
1

SWRL2SPIN: Converting SWRL to SPIN

Nick Bassiliades

Department of Informatics, Aristotle University of Thessaloniki, Greece
nbassili@csd.auth.gr

Abstract. SWRL is a semantic web rule language that combines OWL ontologies

with Horn Logic rules of the RuleML family of rule languages. Being supported

by Protégé as well as by popular rule engines and ontology reasoners, such as

Jess, Drools and Pellet, SWRL has become a very popular choice for developing

rule-based applications on top of ontologies. However, being doubtful whether

SWRL will become a W3C standard, it is difficult to reach out to the industrial

world. On the other hand, SPIN has become a de-facto industry standard to rep-

resent SPARQL rules and constraints on Semantic Web models, building on the

widespread acceptance of the SPARQL query language. In this paper, we argue

that the life of existing SWRL rule-based ontology applications can be prolonged

by being transformed into SPIN. To this end, we have developed a prototype tool

using SWI-Prolog that takes as input an OWL ontology with a SWRL rule base

and transforms SWRL rules into SPIN rules in the same ontology, taking into

consideration the object-oriented scent of SPIN, i.e. linking rules to the appropri-

ate ontology classes as derived by analyzing the rule conditions.

Keywords: SWRL, SPIN, SPARQL, OWL, Rules, Ontologies, Prolog, Trans-

formation

1 Introduction

Rule-based systems have been extensively used in several applications and domains,

such as e-commerce, personalization, games, businesses and academia. They offer a

simplistic model for knowledge representation for both domain experts and program-

mers; experts usually find it easier to express knowledge in a rule-like format and pro-

grammers usually find rule-based programming easier to understand and manipulate,

decoupling computation from control. The first is performed by the rules whereas the

latter is determined by the rule engine itself, that is when and how to apply the rules.

The Semantic Web initiative [33] works on standards, technologies and tools to give

to the information a well-defined meaning, enabling computers and people to work in

better cooperation. Ontologies can be considered as a primary key towards this goal

since they provide a controlled vocabulary of concepts, each with explicitly defined and

machine processable semantics.

There are mainly two modeling paradigms for the Semantic Web [14]. The first par-

adigm is based on the notion of the Description Logics [1] on which the Web Ontology

Language (OWL) [13], the W3C recommendation for creating and sharing ontologies

2 Nick Bassiliades

on the Web, is based. The semantics of OWL ontologies can be handled by DL reason-

ing systems, such as Pellet [27], RacerPro [10], Fact++ [32] and HermiT [8] that reuse

existing DL algorithms, such as tableaux-based algorithms [2]. The other paradigm is

based on Horn logic, whereas a subset of the OWL semantics is transformed into rules

that are used by a rule engine to infer implicit knowledge. There are major differences

between these two paradigms, including computational and expressiveness aspects. For

example, the DL reasoning engines have a rather inefficient instance reasoning perfor-

mance, whereas rules are insufficient to model certain situations related to the open

nature of the Semantic Web. The selection of the most suitable modeling paradigm

depends on the domain and the needs of the application.

Since description logics and Horn logic are orthogonal in the sense that neither of

them is a subset of the other [9], there are two interesting combinations of ontologies

and rules, namely their intersection, which is OWL 2 RL, and their union, namely

SWRL. OWL 2 RL [23] is an OWL 2 profile is aiming at applications that require

scalable reasoning without sacrificing too much expressive power. This is achieved by

defining a syntactic subset of OWL 2 which is amenable to implementation using rule-

based technologies, namely it is the largest syntactic fragment of OWL2 DL that is

implementable using rules. The design of OWL 2 RL was inspired by Description Logic

Programs [23] and pD* [30]. Obviously, OWL 2 RL is a decidable language, but one

that is necessarily less expressive than either the description logic or rules language

from which it is formed.

SWRL [15, 16] is a semantic web rule language that combines OWL ontologies with

Horn Logic rules of the RuleML family of rule languages [26], extending the set of

OWL axioms to include Horn-like rules. SWRL is considerably more powerful than

either OWL DL or Horn rules alone; however, key inference problems for SWRL are

undecidable [15]. Decidability can be regained by restricting the form of admissible

rules, by imposing a suitable safety condition [24]. Being supported by the Protégé

ontology editor [25] as well as by popular rule engines and ontology reasoners, such as

Jess [7], Drools [5] and Pellet [27], SWRL has become a very popular choice for de-

veloping rule-based applications on top of ontologies [3, 12, 22, 28]. However, SWRL

being around for more than 10 years now, it is most probable that it will never become

a W3C standard; therefore, its scope is difficult to reach out to the industrial world.

