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Abstract. SWRL is a semantic web rule language that combines OWL ontologies 

with Horn Logic rules of the RuleML family of rule languages. Being supported 

by Protégé as well as by popular rule engines and ontology reasoners, such as 

Jess, Drools and Pellet, SWRL has become a very popular choice for developing 

rule-based applications on top of ontologies. However, being doubtful whether 

SWRL will become a W3C standard, it is difficult to reach out to the industrial 

world. On the other hand, SPIN has become a de-facto industry standard to rep-

resent SPARQL rules and constraints on Semantic Web models, building on the 

widespread acceptance of the SPARQL query language. In this paper, we argue 

that the life of existing SWRL rule-based ontology applications can be prolonged 

by being transformed into SPIN. To this end, we have developed a prototype tool 

using SWI-Prolog that takes as input an OWL ontology with a SWRL rule base 

and transforms SWRL rules into SPIN rules in the same ontology, taking into 

consideration the object-oriented scent of SPIN, i.e. linking rules to the appropri-

ate ontology classes as derived by analyzing the rule conditions. 
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1 Introduction 

Rule-based systems have been extensively used in several applications and domains, 

such as e-commerce, personalization, games, businesses and academia. They offer a 

simplistic model for knowledge representation for both domain experts and program-

mers; experts usually find it easier to express knowledge in a rule-like format and pro-

grammers usually find rule-based programming easier to understand and manipulate, 

decoupling computation from control. The first is performed by the rules whereas the 

latter is determined by the rule engine itself, that is when and how to apply the rules.  

The Semantic Web initiative [33] works on standards, technologies and tools to give 

to the information a well-defined meaning, enabling computers and people to work in 

better cooperation. Ontologies can be considered as a primary key towards this goal 

since they provide a controlled vocabulary of concepts, each with explicitly defined and 

machine processable semantics.  

There are mainly two modeling paradigms for the Semantic Web [14]. The first par-

adigm is based on the notion of the Description Logics [1] on which the Web Ontology 

Language (OWL) [13], the W3C recommendation for creating and sharing ontologies 
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on the Web, is based. The semantics of OWL ontologies can be handled by DL reason-

ing systems, such as Pellet [27], RacerPro [10], Fact++ [32] and HermiT [8] that reuse 

existing DL algorithms, such as tableaux-based algorithms [2]. The other paradigm is 

based on Horn logic, whereas a subset of the OWL semantics is transformed into rules 

that are used by a rule engine to infer implicit knowledge. There are major differences 

between these two paradigms, including computational and expressiveness aspects. For 

example, the DL reasoning engines have a rather inefficient instance reasoning perfor-

mance, whereas rules are insufficient to model certain situations related to the open 

nature of the Semantic Web. The selection of the most suitable modeling paradigm 

depends on the domain and the needs of the application.  

Since description logics and Horn logic are orthogonal in the sense that neither of 

them is a subset of the other [9], there are two interesting combinations of ontologies 

and rules, namely their intersection, which is OWL 2 RL, and their union, namely 

SWRL. OWL 2 RL [23] is an OWL 2 profile is aiming at applications that require 

scalable reasoning without sacrificing too much expressive power. This is achieved by 

defining a syntactic subset of OWL 2 which is amenable to implementation using rule-

based technologies, namely it is the largest syntactic fragment of OWL2 DL that is 

implementable using rules. The design of OWL 2 RL was inspired by Description Logic 

Programs [23] and pD* [30]. Obviously, OWL 2 RL is a decidable language, but one 

that is necessarily less expressive than either the description logic or rules language 

from which it is formed. 

SWRL [15, 16] is a semantic web rule language that combines OWL ontologies with 

Horn Logic rules of the RuleML family of rule languages [26], extending the set of 

OWL axioms to include Horn-like rules. SWRL is considerably more powerful than 

either OWL DL or Horn rules alone; however, key inference problems for SWRL are 

undecidable [15]. Decidability can be regained by restricting the form of admissible 

rules, by imposing a suitable safety condition [24]. Being supported by the Protégé 

ontology editor [25] as well as by popular rule engines and ontology reasoners, such as 

Jess [7], Drools [5] and Pellet [27], SWRL has become a very popular choice for de-

veloping rule-based applications on top of ontologies [3, 12, 22, 28]. However, SWRL 

being around for more than 10 years now, it is most probable that it will never become 

a W3C standard; therefore, its scope is difficult to reach out to the industrial world. 

