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Abstract. Inspired by some recent revisitations of the Cantor-Bernstein
theorem, in particular its formalizations in ZF carried out via the proof
assistant AProS by W. Sieg and P. Walsh, we are carrying out the proof
of a related graph-theoretical proposition. Our development is assisted
by the proof checker ÆtnaNova, and our proof pattern is drawn from
Halmos’s classic ‘Naive set theory’. This case-study illustrates the flex-
ibility of a proof environment rooted in Set Theory, which can be bent
with equal ease toward declarative and procedural styles of proof.
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Introduction

Riding the wave of a revival of interest in the proofs of the Cantor-Bernstein the-
orem, in short CBT (cf. [7]), and particularly inspired by [14], we have formalized
Paul Halmos’s account [6] of Gyula Kőnig’s proof [8] of that proposition.

Stated in streamlined terms, the Cantor-Bernstein theorem claims that∥∥∥∥ whenever α, β are injections such that range(α) ⊆ domain(β) and range(β) ⊆
domain(α), a one-one correspondence exists between domain(α) and domain(β).

Proving this amounts to building, out of the given α and β, an injection γ from
A = domain(α) onto B = domain(β). Without loss of generality, Halmos [6,
pp. 88–89] proceeds under the disjointedness assumption A ∩ B = ∅ — Kőnig’s
original proof, which is slightly more informal, does not mention this assumption.

The elegance of Halmos’s approach stems from his focusing on bipartite
graphs rather than on 1-1 mappings; and we further stress the graph-theoretical
nature of his argument by ignoring the orientation of the mappings. Halmos’s
argument—we contend—could well be referred to the undirected graph whose
(typically infinite) sets of vertices and edges are, respectively:

V = A ]B and E =
{
{x, y} : 〈x , y〉 ∈ α ∪ β & 〈y , x〉 /∈ α ∪ β

}
.
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The proof-checker ÆtnaNova [13], also known as Ref, is firmly Set Theory
oriented1. This enables one to try different ways of formulating definitions and
claims, with the reward, at times, of discovering proofs that are more straight-
forward or transparent than long-established ones. For instance, non-cut vertices
are, traditionally, defined in terms of paths; thanks to ÆtnaNova, we were able
to propose an alternative characterization for them [2] and to ease the proof
that every finite and connected claw-free graph admits an extensional acyclic
orientation [11, 12].

In this new formal essay, again based on ÆtnaNova and related to graph
connectivity, our aim is twofold:

(1) capture the structural properties of the graph G = (V,E) resulting from
generic injections α and β in the manner explained above;

(2) show that any graph enjoying such properties has a perfect matching—
namely, it has a set M of edges which is a partition of V .

In preparation for this task, we also need to

(3) treat the connected components of an arbitrary graph (actually, of any fam-
ily E of edges—even an infinite E whose elements are not doubletons, see
Fig. 1); for, the sought matching will result from the disjoint union of perfect
matchings, one for each connected component of G.

DisconPartn(P ) ↔Def ∅ /∈ P &
(
∀b ∈ P | ∪ b ∩∪ (∪(P \ {b})) = ∅ &
(∅ ∈ b→ b = {∅})

)
ReachCl(Q,E) ↔Def (∪Q) ∩∪(E \Q) = ∅

CoCo(C,E) ↔Def { q ⊆ C ∩ E | ReachCl(q, E) & q 6= ∅ } = {C}
CoCo(C,E) → { q ⊆ C | ReachCl(q, C) } ⊆ {∅ , C}
CoCo(C,C) ↔ { q ⊆ C | ReachCl(q, C) } ⊆ {∅ , C} & C 6= ∅

R ∈ E →
(
∃c| CoCo(c , E) & R ∈ c

)
K = { c ⊆ E | CoCo(c, E) } → DisconPartn(K) & ∪K = E

Fig. 1. Connected components of generic set E: definitions and properties

The paper is organized as follows: we offer a quick view of the ÆtnaNova
proof-specification language through examples related to our case-study in Sec-
tion 1. Then, after highlighting Halmos’s proof of the Cantor-Bernstein theorem
in Section 2, we show how his idea can be adapted to the seemingly different
situation related to bipartite graphs. In the conclusions, we relate the contribu-
tion of this paper with ongoing studies on the interplay between sets and graphs
in formal reasoning within the respective theories. For the sake of completeness,
in Appendix A we outline a different proof pattern for the Cantor-Bernstein
theorem, closer in spirit to the viewpoint which historically led to its discovery.