On the other hand, SPIN [18] has become a de-facto industry standard to represent

SPARQL rules and constraints on Semantic Web models, building on the widespread

acceptance of the SPARQL query language [11]. SPARQL is well supported by nu-

merous engines and databases. This means that SPIN rules can be directly executed on

the databases and no intermediate engines with communication overhead need to be

introduced. Also, SPIN is more expressive than SWRL, because SPARQL has various

features such as UNIONs and FILTER expressions. SPIN has an object-oriented model

that arguably leads to better maintainable models than SWRL's flat rule lists. Finally,

SPIN goes far beyond being just a rule language, and provides means to express con-

straints and to define new functions and templates.

For all the above reasons, in this paper, we argue that the life of existing SWRL rule-

based ontology applications can be prolonged by being transformed into SPIN. To this

end, we have developed the SWRL2SPIN tool, using SWI-Prolog [34] that takes as

 SWRL2SPIN: Converting SWRL to SPIN 3

input an OWL ontology with an SWRL rule base and transforms SWRL rules into SPIN

rules in the same ontology, taking into consideration the object-oriented scent of SPIN,

i.e. linking rules to the appropriate ontology classes as derived by analyzing the rule

conditions. Furthermore, conditions of transformed rules are optimized according to the

hosting class by re-ordering condition elements. Our SWRL2SPIN tool is accompanied

by a rich implementation of SWRL builtins (41); however, the way these builtins have

been translated provides room for extensibility in the future to increase coverage. To

the best of our knowledge there is no other tool for transforming SWRL to SPIN.

In the rest of the paper, we overview SWRL and SPIN syntax and semantics, focus-

ing on their RDF vocabularies, in sections 2 and 3, respectively. In section 4 we present

our tool, its transformation methodology, how rules are embedded into classes, how

they are optimized and how builtins have been implemented. In section 5 we evaluate

the tool and finally, in section 6, we conclude.

2 Semantic Web Rule Language

The Semantic Web Rule Language (SWRL) [16] is a proposed language for the Se-

mantic Web that can be used to express rules, combining OWL DL or OWL Lite with

the Unary/Binary Datalog RuleML sublanguages of the Rule Markup Language.

SWRL extends the set of OWL axioms to include Horn-like rules. It thus enables Horn-

like rules to be combined with an OWL knowledge base. SWRL has the full power of

OWL DL, but at the price of decidability and practical implementations. However, de-

cidability can be regained by restricting the form of admissible rules, typically by im-

posing a suitable safety condition [24].

Rules are of the form of an implication between an antecedent (body) and consequent

(head). The intended meaning can be read as: whenever the conditions specified in the

antecedent hold, then the conditions specified in the consequent must also hold. Both

the antecedent (body) and consequent (head) consist of zero or more atoms. An empty

antecedent is treated as trivially true (i.e. satisfied by every interpretation), so the con-

sequent must also be satisfied by every interpretation; an empty consequent is treated

as trivially false (i.e., not satisfied by any interpretation), so the antecedent must also

not be satisfied by any interpretation. Multiple atoms are treated as a conjunction. Note

that rules with conjunctive consequents could easily be transformed (via the Lloyd-

Topor transformations [21]) into multiple rules each with an atomic consequent. Atoms

in these rules can be of the form C(x), P(x,y), sameAs(x,y) or differentFrom(x,y), where

C is an OWL description, P is an OWL property, and x, y are either variables, OWL

individuals or OWL data values.

SWRL has various representation syntaxes: abstract, human readable, XML concrete

and RDF concrete. Listing 1 shows an SWRL rule example in human readable syntax

that states “when a student ?s attends a course ?c that is taught by a faculty member ?f,

then the student ?s knows the faculty member ?f”.

uni:Student(?s) ∧ uni:attends(?s,?c) ∧ uni:isTaughtBy(?c,?f) →
uni:knows(?s,?f)

4 Nick Bassiliades

Listing 1. Sample SWRL rule in human readable syntax

Listing 2 shows how this rule is represented in the RDF concrete syntax. Rules are

instances of the swrl:Imp class. The head and body of the rule are lists of atoms

(swrl:AtomList); each atom can be one of classAtom, IndividualPropertyAtom,

DatavaluedPropertyAtom, SameIndividualAtom, DifferentIndividualsAtom, or Built-

inAtom. All but the builtin atoms have one or two arguments (properties swr:argu-

mentNN); additionally classAtom has a classPredicate property, whereas the Prop-

ertyAtoms have a propertyPredicate property. BuiltinAtoms have a list of arguments

instead and the name of the builtin function. Arguments can be variables, declared as

instances of the swrl:Variable class, datatype constants, in the Value^^Datatype format,

or individuals, i.e. instances of an OWL class.