On the other hand, SPIN [18] has become a de-facto industry standard to represent 

SPARQL rules and constraints on Semantic Web models, building on the widespread 

acceptance of the SPARQL query language [11]. SPARQL is well supported by nu-

merous engines and databases. This means that SPIN rules can be directly executed on 

the databases and no intermediate engines with communication overhead need to be 

introduced. Also, SPIN is more expressive than SWRL, because SPARQL has various 

features such as UNIONs and FILTER expressions. SPIN has an object-oriented model 

that arguably leads to better maintainable models than SWRL's flat rule lists. Finally, 

SPIN goes far beyond being just a rule language, and provides means to express con-

straints and to define new functions and templates. 

For all the above reasons, in this paper, we argue that the life of existing SWRL rule-

based ontology applications can be prolonged by being transformed into SPIN. To this 

end, we have developed the SWRL2SPIN tool, using SWI-Prolog [34] that takes as 
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input an OWL ontology with an SWRL rule base and transforms SWRL rules into SPIN 

rules in the same ontology, taking into consideration the object-oriented scent of SPIN, 

i.e. linking rules to the appropriate ontology classes as derived by analyzing the rule 

conditions. Furthermore, conditions of transformed rules are optimized according to the 

hosting class by re-ordering condition elements. Our SWRL2SPIN tool is accompanied 

by a rich implementation of SWRL builtins (41); however, the way these builtins have 

been translated provides room for extensibility in the future to increase coverage. To 

the best of our knowledge there is no other tool for transforming SWRL to SPIN. 

In the rest of the paper, we overview SWRL and SPIN syntax and semantics, focus-

ing on their RDF vocabularies, in sections 2 and 3, respectively. In section 4 we present 

our tool, its transformation methodology, how rules are embedded into classes, how 

they are optimized and how builtins have been implemented. In section 5 we evaluate 

the tool and finally, in section 6, we conclude. 

2 Semantic Web Rule Language 

The Semantic Web Rule Language (SWRL) [16] is a proposed language for the Se-

mantic Web that can be used to express rules, combining OWL DL or OWL Lite with 

the Unary/Binary Datalog RuleML sublanguages of the Rule Markup Language. 

SWRL extends the set of OWL axioms to include Horn-like rules. It thus enables Horn-

like rules to be combined with an OWL knowledge base. SWRL has the full power of 

OWL DL, but at the price of decidability and practical implementations. However, de-

cidability can be regained by restricting the form of admissible rules, typically by im-

posing a suitable safety condition [24].  

Rules are of the form of an implication between an antecedent (body) and consequent 

(head). The intended meaning can be read as: whenever the conditions specified in the 

antecedent hold, then the conditions specified in the consequent must also hold. Both 

the antecedent (body) and consequent (head) consist of zero or more atoms. An empty 

antecedent is treated as trivially true (i.e. satisfied by every interpretation), so the con-

sequent must also be satisfied by every interpretation; an empty consequent is treated 

as trivially false (i.e., not satisfied by any interpretation), so the antecedent must also 

not be satisfied by any interpretation. Multiple atoms are treated as a conjunction. Note 

that rules with conjunctive consequents could easily be transformed (via the Lloyd-

Topor transformations [21]) into multiple rules each with an atomic consequent. Atoms 

in these rules can be of the form C(x), P(x,y), sameAs(x,y) or differentFrom(x,y), where 

C is an OWL description, P is an OWL property, and x, y are either variables, OWL 

individuals or OWL data values. 

SWRL has various representation syntaxes: abstract, human readable, XML concrete 

and RDF concrete. Listing 1 shows an SWRL rule example in human readable syntax 

that states “when a student ?s attends a course ?c that is taught by a faculty member ?f, 

then the student ?s knows the faculty member ?f”.  
 

uni:Student(?s) ∧ uni:attends(?s,?c) ∧ uni:isTaughtBy(?c,?f) →  
uni:knows(?s,?f) 
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Listing 1. Sample SWRL rule in human readable syntax 

Listing 2 shows how this rule is represented in the RDF concrete syntax. Rules are 

instances of the swrl:Imp class. The head and body of the rule are lists of atoms 

(swrl:AtomList); each atom can be one of classAtom, IndividualPropertyAtom, 

DatavaluedPropertyAtom, SameIndividualAtom, DifferentIndividualsAtom, or Built-

inAtom. All but the builtin atoms have one or two arguments (properties swr:argu-

mentNN); additionally classAtom has a classPredicate property, whereas the Prop-

ertyAtoms have a propertyPredicate property. BuiltinAtoms have a list of arguments 

instead and the name of the builtin function. Arguments can be variables, declared as 

instances of the swrl:Variable class, datatype constants, in the Value^^Datatype format, 

or individuals, i.e. instances of an OWL class. 