1 ÆtnaNova is available as a service at URL http://aetnanova.units.it/, while
all of the proof-checking experiments discussed in this paper are available at URL
http://aetnanova.units.it/scenarios/BeyondCantorBernstein.

http://aetnanova.units.it/
http://aetnanova.units.it/scenarios/BeyondCantorBernstein


1 The ÆtnaNova system: a panoramic tour

ÆtnaNova’s users organize definitions, theorem statements, and proof specifica-
tions, in files named scenarios2, which ÆtnaNova processes in order to establish
whether or not they comply with the mathematical standards of rigor built into
it. The logical system underlying ÆtnaNova is a variant of the Zermelo-Fraenkel
set theory with axioms of foundation and universal choice.

Only two axioms occur in ÆtnaNova explicitly; they are:

– s∞ 6= ∅ & (∀x ∈ s∞ | {x} ∈ s∞)

– arb(∅) = ∅ &
(
∀x| x = ∅ ∨

(
arb(x) ∈ x & x ∩ arb(x) = ∅

))
The former, involving the special constant s∞, acts as infinity axiom; the lat-
ter characterizes the universal choice operator and embodies von Neumann’s
assumption that ∈ is a well-founded relationship. The contents of most familiar
axioms of ZF are built into the inferential armory of ÆtnaNova, which handles
competently many familiar set constructs: the membership and equality relators
∈ and =, the constant ∅, the dyadic operators ∩, \, ∪, the “elementary set”
constructor {S1, . . . , Sn}, the pairing construct 〈X , Y 〉 and the conjugated pro-
jections associated with it (see the first three lines of Fig. 6), and a very flexible
set abstraction construct (e.g., see [9, pp. 42–45]), of the form

{ set term : iterators| condition } .

ÆtnaNova embodies two kinds of application: when the notation f�x is used,
f is a set (typically a set of pairs) and f�x denotes the value y which f associates
with x and, usually, this is the second component of a pair 〈x , y〉 belonging to f ,
but f�x equals ∅ for any x outside the set domain(f); when the notation g(x)
is used—as in arb(·), range(·), or descsΘ(·)—, g denotes a ‘global’ function: to
wit, a proper class of pairs, whose domain consists of all sets.

P(S) =Def {y : y ⊆ S}
∪S =Def {y : x ∈ S , y ∈ x}

Finite(F ) ↔Def

(
∀ g ∈P(P(F )) \ {∅} |

(
∃m| g ∩P(m) = {m}

))
Partition(P ) ↔Def ( ∀ b ∈ P |

{
k ∈ P | k ∩ b 6= ∅

}
= {b} )

next(I) =Def I ∪ {I}
nat(I, S) =Def arb

(
{ next

(
nat(j, S)

)
: j ∈ I | I = {j} ∩ S }

)
N =Def {nat(i, s∞) : i ∈ s∞}

Even(M) ↔Def M = ∅ ∨
(
∃ i ∈M | Even(i) & next

(
next(i)

)
= M

)
ChSet(C , T ) ↔Def

{
{x} : x ∈ C

}
=
{
C ∩ b : b ∈ T

}
PeMa(M , E) ↔Def M ⊆ E & ∪E ⊆ ∪M &

(
∀h ∈M , k ∈M \ {h} | h ∩ k = ∅

)
Fig. 2. ÆtnaNova definitions can rely on ∈-recursion

2 Sample scenarios can be found at http://aetnanova.units.it/scenarios/.

http://aetnanova.units.it/scenarios/


Three ÆtnaNova-specified definitions have already been shown on the top
of Fig. 1; many more are listed in Fig. 2 and Fig. 6; all of these play a role
in the ‘proof-pearl’ under development which we are discussing here. Note that
recursive specifications such as the definition of the function nat(I, S) (‘I-th
natural number relative to the set S of indices’) and the definition of the prop-
erty Even(M) (‘M is an even number’) make sense thanks to the assumed well-
foundedness of ∈.

An example of an ÆtnaNova-specified proof is shown in Fig. 3. As one sees,
proofs are formed by two-portion lines: the second portion of each line, separated
by the sign⇒ from the first and at times carrying an identifying label of the form
Statxxx, is the assertion being derived; the first portion is the hint, referencing
the basic inference mechanism which enables that derivation in ÆtnaNova. Oc-
casionally an assertion is represented laconically by the keyword AUTO, when
no ambiguity or obscurity can ensue from this.