Listing 2. Sample rule in SWRL RDF concrete syntax

3 SPARQL Inferencing Notation

Modeling languages for the semantic web, such as RDF Schema [4] and OWL [13],

provide mechanisms for capturing the static structure of data, i.e. they are used to define

classes, properties and relationships between these conceptual entities. While they de-

fine axiomatic definitions of data structures, describing general computational behavior

of objects is not within their scope. On the other hand, object oriented languages pro-

vide well-known mechanisms for defining object behavior by describing classes and

 SWRL2SPIN: Converting SWRL to SPIN 5

associating methods with class members. Object oriented methods often formalize how

the modification of one attribute implies changes to other attributes. Another common

purpose of methods is to capture constraints to ensure that the state of the objects re-

mains within the bounds that the class designer had intended.

The SPARQL Inferencing Notation (SPIN) [18] combines concepts from object-ori-

ented languages, query languages, and rule-based systems to describe object behavior

on the semantic web. One of the basic ideas of SPIN is to link class definitions with

SPARQL queries to capture constraints and rules that formalize the expected behavior

of those classes. SPARQL is used because it is an existing W3C standard [11] with

well-formed query semantics across RDF data, has existing widespread use amongst

most RDF query engines and graph stores, and provides sufficient expressivity for both

queries and general computation of data. To facilitate storage and maintenance,

SPARQL queries are represented in RDF triples, using the SPIN SPARQL Syntax [20].

The SPIN Modeling Vocabulary [19] defines a collection of properties and classes

that can be used to link RDFS and OWL classes with SPARQL queries. For example,

the class ex:Department can define a property spin:rule that points to a SPARQL

CONSTRUCT query that computes the value of ex:studentProfessorRatio based on the

values of ex:enrolledStudents and ex:numberOfFaculty. These properties follow exist-

ing SPARQL standards, and the execution of these constructs can be efficiently handled

by any SPARQL processor. Since SPIN is entirely represented in RDF, rules and con-

straints can be shared on the web together with the class definitions they are associated

with. The attachment of rules to classes also encourages a style in which rules are lo-

cally scoped and thus easier to maintain, avoiding the spaghetti code of "flat" rule lan-

guages, such as SWRL.

The SPIN class description vocabulary defines several RDF properties that can be

used to attach SPARQL queries to classes. The property spin:rule can be used by SPIN

reasoning engines to construct inferred RDF triples from the currently asserted infor-

mation in the model. The SPARQL queries referenced by the SPIN properties are in-

terpreted in the context of the associated class. At run-time, the SPARQL variable ?this

is (by default) pre-bound with instances of the class and its sub-classes. Typically, the

query itself does not need to bind ?this to any value in the WHERE clause. The execu-

tion context (e.g., inference engine) will do this before the query is executed.

SPIN takes an object-oriented world view on Semantic Web models, in which

SPARQL queries play a similar role to functions and methods. Inheritance (expressed

using rdfs:subClassOf) is treated in the sense that any query/rule defined for super-

classes will also be applied to subclasses. In other words, SPIN class descriptors can

only "narrow down" and further restrict what has been defined further up in the class

hierarchy. In this spirit, global class descriptions are those that are attached to the root

class rdfs:Resource or its OWL equivalent owl:Thing. Those global queries may not

even mention ?this at all.

The property spin:rule links an rdfs:Class with a SPARQL CONSTRUCT query that

defines an inference rule that determines how additional triples can be inferred from

what is stated in the WHERE clause. For each binding of the pattern in the WHERE

clause of the rule, the triple templates from the CONSTRUCT clause are instantiated

6 Nick Bassiliades

and added as inferred triples to the underlying model. At query execution time, the

SPARQL variable ?this is bound to the current instance of the class.

The example in Listing 3a defines a SPIN rule (in textual SPARQL format), at-

tached to class uni:Student via the spin:rule property, that infers the value of the

uni:knows property from values of uni:attends and uni:isTaughtBy. Listing 3b shows

how the same rule is represented using the SPIN modeling vocabulary.

uni:Student

 a rdfs:Class ;

 spin:rule

 [a sp:Construct ;

 sp:text """

 CONSTRUCT {

 ?this uni:knows ?f .