 

Listing 2. Sample rule in SWRL RDF concrete syntax 

3 SPARQL Inferencing Notation 

Modeling languages for the semantic web, such as RDF Schema [4] and OWL [13], 

provide mechanisms for capturing the static structure of data, i.e. they are used to define 

classes, properties and relationships between these conceptual entities. While they de-

fine axiomatic definitions of data structures, describing general computational behavior 

of objects is not within their scope. On the other hand, object oriented languages pro-

vide well-known mechanisms for defining object behavior by describing classes and 
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associating methods with class members. Object oriented methods often formalize how 

the modification of one attribute implies changes to other attributes. Another common 

purpose of methods is to capture constraints to ensure that the state of the objects re-

mains within the bounds that the class designer had intended. 

The SPARQL Inferencing Notation (SPIN) [18] combines concepts from object-ori-

ented languages, query languages, and rule-based systems to describe object behavior 

on the semantic web. One of the basic ideas of SPIN is to link class definitions with 

SPARQL queries to capture constraints and rules that formalize the expected behavior 

of those classes. SPARQL is used because it is an existing W3C standard [11] with 

well-formed query semantics across RDF data, has existing widespread use amongst 

most RDF query engines and graph stores, and provides sufficient expressivity for both 

queries and general computation of data. To facilitate storage and maintenance, 

SPARQL queries are represented in RDF triples, using the SPIN SPARQL Syntax [20]. 

The SPIN Modeling Vocabulary [19] defines a collection of properties and classes 

that can be used to link RDFS and OWL classes with SPARQL queries. For example, 

the class ex:Department can define a property spin:rule that points to a SPARQL 

CONSTRUCT query that computes the value of ex:studentProfessorRatio based on the 

values of ex:enrolledStudents and ex:numberOfFaculty. These properties follow exist-

ing SPARQL standards, and the execution of these constructs can be efficiently handled 

by any SPARQL processor. Since SPIN is entirely represented in RDF, rules and con-

straints can be shared on the web together with the class definitions they are associated 

with. The attachment of rules to classes also encourages a style in which rules are lo-

cally scoped and thus easier to maintain, avoiding the spaghetti code of "flat" rule lan-

guages, such as SWRL. 

The SPIN class description vocabulary defines several RDF properties that can be 

used to attach SPARQL queries to classes. The property spin:rule can be used by SPIN 

reasoning engines to construct inferred RDF triples from the currently asserted infor-

mation in the model. The SPARQL queries referenced by the SPIN properties are in-

terpreted in the context of the associated class. At run-time, the SPARQL variable ?this 

is (by default) pre-bound with instances of the class and its sub-classes. Typically, the 

query itself does not need to bind ?this to any value in the WHERE clause. The execu-

tion context (e.g., inference engine) will do this before the query is executed.  

SPIN takes an object-oriented world view on Semantic Web models, in which 

SPARQL queries play a similar role to functions and methods. Inheritance (expressed 

using rdfs:subClassOf) is treated in the sense that any query/rule defined for super-

classes will also be applied to subclasses. In other words, SPIN class descriptors can 

only "narrow down" and further restrict what has been defined further up in the class 

hierarchy. In this spirit, global class descriptions are those that are attached to the root 

class rdfs:Resource or its OWL equivalent owl:Thing. Those global queries may not 

even mention ?this at all. 

The property spin:rule links an rdfs:Class with a SPARQL CONSTRUCT query that 

defines an inference rule that determines how additional triples can be inferred from 

what is stated in the WHERE clause. For each binding of the pattern in the WHERE 

clause of the rule, the triple templates from the CONSTRUCT clause are instantiated 
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and added as inferred triples to the underlying model. At query execution time, the 

SPARQL variable ?this is bound to the current instance of the class. 

The example in Listing 3a defines a SPIN rule (in textual SPARQL format), at-

tached to class uni:Student via the spin:rule property, that infers the value of the 

uni:knows property from values of uni:attends and uni:isTaughtBy. Listing 3b shows 

how the same rule is represented using the SPIN modeling vocabulary. 

 
uni:Student 

  a rdfs:Class ; 

  spin:rule 

    [ a sp:Construct ; 

      sp:text """ 

        CONSTRUCT { 

          ?this uni:knows ?f . 