Theorem ch0 : [Every partition has a choice set] Partition(P )→ ( ∃ c| ChSet(c, P ) ).
Proof : Suppose not(p0)⇒ Stat0 :

(
¬∃ c| ChSet(c, p0)

)
& Partition(p0)∥∥∥∥∥∥

For, suppose that p0 makes a counterexample. In particular, the inequality{
{arb(b)} : b ∈ p0

}
6=
{
{arb(b) : b ∈ p0} ∩ b : b ∈ p0

}
must hold, in view of the defi-

nition of ChSet(c, p0).
{arb(b) : b ∈ p0} ↪→ Stat0⇒ ¬ChSet({arb(b) : b ∈ p0} , p0)
Use def(ChSet)⇒

{
{x} : x ∈ {arb(b) : b ∈ p0}

}
6=
{
{arb(b) : b ∈ p0} ∩ b : b ∈ p0

}
SIMPLF⇒ Stat1 :

{
{arb(b)} : b ∈ p0

}
6=
{
{arb(b) : b ∈ p0} ∩ b : b ∈ p0

}∥∥∥∥ Therefore, some block b0 of the partition p0 exists which witnesses the said inequality.
Since blocks are non-null, arb(b0) ∈ b0.

Use def(Partition)⇒ Stat2 : (∀ b ∈ p0 |
{
k ∈ p0 | k ∩ b 6= ∅

}
= {b} )

b0 ↪→ Stat1⇒ Stat3 : {arb(b0)} 6= ( {arb(b) : b ∈ p0} ∩ b0 ) & b0 ∈ p0

b0 ↪→ Stat2(Stat2∗)⇒ Stat4 :
{
k ∈ p0 | k ∩ b0 6= ∅

}
= {b0}∥∥∥∥∥∥

Consequently, arb(b0) ∈ {arb(b) : b ∈ p0} ∩ b0 holds. This enables simplification of
the inequality {arb(b0)} 6= {arb(b) : b ∈ p0}∩b0 into {arb(b) : b ∈ p0}∩b0 6⊆ arb(b0);
therefore, an a0 other than arb(b0) belongs to both of b0 and {arb(b) : b ∈ p0}.
Suppose⇒ arb(b0) /∈ ( {arb(b) : b ∈ p0} ∩ b0 )

k0 ↪→ Stat4(Stat4∗)⇒ Stat5 : arb(b0) /∈ {arb(b) : b ∈ p0}
b0 ↪→ Stat5⇒ AUTO

(Stat3∗)Discharge⇒ AUTO
a0 ↪→ Stat3(Stat3∗)⇒ Stat6 : a0 ∈ {arb(b) : b ∈ p0} & a0 ∈ b0 & a0 6= arb(b0)∥∥∥∥ Such an a0 can be rewritten as arb(b1) for some b1 other than b0 in p0, but this

contradicts the fact that any two blocks in p0 are disjoint.

b1 ↪→ Stat6(Stat6 , Stat4)⇒ Stat7 : b1 /∈
{
k ∈ p0 | k ∩ b0 6= ∅

}
& b1 ∈ p0 &

a0 = arb(b1)

b1 ↪→ Stat2(Stat7∗)⇒ Stat8 : b1 ∈
{
k ∈ p0 | k ∩ b1 6= ∅

}
( ) ↪→ Stat8(Stat7)⇒ a0 ∈ b1
b1 ↪→ Stat7⇒ AUTO

(Stat6∗)Discharge⇒ QED

Fig. 3. Proof, carried out with ÆtnaNova, of the controversial Zermelo’s principle



ÆtnaNova includes an important construct, named Theory (cf. [10] and [13,
pp.19–25]), designed to support reusability of proofware components. ÆtnaNova’s
Theorys are akin to a mechanism for parameterized specifications available in
the Clear language [1]; in a sense, they resemble procedures of a programming
language. Typically, a Theory has formal parameters which get bound to ac-
tual parameters when it gets applied; in return, the Theory will supply useful
information. Actual input parameters must satisfy a conjunction of statements,
called Theory assumptions.

Besides providing theorems of which it holds the proofs, a Theory has the
ability to instantiate special variables (whose names are subscripted with the Θ
sign), which play the role of output parameters and bear special relationships
with the input parameters. Two examples of ÆtnaNova Theory appear in Fig. 4.
Theory reachability has two parameters: a property V of sets and a dyadic
relation E over sets; its assumption requires that for every set x enjoying the
property V(x), the collection of all sets such that E(x, y) holds forms a set (not
a proper class).