 }

 WHERE {

 ?this uni:attends ?c .

 ?c uni:isTaughtBy ?f

 }"""

].

[a sp:Construct ;

 sp:templates ([

 sp:object spin:_this;

 sp:predicate uni:knows ;

 sp:subject sp:_f

]) ;

 sp:where (

 [sp:object spin:_this ;

 sp:predicate uni:attends ;

 sp:subject sp:_c]

 [sp:object sp:_c;

 sp:predicate uni:knows ;

 sp:subject sp:_f]

)

]

Listing 3. Sample SPIN rule in (a) human-friendly notation and (b) SPIN modeling vocabulary

SPIN rules are instances of the sp:Construct class; the rule “head” is defined with

the sp:templates property whereas the sp:where property defines the rule “body”. The

above properties contain lists of triple patterns (sp:subject, sp:predicate, sp:object).

Other SPARQL query elements contained in rule “body” can be TriplePath, Filter,

Bind, Optional, Union, NamedGraph, SubQuery, NotExists, Minus, Service, and Val-

ues. In the following we only present the first three, since they are the only ones used

in the SWRL2SPIN tool.

A TriplePath is similar to a triple pattern, but instead of an sp:predicate, has an

sp:path property, whose value can be one of several types, sp:SeqPath being the most

usual one. The sequential steps of the path are represented through consecutive

sp:pathNN properties. The representation is more complex when arbitrary length path

matching is involved, i.e. when the * operator is used.

Filter elements are blank nodes, instances of sp:Filter that have property sp:expres-

sion, pointing to an expression that can be evaluated to true or false. Expressions are

actually function calls which are resresnted as instances of the function's URI. All other

properties of expressions (or function calls) are interpreted as arguments, using consec-

utive sp:argNN properties. However, other property names can be used as well, de-

pending in the function. Arguments can be either datatype constants or variables, which

are blank nodes with an sp:varName property whose value is a string. E.g. the FILTER

(?y > 30) expression is shown in Listing 4a.

The BIND keyword assigns a computed value to a variable. Bind assignments in the

rule “body” are represented as instances of the class sp:Bind, having an sp:variable

property to point at the variable on the right side of the assignment. The property sp:ex-

pression points to the root of the expression tree that delivers the computed value, in

 SWRL2SPIN: Converting SWRL to SPIN 7

much a similar way to filter expressions (i.e. function calls). E.g., the expression BIND

((?x * 2) AS ?y) is shown in Listing 4b.

[rdf:type sp:Filter ;

 sp:expression [

 rdf:type sp:gt ;

 sp:arg1 [

 sp:varName "y" ;

] ;

 sp:arg2 "30"^^xsd:int ;

] ;

]

[rdf:type sp:Bind ;

 sp:expression [

 rdf:type sp:mul ;

 sp:arg1 [sp:varName "x" ;] ;

 sp:arg2 2 ;

] ;

 sp:variable [sp:varName "y" ;] ;

]

Listing 4. Filter (a) and Bind (b) expressions in SPIN modeling vocabulary.

Table 1. Correspondence between SWRL and SPIN constructs

SWRL SPIN

swrl:Imp sp:Construct

swrl:head sp:templates

swrl:body sp:where

swrl:ClassAtom
swrl:classPredicate <Class>

swrl:argument1 <Arg>

sp:subject <Arg>

sp:predicate rdf:type
sp:object <Class>

swrl:IndividualPropertyAtom

swrl:propertyPredicate <Prop>

swrl:argument1 <Arg1>
swrl:argument2 <Arg2>

sp:subject <Arg1>
sp:predicate <Prop>

sp:object <Arg2>

swrl:SameIndividualAtom

swrl:argument1 <Arg1>
swrl:argument2 <Arg2>

sp:subject <Arg1>

sp:predicate owl:sameAs

sp:object <Arg2>

swrl:DifferentIndividualsAtom
swrl:argument1 <Arg1>

swrl:argument2 <Arg2>

sp:subject <Arg1>
sp:predicate owl:differentFrom

sp:object <Arg2>

swrl:DatavaluedPropertyAtom

swrl:propertyPredicate <Prop>
swrl:argument1 <Arg1>

swrl:argument2 <Arg2>

sp:subject <Arg1>

sp:predicate <Prop>

sp:object <Arg2>

swrl:BuiltinAtom

swrl:builtin <Fun>
swrl:arguments <Args>

Customized translation

swrl:Variable <Var> sp:varName “<Var>”