        } 

        WHERE { 

        ?this uni:attends ?c . 

        ?c uni:isTaughtBy ?f 

        }""" 

    ]. 

[ a sp:Construct ; 

  sp:templates ([  

     sp:object spin:_this; 

     sp:predicate uni:knows ; 

     sp:subject sp:_f 

  ]) ; 

  sp:where (  

     [ sp:object spin:_this ; 

       sp:predicate uni:attends ; 

       sp:subject sp:_c ] 

     [ sp:object sp:_c; 

       sp:predicate uni:knows ; 

       sp:subject sp:_f ] 

   ) 

] 

Listing 3. Sample SPIN rule in (a) human-friendly notation and (b) SPIN modeling vocabulary 

SPIN rules are instances of the sp:Construct class; the rule “head” is defined with 

the sp:templates property whereas the sp:where property defines the rule “body”. The 

above properties contain lists of triple patterns (sp:subject, sp:predicate, sp:object). 

Other SPARQL query elements contained in rule “body” can be TriplePath, Filter, 

Bind, Optional, Union, NamedGraph, SubQuery, NotExists, Minus, Service, and Val-

ues. In the following we only present the first three, since they are the only ones used 

in the SWRL2SPIN tool.  

A TriplePath is similar to a triple pattern, but instead of an sp:predicate, has an 

sp:path property, whose value can be one of several types, sp:SeqPath being the most 

usual one. The sequential steps of the path are represented through consecutive 

sp:pathNN properties. The representation is more complex when arbitrary length path 

matching is involved, i.e. when the * operator is used.  

Filter elements are blank nodes, instances of sp:Filter that have property sp:expres-

sion, pointing to an expression that can be evaluated to true or false. Expressions are 

actually function calls which are resresnted as instances of the function's URI. All other 

properties of expressions (or function calls) are interpreted as arguments, using consec-

utive sp:argNN properties. However, other property names can be used as well, de-

pending in the function. Arguments can be either datatype constants or variables, which 

are blank nodes with an sp:varName property whose value is a string. E.g. the FILTER 

(?y > 30) expression is shown in Listing 4a. 

The BIND keyword assigns a computed value to a variable. Bind assignments in the 

rule “body” are represented as instances of the class sp:Bind, having an sp:variable 

property to point at the variable on the right side of the assignment. The property sp:ex-

pression points to the root of the expression tree that delivers the computed value, in 
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much a similar way to filter expressions (i.e. function calls). E.g., the expression BIND 

((?x * 2) AS ?y) is shown in Listing 4b. 
 
[ rdf:type sp:Filter ; 

   sp:expression [  

      rdf:type sp:gt ; 

      sp:arg1 [ 

        sp:varName "y" ; 

      ] ; 

      sp:arg2 "30"^^xsd:int ; 

   ] ; 

] 

[ rdf:type sp:Bind ; 

   sp:expression [  

      rdf:type sp:mul ; 

      sp:arg1 [ sp:varName "x" ;] ; 

      sp:arg2 2 ; 

   ] ; 

   sp:variable [ sp:varName "y" ;] ; 

] 

Listing 4. Filter (a) and Bind (b) expressions in SPIN modeling vocabulary. 

Table 1. Correspondence between SWRL and SPIN constructs 

SWRL SPIN 

swrl:Imp sp:Construct 

swrl:head sp:templates 

swrl:body sp:where 

swrl:ClassAtom 
swrl:classPredicate <Class> 

swrl:argument1 <Arg> 

sp:subject <Arg> 

sp:predicate rdf:type 
sp:object <Class> 

swrl:IndividualPropertyAtom 

swrl:propertyPredicate <Prop> 

swrl:argument1 <Arg1> 
swrl:argument2 <Arg2> 

sp:subject <Arg1> 
sp:predicate <Prop> 

sp:object <Arg2> 

swrl:SameIndividualAtom 

swrl:argument1 <Arg1> 
swrl:argument2 <Arg2> 

sp:subject <Arg1> 

sp:predicate owl:sameAs 

sp:object <Arg2> 

swrl:DifferentIndividualsAtom 
swrl:argument1 <Arg1> 

swrl:argument2 <Arg2> 

sp:subject <Arg1> 
sp:predicate owl:differentFrom 

sp:object <Arg2> 

swrl:DatavaluedPropertyAtom 

swrl:propertyPredicate <Prop> 
swrl:argument1 <Arg1> 

swrl:argument2 <Arg2> 

sp:subject <Arg1> 

sp:predicate <Prop> 

sp:object <Arg2> 

swrl:BuiltinAtom 

swrl:builtin <Fun> 
swrl:arguments <Args> 

Customized translation 

swrl:Variable <Var> sp:varName “<Var>” 