Theory reachability
(

V(X) , E(X,Y)
)(

∀ x| V(x)→
(
∃ c, ∀ y| E(x, y) & V(y) → y ∈ c

) )
=⇒(descsΘ)(

∀ s , x , y| s ⊆ descsΘ(s) &(
x ∈ descsΘ(s) & V(x) & V(y) & E(x, y) → y ∈ descsΘ(s)

))(
∀ y , x , z| y ∈ descsΘ({x}) & z ∈ descsΘ({y}) → z ∈ descsΘ({y})

)(
∀ s , t| s ⊆ t & ( ∀ x , y| x ∈ t & V(x) & V(y) & E(x, y) → y ∈ t ) →

descsΘ(s) ⊆ t
)

End reachability

Theory connComp(H )
∅ 6= H

=⇒(thΘ , ccΘ)

(∀ i , r| thΘ(i, r) = if i = ∅ then
{

if r ∈H then r else arb(H) fi
}

else{
w : j ∈ i , u ∈ th(j, r) , w ∈H | i = j ∪ {j} & u ∩ w 6= ∅

}
fi )

(∀ r| ccΘ(r) = ∪{th(i, r) : i ∈ N} )(
∀ r| r ∈H → CoCo(ccΘ(r) , H)

)
End connComp

Fig. 4. Reachability in a ‘big graph’ and connected components of a ‘small’ hypergraph

This Theory returns a function, descsΘ, that sends every set s into the sets
of its ‘E-descendants’; that is, descsΘ(s) is the set of all sets y such that a fi-
nite sequence x0, . . . , xn exists satisfying the conditions x0 ∈ s, y = xn, and
E(xi−1, xi) for i = 1, . . . , n. The three statements appearing below the assump-
tion of reachability in Fig. 4 are theorems, derived once and for all by the proof



developer inside this Theory which, from then on, can be applied to any pair
V(x), E(x, y) consisting of a property and a dyadic relation.

The other Theory shown in Fig. 4, namely connComp, can be applied to any
nonnull set H. For any given element r of H, it returns the stages thΘ(i, r) of an
inductive construction of the unique set c = ccΘ(r) such that CoCo(c,H) & r ∈ c
holds. It can be exploited to ascertain, in a somewhat procedural way, the last
two statements of Fig. 1. It should be noted, though, that those claims can be
proved in a totally different fashion, by resorting to Zorn’s lemma (see Fig. 5
and [13, pp. 398–405]) instead of to natural numbers.

{
x ⊆ T |

(
∀u ∈ x , v ∈ x , z ∈ T | (u ⊇ v ∨ v ⊇ u) & (∃ y ∈ x| z 6⊇ y)

)}
= ∅ −→

(∃m|
{
x ∈ T | x ⊇ m

}
= {m}){

p ⊆ S |
{
x ∈ ∪S | (∀ y ∈ p| x ∈ y)

}
/∈ S
}

= ∅ & U ∈ S −→

(∃w ⊆ U |
{
x ∈ S | w ⊇ x

}
= {w})

Fig. 5. Zorn’s lemma and one of its corollaries

The user is referred to [11, Sec. 3] for a crash course on ÆtnaNova, and
to [13] for a much wider introduction to this proof-verifier and its underlying
logic. A quick comparison of this system with other set-oriented proof-assistants
can be found at [11, Sec. 6]; moreover, [10, Sec. 6] carries out a comparison of
ÆtnaNova’s Theorys with various related modularization constructs available,
in particular, in the OBJ family of languages (see [5]) and in the Interactive
Mathematical Proof System (IMPS) described in [4].

2 Kőnig-Halmos’s proof of the Cantor-Bernstein theorem

J. Kőnig’s proof certainly merited Poincaré’s attention. It brought a new gestalt
to CBT proofs which had “remarkable generalizations” · · · in new contexts that
could not have been foreseen by either J. Kőnig or Poincaré. · · · J. Kőnig’s
son, D. Kőnig, · · · leveraged on his father’s 1906 gestalt, to produce results in
set theory, graph theory, and other branches of mathematics.

(Hinkis [7, pp. 217–218])

Given injections α, β satisfying the constraints stated in the Introduction and
echoed by the assumptions of the Theory cbh in Fig. 7, consider the digraph
whose sets of vertices and arcs are, respectively, the disjoint union V = A ] B
of the domain A of α with the domain B of β, and

E′ =
{
〈w , v〉 : w ∈ V , v ∈ V | 〈v , w〉 ∈ α ∪ β

}
.

In connection with this digraph D = (V,E′), consider the ancestry function @
sending each W ⊆ V into the set @W of all vertices u such that there is a path
(of length > 0) leading from a vertex w ∈ W to u in D. It should be clear that



this function can be obtained in ÆtnaNova by actualizing the parameters of the
Theory reachability shown in Fig. 4 as follows:

Apply(descsΘ : @) reachability
(

V(X) 7→ X ∈ A ∪ B , E(X,Y) 7→ 〈Y , X〉 ∈ α ∪ β
)
.