<Value> ^^ <DataType> <Value> ^^ <DataType>

<Individual> <Individual>

4 SWRL2SPIN

The SWRL2SPIN tool accepts at its input an OWL ontology with SWRL rules em-

bedded in the ontology using the RDF concrete syntax of SWRL, as exported by tools

such as Protégé combined with the SWRLtab plugin. The tool produces at its output an

OWL ontology (just copying the input one) extended by SPIN rules that have been

created by translating the SWRL rules. SPIN rules are embedded inside their corre-

sponding classes, following the OO nature of SPIN, instead of having a flat rule base

8 Nick Bassiliades

as in SWRL. Furthermore, the ?this variable of SPIN is used to identify instances of the

rule-embedding class, therefore SWRL condition elements that identify the class of the

corresponding instances are removed, speeding-up, thus, rule execution. Finally, the

same SWRL may involve instances of multiple classes, so our tool generates multiple

versions / views of a rule, optimized for each of the classes, separately.

The main procedure for translating a SWRL rule into a SPIN rule involves mapping

classes and properties of the RDF concrete syntax of SWRL into corresponding classes

and properties of the SPIN modeling vocabulary, in a recursive way starting from

swrl:Imp instances, following an almost one-to-one mapping scheme shown in Table

1. The only exception to the straightforward mapping is the SWRL built-ins whose

translation is customized for each function. We will discuss translation of built-ins in

section 4.3.

In the following, we give an example of translating a SWRL rule without built-ins

to a SPIN rule. Consider the SWLR rule in Listing 1 that is translated into the SPIN

rule in Listing 5. The actual translation is between the RDF representations of the

SWRL and SPIN rules, shown in Listing 6 and Listing 7, respectively.

CONSTRUCT {

 ?x :knows ?z .

}

WHERE {

 ?x rdf:type :Student .

 ?x :attends ?y .

 ?y :isTaughtBy ?z .

}

Listing 5. Translation of SRWL rule of Listing 1 into SPIN

:x rdf:type swrl:Variable . :y rdf:type swrl:Variable .

:z rdf:type swrl:Variable .

[rdf:type swrl:Imp ;

 swrl:body [rdf:type swrl:AtomList ;

 rdf:first [rdf:type swrl:ClassAtom ;

 swrl:classPredicate :Student ;

 swrl:argument1 :x] ;

 rdf:rest [rdf:type swrl:AtomList ;

 rdf:first [rdf:type swrl:IndividualPropertyAtom ;

 swrl:propertyPredicate :attends ;

 swrl:argument1 :x ;

 swrl:argument2 :y] ;

 rdf:rest [rdf:type swrl:AtomList ;

 rdf:first [rdf:type swrl:IndividualPropertyAtom ;

 swrl:propertyPredicate :isTaughtBy ;

 swrl:argument1 :y ;

 swrl:argument2 :z] ;

 rdf:rest rdf:nil

]]] ;

 swrl:head [rdf:type swrl:AtomList ;

 rdf:first [rdf:type swrl:IndividualPropertyAtom ;

 swrl:propertyPredicate :knows ;

 swrl:argument1 :x ;

 swrl:argument2 :z] ;

 rdf:rest rdf:nil

]] .

 SWRL2SPIN: Converting SWRL to SPIN 9

Listing 6. Example of an input SWRL rule in RDF concrete syntax

 spin:rule [

 rdf:type sp:Construct ;

 sp:templates (

 [sp:object [sp:varName "z" ;] ;

 sp:predicate :knows ;

 sp:subject [sp:varName "x" ;] ;]) ;

 sp:where (

 [sp:object :Student ;

 sp:predicate rdf:type ;

 sp:subject [sp:varName "x" ;] ;]

 [sp:object [sp:varName "y" ;] ;

 sp:predicate :attends ;

 sp:subject [sp:varName "x" ;] ;]

 [sp:object [sp:varName "z" ;] ;

 sp:predicate :isTaughtBy ;

 sp:subject [sp:varName "y" ;] ;]) ;

] ;

Listing 7. Example of an output SPIN rule in SPIN modelling vocabulary

4.1 Embedding SPIN rules in Classes

One of the unique features of SPIN compared to SWRL is the ability to embed rules

into classes and treat them in an OO way as inheritable behaviors (aka methods). By

doing so, instances of the embedding class can be identified by variable ?this. In

SWRL2SPIN we

1. identify variables in the rule body that refer to class instances that play the role of

the “subject” in the triple patterns;

2. identify the classes these variables refer to;

3. generate as many rules as the number of the different classes “discovered” in step 2;

4. rewrite each rule of step 3 so that:

• corresponding variable names are replaced by ?this

• rdf:type triple patterns that refer to ?this are removed from the rule body

• triple patterns in the rule body are re-ordered so that the order of triple patterns is

optimal.