<Value> ^^ <DataType> <Value> ^^ <DataType> 

<Individual> <Individual> 

4 SWRL2SPIN 

The SWRL2SPIN tool accepts at its input an OWL ontology with SWRL rules em-

bedded in the ontology using the RDF concrete syntax of SWRL, as exported by tools 

such as Protégé combined with the SWRLtab plugin. The tool produces at its output an 

OWL ontology (just copying the input one) extended by SPIN rules that have been 

created by translating the SWRL rules. SPIN rules are embedded inside their corre-

sponding classes, following the OO nature of SPIN, instead of having a flat rule base 
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as in SWRL. Furthermore, the ?this variable of SPIN is used to identify instances of the 

rule-embedding class, therefore SWRL condition elements that identify the class of the 

corresponding instances are removed, speeding-up, thus, rule execution. Finally, the 

same SWRL may involve instances of multiple classes, so our tool generates multiple 

versions / views of a rule, optimized for each of the classes, separately. 

The main procedure for translating a SWRL rule into a SPIN rule involves mapping 

classes and properties of the RDF concrete syntax of SWRL into corresponding classes 

and properties of the SPIN modeling vocabulary, in a recursive way starting from 

swrl:Imp instances, following an almost one-to-one mapping scheme shown in Table 

1. The only exception to the straightforward mapping is the SWRL built-ins whose 

translation is customized for each function. We will discuss translation of built-ins in 

section 4.3. 

In the following, we give an example of translating a SWRL rule without built-ins 

to a SPIN rule. Consider the SWLR rule in Listing 1 that is translated into the SPIN 

rule in Listing 5. The actual translation is between the RDF representations of the 

SWRL and SPIN rules, shown in Listing 6 and Listing 7, respectively. 

 
CONSTRUCT { 

    ?x :knows ?z . 

} 

WHERE { 

    ?x rdf:type :Student . 

    ?x :attends ?y . 

    ?y :isTaughtBy ?z . 

} 

Listing 5. Translation of SRWL rule of Listing 1 into SPIN 

:x rdf:type swrl:Variable . :y rdf:type swrl:Variable .  

:z rdf:type swrl:Variable . 

[ rdf:type swrl:Imp ; 

  swrl:body [ rdf:type swrl:AtomList ; 

              rdf:first [ rdf:type swrl:ClassAtom ; 

                          swrl:classPredicate :Student ; 

                          swrl:argument1 :x   ] ; 

              rdf:rest [ rdf:type swrl:AtomList ; 

              rdf:first [ rdf:type swrl:IndividualPropertyAtom ; 

                          swrl:propertyPredicate :attends ; 

                          swrl:argument1 :x ; 

                          swrl:argument2 :y   ] ; 

              rdf:rest [ rdf:type swrl:AtomList ; 

              rdf:first [ rdf:type swrl:IndividualPropertyAtom ; 

                          swrl:propertyPredicate :isTaughtBy ; 

                          swrl:argument1 :y ; 

                          swrl:argument2 :z   ] ; 

              rdf:rest rdf:nil  

           ]]] ; 

  swrl:head [ rdf:type swrl:AtomList ; 

              rdf:first [ rdf:type swrl:IndividualPropertyAtom ; 

                          swrl:propertyPredicate :knows ; 

                          swrl:argument1 :x ; 

                          swrl:argument2 :z   ] ; 

              rdf:rest rdf:nil   

]] . 
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Listing 6. Example of an input SWRL rule in RDF concrete syntax 

  spin:rule [ 

      rdf:type sp:Construct ; 

      sp:templates ( 

          [ sp:object [ sp:varName "z" ;] ; 

            sp:predicate :knows ; 

            sp:subject [ sp:varName "x" ; ] ; ]   ) ; 

      sp:where ( 

          [ sp:object :Student ; 

            sp:predicate rdf:type ; 

            sp:subject [ sp:varName "x" ; ] ; ] 

          [ sp:object [ sp:varName "y" ; ] ; 

            sp:predicate :attends ; 

            sp:subject [ sp:varName "x" ; ] ; ] 

          [ sp:object [ sp:varName "z" ; ] ; 

            sp:predicate :isTaughtBy ; 

            sp:subject [ sp:varName "y" ; ] ; ]  ) ; 