(Since E reverses all pairs forming α ∪ β, it seems natural to us to regard the
elements of @{x} as ancestors, instead of as descendants, of x.)

Ordered pair according to Kuratowski 〈X , Y〉 =Def {{X} , {X , Y}}

1st of an ordered pair P[1] =Def arb
({

x : s ∈ P , x ∈ s| s = {x}
})

2nd of an ordered pair P[2] =Def arb
({

y : d ∈ P , y ∈ d| P = {{y}} ∨ d \ {y} ∈ P
})

Map domain, i.e. set of first components of pairs in map domain(F) =Def

{
p[1] : p ∈ F

}
Map restriction F|A =Def

{
p ∈ F| p[1] ∈ A

}
Image, i.e. value, of single-valued function F�Y =Def arb

(
F|{Y}

)[2]

Map range, i.e. set of second components of pairs in map range(F) =Def

{
p[2] : p ∈ F

}
Map predicate Is map(F) ↔Def

(
∀p ∈ F| p =

〈
p[1] , p[2]

〉)
Single-valuedness predicate Svm(F) ↔Def

(
∀p ∈ F , q ∈ F| p[1] = q[1] → p = q

)
&

Is map(F)

Injection 1–1(F) ↔Def Svm(F) &
(
∀p ∈ F , q ∈ F| p[2] = q[2] → p = q

)
Map product G ◦ F =Def

{〈
p[1] , q[2]

〉
: p ∈ F , q ∈ G| p[2] = q[1]

}
Inverse map F^ =Def

{〈
p[2] , p[1]

〉
: p ∈ F

}
Fig. 6. Definitions related to pairs, maps, single-valued maps, and one-one maps

Theory cbh
(
α , β

)
-- - The Cantor-Bernstein Theorem proved à la Kőnig-Halmos

1–1(α) & 1–1(β)
range(α) ⊆ domain(β) & range(β) ⊆ domain(α)
domain(α) ∩ domain(β) = ∅

=⇒(γΘ)
1–1(γΘ) & domain(γΘ) = domain(α) & range(γΘ) = domain(β)

End cbh

(
1–1(F ) & 1–1(G) & range(F ) ⊆ domain(G) & range(G) ⊆ domain(F )

)
→(

∃h| 1–1(h) & domain(h) = domain(F ) & range(h) = domain(G)
)

Fig. 7. The Cantor-Bernstein theorem specified first as a Theory, then as a formula



As will turn out, the sought injection of A onto B is the relationship

γ =
{
〈x , α�x〉 : x ∈ A|B ∩@ {x} ⊆ range(α)

}
∪{

〈β�y , y〉 : y ∈ B |B ∩@ {y} 6⊆ range(α)
}
.

Here is the heuristic idea lying behind this choice of γ, treated in pedagogical
terms. If an element y0 of B does not equal α�x for any x ∈ A, in order to make
it an α-image under the guidance of β, we would like to modify α by setting α :=
α∪{〈β�y0 , y0〉}; such a naive readjustment would create a collision with the pre-
existing value α�β�y0, though, causing α to cease being single-valued. It hence
seems that the right retouch to be made to α is, rather: α := α\{〈β�y0, α�β�y0〉}∪
{〈β�y0, y0〉}. But, then, the previous y1 = α�β�y0 will no longer be an α-image;
hence, in order to fix the situation, we are to proceed in analogy with our previous
move: inside α, we will now replace the pair 〈β�y1 , α�β�y1〉 by 〈β�y1 , y1〉, etc.
Ultimately, fix after fix, we will assign a new image to each element xi = β�yi of
A which originally had y0 in its ancestry: initially α sent xi to α�xi = yi+1, but
at the end of the replacements its image will turn out to be yi. The sequence
of replacements described so far for a single y0 ∈ B∗ = B \ {α�x : x ∈ A }
should be developed likewise for all others; consequently, at the end of the overall
processing, the original edges 〈y , β�y〉 with B∗ ∩@ {y} 6= ∅ will turn out to be
reversed, and the corresponding edges 〈β�y , α�β�y〉 withdrawn, precisely in the
manner described in the definition of γ.

