
represented by a naturally compositional structure which we believe supports more
efficient construction and maintenance of ontologies following “don’t repeat yourself”
(DRY) principles. Furthermore, templates formally represent parameterised ontologies
and can be compactly represented in RDF allowing us to leverage the stack of existing
W3C languages and tools. This paper demonstrates a prototype implementation of the
results presented in [1].

2 Reasonable Ontology Templates

An OTTR template T consists of a head, specifying the template’s name and parameters,
and a body, representing a parameterised ontology pattern. A template instance consists
of a template name and a list of arguments that matches the parameters of the designated
template, and represents a replica of the template’s body pattern where parameters are
replaced by the instance’s arguments. Each template parameter has a type and a cardi-
nality, with which the permissible types and number of arguments a parameter accepts
are specified. The template body comprises only template instances, i.e., the template
pattern is recursively built up from other templates—cyclic template dependencies are
not allowed. There is one special base template, TRIPLE, which takes three arguments and



NAMEDPIZZA(?Name : 1 class, ?Country : ? individual, ?Toppings : + class)

:: SUBCLASSOF(?Name, :NamedPizza),

SUBOBJECTHASVALUE(?Name, :hasCountryOfOrigin, ?Country),

SUBOBJECTALLVALUESFROM(?Name, :hasTopping, _:b1),

OBJECTUNIONOF(_:b1, ?Toppings),

x | SUBOBJECTSOMEVALUESFROM(?Name, :hasTopping, ?Toppings) .

NAMEDPIZZA(:Margherita, :Italy, 〈:Tomato, :Mozzarella〉)

NAMEDPIZZA(:Grandiosa, none, 〈:Tomato, :Jarlsberg, :Ham, :SweetPepper〉)

Margherita v NamedPizza u ∃ hasCountryOfOrigin. {Italy}

Margherita v ∃ hasTopping.Mozzarella u ∃ hasTopping.Tomato

Margherita v ∀ hasTopping.(Mozzarella t Tomato)

Grandiosa v NamedPizza

Grandiosa v ∃ hasTopping.Tomato u ∃ hasTopping.Jarlsberg u ∃ hasTopping.Ham u ∃ hasTopping.SweetPepper

Grandiosa v ∀ hasTopping.(Tomato t Jarlsberg t Ham t SweetPepper)

Fig. 1. The NAMEDPIZZA template (top), instances of the template (middle), and the instances
expanded (bottom).

has no body, but represents a single RDF triple in the obvious way. Expanding an instance
is the process of recursively replacing instances with the pattern they represent. Template
instances may be expanded under a mode which allows multiple instances of the template
to be generated for arguments which are lists. The expansion process terminates with an
expression containing only TRIPLE template instances, hence representing an RDF graph.

Different serialisation formats of OTTR templates exist, including an RDF serialisation
supported by a special-purpose OWL vocabulary and a language for representing template
instances in tabular formats such as spreadsheets.

Example 1. Figure 1 shows the NAMEDPIZZA template, example instances of the template,
and the result of expanding these instances. The head and body of the template are
separated by ‘::’ . The body contains instances that represent common OWL axioms.
The head specifies three parameters, ?Name, ?Country, ?Toppings, respectively with the
types class, individual, and class and the cardinalities 1 (mandatory), ? (optional), and +
(multiple). The type of the second parameter (individual) requires its argument to be an
OWL individual and its cardinality (optional) allows a null-value, denoted none. The effect
of using null-value arguments is illustrated with the expansion of the Grandiosa instance
which does not include a value restriction on its country of origin due to the second
argument being none. The SUBOBJECTSOMEVALUESFROM instance in the template body is
marked with an expansion mode, denoted by x. Its effect is that the expansion generates
one instance of the template per item in the ?Toppings list argument. This is seen in the
expansions by the multiple occurrences of existential restriction axioms on hasTopping.
Notice that the toppings list is also used to form a union of toppings which qualifies
the universal restriction axiom. The online library listing of this template at http:

//osl.ottr.xyz/info/?tpl=http://draft.ottr.xyz/pizza/NamedPizza displays its
RDF serialisation, including visualisations and queries generated from the template and
links to dependant templates.

http://osl.ottr.xyz/info/?tpl=http://draft.ottr.xyz/pizza/NamedPizza
http://osl.ottr.xyz/info/?tpl=http://draft.ottr.xyz/pizza/NamedPizza


NAMEDPIZZA(?Name : 1 class, ?Country : ? individual, ?Toppings : + class) (cf. Fig. 1) .

BURGER(?Name : 1 class, ?Condiments : + class, ?Label : + literal, ?PrefLabel : ? literal, ?Definition : ? literal)

:: SUBCLASSOF(?Name, :Burger), × | SUBOBJECTSOMEVALUESFROM(?Name, :hasCondiment, ?Condiments), (2)

SUBOBJECTALLVALUESFROM(?Name, :hasCondiment, _:b2), OBJECTUNIONOF(_:b2, ?Condiments), (2)

× | (?Name, rdfs:label, ?Label), (?Name, skos:prefLabel, ?PrefLabel), (?Name, skos:definition, ?Definition) . (1)

ANNOTATION(?Name : 1 class, ?Label : + literal, ?PrefLabel : ? literal, ?Definition : ? literal)

:: × | (?Name, rdfs:label, ?Label), (?Name, skos:prefLabel, ?PrefLabel), (?Name, skos:definition, ?Definition) .