  ] ; 

Listing 7. Example of an output SPIN rule in SPIN modelling vocabulary 

4.1 Embedding SPIN rules in Classes 

One of the unique features of SPIN compared to SWRL is the ability to embed rules 

into classes and treat them in an OO way as inheritable behaviors (aka methods). By 

doing so, instances of the embedding class can be identified by variable ?this. In 

SWRL2SPIN we  

1. identify variables in the rule body that refer to class instances that play the role of 

the “subject” in the triple patterns; 

2. identify the classes these variables refer to; 

3. generate as many rules as the number of the different classes “discovered” in step 2; 

4. rewrite each rule of step 3 so that: 

• corresponding variable names are replaced by ?this 

• rdf:type triple patterns that refer to ?this are removed from the rule body  

• triple patterns in the rule body are re-ordered so that the order of triple patterns is 

optimal. 

For step 1, we collect all the variables in the rule body that are 

1. arguments of a swrl:ClassAtom construct;  

2. first arguments of a swrl:IndividualPropertyAtom or a swrl:DatavaluedProp-

ertyAtom construct; 

The rationale behind this is that subjects of triple patterns can only play the role of 

the “referenced object”, i.e. the object that exhibits the class behavior. For our example, 

the collected variables are: 

1. variable ?x, due to Student(?x) class atom  

2. variable ?y, due to isTaughtBy(?y,?z) individual property atom. 
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In step 2, we identify the class that the instantiations of the above variables belong 

to by: 

1. checking if they are arguments of a swrl:ClassAtom construct;  

2. retrieving the domain / range of arguments of swrl:IndividualPropertyAtom con-

structs; 

3. retrieving the domain of arguments of swrl:DatavaluedPropertyAtom constructs. 

For the ongoing SWRL rule example, the collected variables ?x and ?y belong to 

classes Student and Course, respectively. The former is discovered from the Stu-

dent(?x) class atom, while the latter is discovered from the domain of the 

isTaughtBy(?y,?z) individual property atom and / or the range of the attends(?x,?y) 

atom. Thus, the SWRL rule is converted into two SPIN rules stored at classes Student 

(Listing 8a) and Course (Listing 8b), respectively: 
 
CONSTRUCT {    # @Student 

 ?this  :knows ?z .  

}  

WHERE {  

 ?this  :attends ?y .  

 ?y  :isTaughtBy ?z .  

} 

 

CONSTRUCT {    # @Course 

 ?x  :knows ?z .  

}  

WHERE {  

 ?x rdf:type  :Student .  

 ?x  :attends ?this .  

 ?this  :isTaughtBy ?z .  

} 

Listing 8. SPIN rule embedded at class (a) Student, (b) Course 

4.2 Optimizing SPIN rules 

In the previous example, the body of the SPIN rule at class Course has two triple 

patterns that contain variable ?this and one triple pattern for variable ?x ranging over 

all instances of class Student, following the initial ordering of the atoms at the body of 

the SWRL rule. However, it is evident that this ordering leads to a very inefficient 

SPARQL query execution, since variable ?x can be instantiated with many values, 

whereas variable ?this instantiates each time only with one value. So, SWRL2SPIN re-

orders the triple patterns in the body of converted / embedded SPIN rules using the 

following heuristics: 

1. Triple patterns that contain variable ?this at the subject of the triple pattern are placed 

first; 

2. Triple patterns that contain variable ?this at the object of the triple pattern are placed 

second; 

3. Triple patterns that contain the properties owl:sameAs or owl:differentFrom are 

placed after the triple patterns that instantiate the variables of their subject and ob-

ject; 

4. The order of all other triple patterns remains unchanged. 

According to the above, the triple patterns of the body of the SPIN rule at class 

Course are re-ordered as shown in Listing 9. 
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CONSTRUCT {    # @Course 

 ?x  :knows ?z . }  

WHERE {  

 ?this  :isTaughtBy ?z .  

 ?x  :attends ?this .  

 ?x rdf:type  :Student . } 

Listing 9. Optimized SPIN rule at class Course 

4.3 Implementing SWRL builtins 

The translation of the SWRL builtins does not follow the straightforward approach 

for the rest of the SWRL atoms and it depends on the nature of each function and the 

existence of equivalent SPIN or SPARQL functions. More specifically, SWRL speci-

fication [16] has defined 78 builtin functions classified across the categories: Compar-

isons, Mathematics, Boolean Values, Strings, Date, Time and Duration, URIs, and 

Lists. Currently, SWRL2SPIN implements more than half of the SWRL builtins (41), 

mostly in the categories: Comparisons, Mathematics, Strings, and Lists. For the Date, 

Time and Duration category, we implemented only the swrlb:date function.  