In a formal check that the said γ meets our desiderata, the key steps are:

(1) (∀ y ∈ B |@{β�y} = {β�y} ∪@{y});
(2) (∀x ∈ A|@{α�x} = {α�x} ∪@{x});
(3) {x ∈ A|B ∩@{x} 6= ∅} ⊆ range(β);
(4) {y ∈ B |B ∩@{y} ⊆ range(α)} ⊆ range(α);
(5) Svm

(
{〈β�y , y〉 : y ∈ B |B ∩@ {y} 6⊆ range(α)}

)
;

(6) 1–1
(
{〈β�y , y〉 : y ∈ B |B ∩@ {y} 6⊆ range(α)}

)
;

(7) Svm
(
{〈x , α�x〉 : x ∈ A|B ∩@ {x} ⊆ range(α)}

)
&

{〈x , α�x〉 : x ∈ A|B ∩@ {x} ⊆ range(α)} ⊆ α;

(8) 1–1
(
{〈x , α�x〉 : x ∈ A|B ∩@ {x} ⊆ range(α)}

)
;

(9) 1–1
(
γ
)
;

(10) domain
(
γ
)

= A;

(11) range
(
γ
)

= B.

Next we want to get rid of the assumption—inherent in what precedes—that
A∩B = ∅, so as to prove the Cantor-Bernstein theorem in its full extent, to wit: 1–1(F ) & 1–1(G) &

range(F ) ⊆ domain(G) &
range(G) ⊆ domain(F )

 → ∃h
 1–1(h) &

domain(h) = domain(F ) &
range(h) = domain(G)

 .

Under the new less constraining hypothesis, we put A? = domain(F ), B =
domain(G), and A =

{
x ∪ {A? ∪B} : x ∈ A?

}
; thus,

E =
{
〈x ∪ {A? ∪B} , x〉 : x ∈ A?

}



turns out to be an injection with range(E) = A? and domain(E) = A disjoint
from B. Then we take α = F ◦ E =

{
〈x ∪ {A? ∪B} , F �x〉 : x ∈ A?

}
and

β = E^ ◦ G =
{
〈y , (G�y) ∪ {A? ∪B}〉 : y ∈ B

}
, so that an injection γ with

domain(γ) = A, range(γ) = B can be singled out on the grounds of what
precedes. The sought h is just: h = γ◦E^ =

{
〈x , γ�(x ∪ {A? ∪B})〉 :x ∈ A?

}
.

An ÆtnaNova scenario developed from the bare rudiments of set theory and
containing the above-outlined proof of the Cantor-Bernstein theorem is available
at URL http://aetnanova.units.it/scenarios/BeyondCantorBernstein/.
This scenario contains 13 definitions and 48 theorems, organized in 5 Theorys.
The overall number of proof lines is 680, there are only four proofs exceeding the
lenght of 24 lines, and processing the entire scenario takes less than 5 seconds.

The said scenario could be developed rather quickly (namely, in about three
weeks), because most of the needed preparatory lemmas had been developed
long before: in particular, we could take advantage of the availability of the
reachability Theory shown in the upper part of Fig. 4 (cf. [13, pp. 378–386]);
roughly, only one third of the proofs was new. The situation with the extension
that will be discussed next is different; we have not yet formalized all details, but
devoted much time in finding the best usable definitions (e.g., see the definition of
CoCo(·, ·) in Fig. 1 and the ones of ChSet(·, ·) and PeMa(·, ·) in Fig. 2), as well as
in properly formulating a graph-theoretical counterpart of the Cantor-Bernstein
theorem. We feel that we are now at the end of the design phase.

3 Halmos’s proof pattern adapted to special graphs

As announced in item (1) of the Introduction, we want to capture the structural
properties of the graph induced (in the manner explained there) by a pair α, β of
domain-disjoint injections such that range(α) ⊆ domain(β) and range(β) ⊆
domain(α). Fig. 8 shows the outcome of this elicitation task, formalized as an
ÆtnaNova’s Theory.

When the ÆtnaNova’s Theory graphCBH shown in Fig. 9 gets applied, the
set of edges of a graph induced by injections α, β is provided as parameter E:
we can focus on this set alone, taking it for granted that the set V of vertices
equals ∪E. The perfect matching constructed inside this Theory is returned
via pmΘ. The assumptions to which E is subject match the conclusions of the
previous Theory bij bip. Besides requiring that no vertex has more than two
incident edges, those assumptions yield that the connected components of E are
vertex-disjoint paths of three kinds:

a) cycles involving an even number of edges—each finite component is in fact
required to have a choice set ch;

b) infinite simple paths endowed with one endpoint;
c) infinite simple paths devoid of endpoints.