For step 1, we collect all the variables in the rule body that are

1. arguments of a swrl:ClassAtom construct;

2. first arguments of a swrl:IndividualPropertyAtom or a swrl:DatavaluedProp-

ertyAtom construct;

The rationale behind this is that subjects of triple patterns can only play the role of

the “referenced object”, i.e. the object that exhibits the class behavior. For our example,

the collected variables are:

1. variable ?x, due to Student(?x) class atom

2. variable ?y, due to isTaughtBy(?y,?z) individual property atom.

10 Nick Bassiliades

In step 2, we identify the class that the instantiations of the above variables belong

to by:

1. checking if they are arguments of a swrl:ClassAtom construct;

2. retrieving the domain / range of arguments of swrl:IndividualPropertyAtom con-

structs;

3. retrieving the domain of arguments of swrl:DatavaluedPropertyAtom constructs.

For the ongoing SWRL rule example, the collected variables ?x and ?y belong to

classes Student and Course, respectively. The former is discovered from the Stu-

dent(?x) class atom, while the latter is discovered from the domain of the

isTaughtBy(?y,?z) individual property atom and / or the range of the attends(?x,?y)

atom. Thus, the SWRL rule is converted into two SPIN rules stored at classes Student

(Listing 8a) and Course (Listing 8b), respectively:

CONSTRUCT { # @Student

 ?this :knows ?z .

}

WHERE {

 ?this :attends ?y .

 ?y :isTaughtBy ?z .

}

CONSTRUCT { # @Course

 ?x :knows ?z .

}

WHERE {

 ?x rdf:type :Student .

 ?x :attends ?this .

 ?this :isTaughtBy ?z .

}

Listing 8. SPIN rule embedded at class (a) Student, (b) Course

4.2 Optimizing SPIN rules

In the previous example, the body of the SPIN rule at class Course has two triple

patterns that contain variable ?this and one triple pattern for variable ?x ranging over

all instances of class Student, following the initial ordering of the atoms at the body of

the SWRL rule. However, it is evident that this ordering leads to a very inefficient

SPARQL query execution, since variable ?x can be instantiated with many values,

whereas variable ?this instantiates each time only with one value. So, SWRL2SPIN re-

orders the triple patterns in the body of converted / embedded SPIN rules using the

following heuristics:

1. Triple patterns that contain variable ?this at the subject of the triple pattern are placed

first;

2. Triple patterns that contain variable ?this at the object of the triple pattern are placed

second;

3. Triple patterns that contain the properties owl:sameAs or owl:differentFrom are

placed after the triple patterns that instantiate the variables of their subject and ob-

ject;

4. The order of all other triple patterns remains unchanged.

According to the above, the triple patterns of the body of the SPIN rule at class

Course are re-ordered as shown in Listing 9.

 SWRL2SPIN: Converting SWRL to SPIN 11

CONSTRUCT { # @Course

 ?x :knows ?z . }

WHERE {

 ?this :isTaughtBy ?z .

 ?x :attends ?this .

 ?x rdf:type :Student . }

Listing 9. Optimized SPIN rule at class Course

4.3 Implementing SWRL builtins

The translation of the SWRL builtins does not follow the straightforward approach

for the rest of the SWRL atoms and it depends on the nature of each function and the

existence of equivalent SPIN or SPARQL functions. More specifically, SWRL speci-

fication [16] has defined 78 builtin functions classified across the categories: Compar-

isons, Mathematics, Boolean Values, Strings, Date, Time and Duration, URIs, and

Lists. Currently, SWRL2SPIN implements more than half of the SWRL builtins (41),

mostly in the categories: Comparisons, Mathematics, Strings, and Lists. For the Date,

Time and Duration category, we implemented only the swrlb:date function.