The conversion of the builtins falls into ten categories: binary filter, associative infix 

assign, binary infix assign, unary assign, assign function, filter function, magic prop-

erty, complex assign, complex filter, and complex expression1. Filter-type conversions 

lead to SPARQL FILTER Boolean expressions, whereas assign-type conversions lead 

to BIND expressions. Simple mathematical comparisons and operations are treated as 

binary infix mathematical operations, such as >= or -. Addition and multiplication in 

SWRL builtins can have an arbitrary number of arguments, so they are treated as asso-

ciative binary infix operators. Finally, there are also simple unary operators, e.g. minus.  

Another large category is SWRL builtin functions with an exact equivalent SPIN / 

SPARQL function, as e.g. round, replace, and contains. The conversion of these func-

tions is straightforward, as in the FILTER case all arguments of the SWRL builtin be-

come arguments of the SPIN / SPARQL function, whereas in the BIND case the first 

argument of the SWRL builtin becomes the variable to be bound in the SPIN / SPARQL 

BIND expression, whereas the rest of the arguments of the SWRL builtin become the 

arguments of the SPIN / SPARQL function. 

As discussed in Section 3, FILTER and BIND expressions both have an sp:expres-

sion property that contains the mathematical or functional SPARQL expression; BIND 

also has an sp:variable for the assigned variable. All expressions belong to a type, which 

is the name of the main SPARQL function in the expression, e.g. sp:gt, sp:lcase, etc. In 

the case of the complex functional expressions, the outer function is the type of the 

FILTER expression, e.g. sp:contains in the case of the containsIgnoreCase SWRL 

builtin. The argument list of the SWRL builtin (property swrl:arguments) is treated as 

explained above, generating sp:argNN properties of the SPARQL expression / function. 

The only exception is the spif:cast function, whose second argument is represented by 

an arg:datatype property. The values of the sp:argNN properties can be SPIN variables, 

datatype constants, individuals or nested SPARQL functions / expressions. 

                                                           
1 Due to space limitations, details can be found at https://github.com/nbassili/SWRL2SPIN 
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The rest of the SWRL builtins are treated as Complex cases, meaning that their trans-

lation involves the combination of more than one simple functions, as discussed above. 

Complex cases can be filters, assignments or general SPARQL expressions (graph pat-

terns) and they are treated in an ad-hoc manner. For example, the integerDivide builtin 

is translated as a division and a cast to integer, whereas the pow builtin is translated as 

repetitive multiplication using recursion. List builtins are of special interest because 

their translation cannot be performed using SPIN/SPARQL functions, but can be 

treated using SPARQL path expressions. For example, the member builtin is translated 

into a recursive path expression combining rdf:first and rdf:rest. The translation of the 

length builtin is the most complicated one because it requires a SPARQL subquery that 

counts all the elements in the list, i.e. all possible iterations of the rdf:rest property in 

the rdf:rest* recursive path. As an example, consider the SWRL rule in Listing 10 

which is translated in the SPIN rule at class Person (Listing 11). Specifically, the RDF 

concrete syntax for the SWRL builtin atom is shown in Listing 12, whereas the con-

verted SPIN / SPARQL expression is shown in Listing 13. 

 
Person(?x) ∧ firstName(?x, ?y) ∧ lastName(?x, ?z) ∧  

swrlb:stringConcat(?a, ?y, " ", ?z) →  fullName(?x, ?a) 

Listing 10. Sample SWRL rule with builtin 

CONSTRUCT {    # @Person 

    ?this  :fullName ?a . } 

WHERE { 

    ?this  :firstName ?y . 

    ?this  :lastName ?z . 