It should be intuitively clear that paths of kind b) have exactly one perfect
matching, whereas paths of kinds a) and c) have two; this indicates the rationale

http://aetnanova.units.it/scenarios/BeyondCantorBernstein/


Theory bij bip
(
α , β

)
1–1(α) & 1–1(β)
range(α) ⊆ domain(β) & range(β) ⊆ domain(α)
domain(α) ∩ domain(β) = ∅

=⇒(ecbhΘ , acbhΘ)

ecbhΘ =
{
{q[1] , q[2]} : q ∈ α ∪ β| 〈q[2] , q[1]〉 /∈ α ∪ β

}
acbhΘ = domain(α)(
∀ q ∈ ecbhΘ | (∃ x , y| q ∩ acbhΘ = {x} & q \ acbhΘ = {y})

)(
∀ q ∈ ecbhΘ , h ∈ ecbhΘ , k ∈ ecbhΘ | h 6= q & k 6= q & k 6= h → q ∩ h ∩ k = ∅

)(
∀ p ⊆ ecbhΘ | ReachCl( p , ecbhΘ ) & Finite(p) →(

∀ h ∈ p| h \ ∪(p \ {h}) = ∅
)

&
(
∃ ch | ChSet(ch p)

) )
End bij bip

Fig. 8. Properties of the undirected graph induced by two injections

Theory graphCBH
(
E
)(

∀ q ∈ E , h ∈ E , k ∈ E |
(
∃ x , y| q = {x, y} & x 6= y

)
&(

h 6= q & k 6= q & k 6= h → q ∩ h ∩ k = ∅
) )(

∀ p ⊆ E | CoCo(p,E) & Finite(p) →
{ h \ ∪(p \ {h}) : h ∈ p } ⊆ {∅} &

(
∃ ch | ChSet(ch, p)

) )
=⇒(pmΘ)

pmΘ =∪{ pm : cc ⊆ E , pm ⊆ cc | CoCo( cc , E ) &

pm = arb
(
{ q ⊆ cc | PeMa( q , cc ) }

)}
PeMa( pmΘ , E )

End graphCBH

Fig. 9. A graph-theoretical counterpart of the Cantor-Bernstein theorem

for imposing, in the above specification of pmΘ , that

pm = arb
(
{q ⊆ cc | PeMa( q , cc )}

)
holds: should we only require pm ∈ {q ⊆ cc |PeMa( q , cc )}, we might be putting
in pmΘ too much. One way of constructing each set {q ⊆ cc | PeMa( q , cc )},
with cc connected component of E, is by considering the sum sets⋃{

th(i, r) \ ∪{ th(j, r) : j ∈ i} : i ∈ N| Even(i)
}

associated with the elements r of cc. When cc is of kind either a) or c), all such
sum sets (of which only two differ) are perfect matchings; as regards a component
cc of kind b), the sole r ∈ cc to be taken into account is the one that includes
the singleton

{
k ∈ cc | k \ ∪(cc \ {k}

)
6= ∅
}

.

In Section 2 we gave clues on how, inside the Theory cbh outlined in Fig. 7,
one can construct γΘ and prove the pertaining facts (e.g., its injectivity) in a



stand-alone fashion. Here below we discuss a slicker implementation of the inter-
nals of cbh, which will come into effect once the Theorys bij bip and graphCBH
of Fig. 8 and Fig. 9 will be available.

Under the assumptions of cbh, which are identical to the ones of bij bip,
we can apply the latter Theory to α and β, and so get acbh = domain(α)
along with an ecbh complying with the statements that appear in the lower
part of Fig. 8; in their turn, those statements enable application of the Theory
graphCBH to E = ecbh, which then provides a perfect matching pm for the
graph endowed with vertices ∪ecbh and edges ecbh. To obtain the desired one-
one correspondence, it now suffices to put

γΘ =
{
〈x , y〉 : e ∈ pm , x ∈ e ∩ acbh , y ∈ e \ acbh

}
∪{

a ∈ α|
〈
a[2] , a[1]

〉
∈ β
}
.

Conclusions

The ‘proof pearl’ highlighted in this paper adds a tile to a much larger-scale
mosaic of proof scenarios which have to do with the interplay between sets and
graphs (e.g., see [11, 12]), as well as with representation theorems of the kind
illustrated by the classical Stone’s results on Boolean algebras that states that
every unital ring where the identities X +X = 0 and X ·X = X hold is isomor-
phic to the field of the clopen sets of a totally disconnected compact Hausdorff
space where intersection and symmetric set-difference act as multiplication and
addition (see [15, 16, 17] and [3]).