NAMEDPIZZA(?Name : 1 class, ?Country : ? individual, ?Toppings : + class)

:: SUBOBJECTHASVALUE(?Name, :hasCountryOfOrigin, ?Country),

NAMEDFOOD(?Name, :NamedPizza, ?Toppings, :hasTopping) . (†)

BURGER(?Name : 1 class, ?Condiments : + class, ?Label : + literal, ?PrefLabel : ? literal, ?Definition : ? literal)

:: NAMEDFOOD(?Name, :Burger, ?Condiments, :hasCondiment), (†)

ANNOTATION(?Name, ?Label, ?PrefLabel, ?Definition) . (†)

NAMEDFOOD(?Name : 1 class, ?Category : 1 class, ?Extras : + class, ?hasExtra : 1 objectProperty) (?)

:: SUBCLASSOF(?Name, ?:Category), × | SUBOBJECTSOMEVALUESFROM(?Name, ?:hasExtra, ?Extras),

SUBOBJECTALLVALUESFROM(?Name, ?:hasExtra, _:b3), OBJECTUNIONOF(_:b3, ?Extras) .

Fig. 2. OTTR template library before (top) and after (bottom) redundancy removal. Numbers
indicate redundancies, a dagger (†) marks a change to an existing template and a star (?) marks an
added template.

3 Maintenance of Template Libraries

Automatic detection of redundancy in OTTR template libraries is made possible by
OTTR’s formal foundation and simple structure. In this section, we present two types
of redundancy: (i) a lack of reuse of existing templates, and (ii) recurring patterns not
captured by templates within the library. If the body of a template T is a subset of another
template R’s body, assuming an appropriate substitution of the variables of T, then R has
a lack of reuse of T. This can be fixed by simply substituting the offending instances
in R by an appropriate instance of T. A case of uncaptured pattern is when a pattern
of template instances occur across multiple templates without there being any template
with this pattern as its body. To fix this type of redundancy, we first have to introduce
a new template with the recurring pattern as its body and then substitute the pattern in
the offending templates by an appropriate instance of this newly introduced template. In
Fig. 2, an example library containing redundancies is presented, together with a library
where the redundancies have been fixed. A lack of reuse (of ANNOTATION) is marked with
(1), and an uncaptured pattern (also used by NAMEDPIZZA) is marked with (2).

A naive method for finding the two types of redundancy based on direct unification
of subsets of the template’s bodies is infeasible for large template libraries. We have
therefore developed an efficient method for finding lack of reuse and uncaptured patterns,
which over-approximates the results of unification based on the notion of a dependency
pair. A dependency pair is a pair 〈I,T〉 of a multiset of templates I and a set of templates
T , such that all templates in T have at least as many occurrences of each template in I
as they occur in I in its body. The idea is that I describes a possible pattern used by the



templates T , but without considering unification of parameters. In order to also detect
patterns containing different TRIPLE instances, we treat a TRIPLE instance (s, p, o) as an
instance of the form p(s, o) and thus the predicate p as a template.

One can compute all dependency pairs by starting with the set of dependency
pairs of the form 〈{i : n},T〉 where all templates in T have at least n instances of i,
and then compute all possible merges, where a merge between 〈I1,T1〉 and 〈I2,T2〉 is
〈I1 ∪ I2,T1 ∩ T2〉. We have implemented such an algorithm with a few optimisations that
ensures each dependency pair is computed only once.

For each template t ∈ T in each dependency pair 〈I,T〉 we can construct a new
template s by extracting the instances in t’s body corresponding to the instances in I,
with all parameters and constants occurring in this set of instances as parameters. For
each such template s there are three cases: (i) s does not unify with the corresponding
instances in any other template in T and hence does not represent a repeated pattern;
(ii) s is equal to an already existing template, in which case we have found an instance of
lack of reuse in the other templates of T which share the pattern; (iii) s is an uncaptured
pattern which can be introduced to the library. Refactoring should always be supervised;
suggested templates need not represent natural modelling patterns, and selected templates
must be named and their parameters given an appropriate name and type.
Example 2. The redundancies from Fig. 2 are captured by two dependency pairs:

〈 {rdfs:label, skos:prefLabel, skos:definition} , {ANNOTATION, BURGER } 〉

〈 {SUBCLASSOF, SUBOBJECTSOMEVALUESFROM, SUBOBJECTALLVALUESFROM, OBJECTUNIONOF } ,

{NAMEDPIZZA, BURGER } 〉

By extracting the occurrences of these patterns as described above, we get two template
suggestions:
〈NAME〉(?x1, ?x2, ?x3, ?x4) :: (?x1, rdfs:label, ?x2), (?x1, skos:prefLabel, ?x3), (?x1, skos:definition, ?x4) .

〈NAME〉(?x1, ?x2, ?x3, ?x4) :: SUBCLASSOF(?x1, ?x2), x | SUBOBJECTSOMEVALUESFROM(?x1, ?x3, ?x4),

SUBOBJECTALLVALUESFROM(?x1, ?x3, _:b4), OBJECTUNIONOF(_:b4, ?x4) .

The first is equal to the ANNOTATION template, and shows a lack of reuse in BURGER. The
second is not equal to any template, and is introduced as a new template NAMEDFOOD.

4 Demonstration

An executable demonstration based on our prototype implementation can be found
at https://www.ottr.xyz/event/2018-10-08-iswc/. The demonstration gives more
examples of OTTR templates, shows the expansion of template instances, demonstrates
different serialisations of templates and instances, and applies the automatic redundancy
detector for template library maintenance showing dependency pairs and corresponding
template suggestions for uncaptured patterns.

References
1. M. G. Skjæveland, D. P. Lupp, L. H. Karlsen, and H. Forssell. Practical ontology pattern

instantiation, discovery, and maintanence with reasonable ontology templates. Accepted for
ISWC2018 research track, 2018.

https://www.ottr.xyz/event/2018-10-08-iswc/

	 Practical Ontology Pattern Instantiation, Discovery, and Maintanence with Reasonable Ontology Templates 