    BIND (CONCAT(?y, " ", ?z) AS ?a) . } 

Listing 11. Sample SWRL builtin translated to SPIN/SPARQL 

[ rdf:type swrl:BuiltinAtom ; 

  swrl:builtin swrlb:stringConcat ; 

  swrl:arguments [ rdf:type rdf:List ; 

            rdf:first  :a ; 

            rdf:rest [ rdf:type rdf:List ; 

            rdf:first  :y ; 

            rdf:rest [ rdf:type rdf:List ; 

            rdf:first " "^^xsd:string ; 

            rdf:rest (  :z ) ] ] ] 

] ; 

Listing 12. RDF syntax for the SWRL builtin example 

[  rdf:type sp:Bind ; 

   sp:expression [  rdf:type sp:concat ; 

           sp:arg1 [ sp:varName "y" ; ] ; 

           sp:arg2 " " ; 

           sp:arg3 [ sp:varName "z" ; ];]; 

   sp:variable [ sp:varName "a" ; ] ; 

] 
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Listing 13. RDF syntax for the converted example of Listing 12 

A special case is magic properties which are supported by many SPARQL engines 

to dynamically compute values at query time. A magic property usually is implemented 

by a calculation function that determines bindings of the variables on the left or right 

side of the predicate. SPIN enables users to define such magic properties, in a very 

similar way as SPIN Functions, but providing greater flexibility. In contrast to 

BIND/FILTER functions, magic properties can return multiple values. Furthermore, 

any input or output variable may be unbound; it is the task of the magic property to find 

their potential bindings. The magic property spif:split is used in SWRL2SPIN to trans-

late the swrlb:tokenize SWRL builtin. The first variable of the SWRL builtin generates 

multiple bindings. When the spif:split magic property is used, the subject of the “triple 

pattern” generates multiple alternative bindings. Magic properties are treated in an ad-

hoc manner in SWRL2SPIN, since their definition and behavior does not follow a reg-

ular pattern.  

The rest of the SWRL builtins will be implemented as a future work, most probably 

as complex conversion cases or as user-defined magic properties. We notice here that 

the only other SWRL related tool supporting functions for RDF lists is the SWRL-IQ 

plugin [6] for Protégé 3.x. 

5 Evaluation 

To evaluate SWRL2SPIN we have initially generated use cases of a University on-

tology with various SWRL rules in Protégé2 [25], including all supported SWRL-

builtins. Then we have used the SWRLDroolsTab [29] to run SWRL rules and identify 

all the inferences. Consequently, we have converted the SWRL use cases through 

SWRL2SPIN and we have tested the generated SPIN rules using TopSPIN in TopBraib 

Composer FE [31] for equivalent inferences. The results were found identical for all 

use cases, except the ones that could not be run in SWRLDrools. 

Finally, we have evaluated the optimized SPIN rules (section 4.2) of SWRL2SPIN 

against their unoptimized version. For this we have used the unoptimized rule at Listing 

8b against the optimized rule at Listing 9 in an ontology with 100K student instances 

that all attend the same course with one teacher. The inference took 1256,93 msec (on 

average) for the optimized rule version at TopBraid against 1414,61 msec for the un-

optimized rule. Results are statistically significant with a p-value equal to 0,0208<0,05. 

All tests were performed on a Windows 10 PC with Intel i7-4770 @ 3.40GHz, 8 GB 

RAM and SSD. 

6 Conclusions 

In this paper we have argued that SPIN is a more promising de-facto industrial stand-

ard for the future of combining ontologies and rules, because it builds upon the 

                                                           
2 We have used the SWRLTab editor of both Protégé 3.5 and 5.2. 
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widespread use of SPARQL. Furthermore, SWRL has been around for quite a while, 

not being able to achieve a W3C recommendation status. SPIN also offers more ex-

pressivity than SWRL due to constructs like FILTER and UNION, and also offers ob-

ject-orientation by being able to store rules to classes as behaviors to be inherited 

through the class hierarchy. Thus, we believe that existing large SWRL projects can 

benefit from being translated into SPIN rules. 

To this end we have developed in Prolog and presented the SWRL2SPIN prototype 

tool3 that translates ontologies with SWRL rules into ontologies with SPIN rules. We 

have tested the tool using ontologies and SWRL rule bases edited (and tested for rea-

soning) by Protégé and we have successfully imported the translated ontologies and 

SPIN rules into the TopBraid Composer, having the same inference results. We have 

also evaluated the scalability of the tool and the effectiveness of some optimization of 

the generated SPIN rules. Our tool currently supports 41 SWRL builtins, including 

builtins for lists which are usually not supported, but we have provided a structured 

methodology for supporting more in the future. 

Notice that our translation methodology is based on direct RDF-to-RDF translation 

between the SWRL and SPIN RDF vocabularies; therefore, it is not dependent on the 

implementation language we have choose for SWRL2SPIN. As for future work, we 

plan to evaluate it for converting larger SWRL rule bases, to support more SWRL built-

ins and to possibly provide this tool as an add-on to some SPIN rule engine. Finally, a 

transition of the tool to SHACL SPARQL rules [17] is underway4. 
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