Those many experiments are intended to contribute collectively to a unitary
study on the foundations of discrete mathematics; therefore each of them is
meant to have a bearing on others, and is designed in such terms that it can
reuse achievements of previous efforts and can easily be integrated with the rest.

This explains why, even though only graphs and digraphs enter the proof of
the Cantor-Bernstein theorem, we chose to define the connected components of
an arbitrary set E—not obligatorily one consisting of doubletons—, seen as the
set of edges of a hypergraph. By so doing, we can more easily merge the proof
scenario discussed in this paper with the one of [2] (downsized in [9, pp.251–262]).

Also, the collection { c ⊆ E | ReachCl(c, E) } of those sets of (hyper)edges
that are closed under reachability forms, one readily sees, a Boolean algebra:
in fact, it is closed under intersection and symmetric difference and E is one of
its members. Elsewhere, in proving Stone’s results, we had to bring into play
Zorn’s lemma; accordingly, in this paper we found it convenient to opt for a
declarative definition of connected components, albeit a characterization of con-
nected components relying either upon paths or—which amounts, roughly, to
the same—upon the Theory connComp seen in Fig. 4 would have sufficed for
the limited goals addressed above.
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A Cardinalities and the Cantor-Bernstein theorem

When the discovery of the Cantor-Bernstein theorem took place (late 19th cen-
tury), it contributed to clarifying the then emerging notions of equipotence and
cardinality.

Equipotence is the equivalence relationship that holds between two sets whose
respective elements can be put in one-one correspondence. Denote by � the
relation between sets:

A � B ↔Def an α exists such that 1–1(α) and
domain(α) = A , range(α) ⊆ B ;

then we can phrase the Cantor-Bernstein theorem as follows:

‖When A � B and B � A both hold, A and B are equipotent.

Cardinality—as seen from a contemporary viewpoint—is the function that
sends every set S to a canonical representative, #S, of the equipotence class to
which S belongs. Hence, we can also thus state the Cantor-Bernstein theorem:

‖When A � B and B � A both hold, #A = #B holds as well.

It has today become customary to regard cardinals—namely, the represen-
tatives of equipotence classes—as forming a strict subclass of the class of von
Neumann’s ordinal numbers. In their turn, ordinals are special sets internally
well-ordered by membership; they enable one to impose a well-ordering to a set
S whatsoever by somehow ‘enumerating’ the elements of S. Specifically, under
the assumption that membership is a well-founded relation over sets, ordinals
can be defined à la Raphael M. Robinson as follows:

Ord(O) ↔Def

(
∀x ∈ O , y ∈ O \ {x} | x ∈ y ∨ y ∈ x

)
& O ⊇ ∪O ;

then, after formulating the recursive definition of the enumeration process as

enum(X,S) =Def if S ⊆ {enum(y, S) : y ∈ X} then S
else arb(S \ {enum(y, S) : y ∈ X}) fi ,

one proves that(
∃ o| Ord(o) & S = {enum(y, S) : y ∈ o} &(

∀u ∈ o , v ∈ o \ {u} | enum(u, S) 6= enum(v, S)
))

holds for every S .
Through Skolemization—which in ÆtnaNova acts as a built-in Theory—,

this claim leads to the definition of a global function, enumord, such that(
∀ s| Ord

(
enumord(s)

)
& s =

{
enum(y, s) : y ∈ enumord(s)

}
&(

∀u ∈ enumord(s) , v ∈ enumord(s) \ {u} | enum(u, s) 6= enum(v, s)
))
.



The cardinality of a set can then be defined as follows:

#S=Def arb

({
o ∈ next

(
enumord(S)

)
|
(
∃ f | 1–1(f) & domain(f) = o

range(f) = S
) });

namely, #S is the least ordinal number o that is equipotent to S.
To end, here is the definition of a cardinal number:

Card(C)↔Def Ord(C) &(
∀ o ∈ C |

(
¬∃ f | Svm(f) & domain(f) = o & range(f) = C

))
;

that is to say, a cardinal number is an ordinal number C such that no function
f exists mapping an ordinal o smaller than C onto C.

Along the path discussed in [13, Section 5.3], one reaches two key theorems,

1–1(F ) & Card
(
domain(F )

)
→ domain(F ) = #range(F )

and

C = #S ↔ Card(C) &
(
∃ f | 1–1(f) & domain(f) = C &range(f) = S

)
,

whence

1–1(F ) & Card
(
domain(F )

)
& Ord

(
range(F )

)
→ domain(F ) ⊆ range(F ) ,

which leads straightforwardly to the Cantor-Bernstein theorem, in a way that
differs substantially from the pattern discussed earlier (see Sections 2 and 3).
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