The conversion of the builtins falls into ten categories: binary filter, associative infix

assign, binary infix assign, unary assign, assign function, filter function, magic prop-

erty, complex assign, complex filter, and complex expression1. Filter-type conversions

lead to SPARQL FILTER Boolean expressions, whereas assign-type conversions lead

to BIND expressions. Simple mathematical comparisons and operations are treated as

binary infix mathematical operations, such as >= or -. Addition and multiplication in

SWRL builtins can have an arbitrary number of arguments, so they are treated as asso-

ciative binary infix operators. Finally, there are also simple unary operators, e.g. minus.

Another large category is SWRL builtin functions with an exact equivalent SPIN /

SPARQL function, as e.g. round, replace, and contains. The conversion of these func-

tions is straightforward, as in the FILTER case all arguments of the SWRL builtin be-

come arguments of the SPIN / SPARQL function, whereas in the BIND case the first

argument of the SWRL builtin becomes the variable to be bound in the SPIN / SPARQL

BIND expression, whereas the rest of the arguments of the SWRL builtin become the

arguments of the SPIN / SPARQL function.

As discussed in Section 3, FILTER and BIND expressions both have an sp:expres-

sion property that contains the mathematical or functional SPARQL expression; BIND

also has an sp:variable for the assigned variable. All expressions belong to a type, which

is the name of the main SPARQL function in the expression, e.g. sp:gt, sp:lcase, etc. In

the case of the complex functional expressions, the outer function is the type of the

FILTER expression, e.g. sp:contains in the case of the containsIgnoreCase SWRL

builtin. The argument list of the SWRL builtin (property swrl:arguments) is treated as

explained above, generating sp:argNN properties of the SPARQL expression / function.

The only exception is the spif:cast function, whose second argument is represented by

an arg:datatype property. The values of the sp:argNN properties can be SPIN variables,

datatype constants, individuals or nested SPARQL functions / expressions.

1 Due to space limitations, details can be found at https://github.com/nbassili/SWRL2SPIN

12 Nick Bassiliades

The rest of the SWRL builtins are treated as Complex cases, meaning that their trans-

lation involves the combination of more than one simple functions, as discussed above.

Complex cases can be filters, assignments or general SPARQL expressions (graph pat-

terns) and they are treated in an ad-hoc manner. For example, the integerDivide builtin

is translated as a division and a cast to integer, whereas the pow builtin is translated as

repetitive multiplication using recursion. List builtins are of special interest because

their translation cannot be performed using SPIN/SPARQL functions, but can be

treated using SPARQL path expressions. For example, the member builtin is translated

into a recursive path expression combining rdf:first and rdf:rest. The translation of the

length builtin is the most complicated one because it requires a SPARQL subquery that

counts all the elements in the list, i.e. all possible iterations of the rdf:rest property in

the rdf:rest* recursive path. As an example, consider the SWRL rule in Listing 10

which is translated in the SPIN rule at class Person (Listing 11). Specifically, the RDF

concrete syntax for the SWRL builtin atom is shown in Listing 12, whereas the con-

verted SPIN / SPARQL expression is shown in Listing 13.

Person(?x) ∧ firstName(?x, ?y) ∧ lastName(?x, ?z) ∧

swrlb:stringConcat(?a, ?y, " ", ?z) → fullName(?x, ?a)

Listing 10. Sample SWRL rule with builtin

CONSTRUCT { # @Person

 ?this :fullName ?a . }

WHERE {

 ?this :firstName ?y .

 ?this :lastName ?z .

 BIND (CONCAT(?y, " ", ?z) AS ?a) . }

Listing 11. Sample SWRL builtin translated to SPIN/SPARQL

[rdf:type swrl:BuiltinAtom ;

 swrl:builtin swrlb:stringConcat ;

 swrl:arguments [rdf:type rdf:List ;

 rdf:first :a ;

 rdf:rest [rdf:type rdf:List ;

 rdf:first :y ;

 rdf:rest [rdf:type rdf:List ;

 rdf:first " "^^xsd:string ;

 rdf:rest (:z)]]]

] ;

Listing 12. RDF syntax for the SWRL builtin example

[rdf:type sp:Bind ;

 sp:expression [rdf:type sp:concat ;

 sp:arg1 [sp:varName "y" ;] ;

 sp:arg2 " " ;

 sp:arg3 [sp:varName "z" ;];];

 sp:variable [sp:varName "a" ;] ;

]

 SWRL2SPIN: Converting SWRL to SPIN 13

Listing 13. RDF syntax for the converted example of Listing 12

A special case is magic properties which are supported by many SPARQL engines

to dynamically compute values at query time. A magic property usually is implemented

by a calculation function that determines bindings of the variables on the left or right

side of the predicate. SPIN enables users to define such magic properties, in a very

similar way as SPIN Functions, but providing greater flexibility. In contrast to

BIND/FILTER functions, magic properties can return multiple values. Furthermore,

any input or output variable may be unbound; it is the task of the magic property to find

their potential bindings. The magic property spif:split is used in SWRL2SPIN to trans-

late the swrlb:tokenize SWRL builtin. The first variable of the SWRL builtin generates

multiple bindings. When the spif:split magic property is used, the subject of the “triple

pattern” generates multiple alternative bindings. Magic properties are treated in an ad-

hoc manner in SWRL2SPIN, since their definition and behavior does not follow a reg-

ular pattern.

The rest of the SWRL builtins will be implemented as a future work, most probably

as complex conversion cases or as user-defined magic properties. We notice here that

the only other SWRL related tool supporting functions for RDF lists is the SWRL-IQ

plugin [6] for Protégé 3.x.

5 Evaluation

To evaluate SWRL2SPIN we have initially generated use cases of a University on-

tology with various SWRL rules in Protégé2 [25], including all supported SWRL-

builtins. Then we have used the SWRLDroolsTab [29] to run SWRL rules and identify

all the inferences. Consequently, we have converted the SWRL use cases through

SWRL2SPIN and we have tested the generated SPIN rules using TopSPIN in TopBraib

Composer FE [31] for equivalent inferences. The results were found identical for all

use cases, except the ones that could not be run in SWRLDrools.

Finally, we have evaluated the optimized SPIN rules (section 4.2) of SWRL2SPIN

against their unoptimized version. For this we have used the unoptimized rule at Listing

8b against the optimized rule at Listing 9 in an ontology with 100K student instances

that all attend the same course with one teacher. The inference took 1256,93 msec (on

average) for the optimized rule version at TopBraid against 1414,61 msec for the un-

optimized rule. Results are statistically significant with a p-value equal to 0,0208<0,05.

All tests were performed on a Windows 10 PC with Intel i7-4770 @ 3.40GHz, 8 GB

RAM and SSD.

6 Conclusions

In this paper we have argued that SPIN is a more promising de-facto industrial stand-

ard for the future of combining ontologies and rules, because it builds upon the

2 We have used the SWRLTab editor of both Protégé 3.5 and 5.2.

14 Nick Bassiliades

widespread use of SPARQL. Furthermore, SWRL has been around for quite a while,

not being able to achieve a W3C recommendation status. SPIN also offers more ex-

pressivity than SWRL due to constructs like FILTER and UNION, and also offers ob-

ject-orientation by being able to store rules to classes as behaviors to be inherited

through the class hierarchy. Thus, we believe that existing large SWRL projects can

benefit from being translated into SPIN rules.

To this end we have developed in Prolog and presented the SWRL2SPIN prototype

tool3 that translates ontologies with SWRL rules into ontologies with SPIN rules. We

have tested the tool using ontologies and SWRL rule bases edited (and tested for rea-

soning) by Protégé and we have successfully imported the translated ontologies and

SPIN rules into the TopBraid Composer, having the same inference results. We have

also evaluated the scalability of the tool and the effectiveness of some optimization of

the generated SPIN rules. Our tool currently supports 41 SWRL builtins, including

builtins for lists which are usually not supported, but we have provided a structured

methodology for supporting more in the future.

Notice that our translation methodology is based on direct RDF-to-RDF translation

between the SWRL and SPIN RDF vocabularies; therefore, it is not dependent on the

implementation language we have choose for SWRL2SPIN. As for future work, we

plan to evaluate it for converting larger SWRL rule bases, to support more SWRL built-

ins and to possibly provide this tool as an add-on to some SPIN rule engine. Finally, a

transition of the tool to SHACL SPARQL rules [17] is underway4.

7 References

1. Baader F. 2003. The Description Logic Handbook: Theory, Implementation and Applica-

tions. Cambridge Univ Press.

2. Baader F., Sattler U. 2001. An overview of tableau algorithms for description logics. Studia

Logica, 69(1), 5-40.

3. Billet Y.-G., Gravier C., Fayolle J.: SWRL-Based Context Awareness for Application Serv-

ers Hosting Digital Services. RuleML America 2011: 222-229

4. Brickley D., Guha R.V. (Eds.), RDF Schema 1.1, W3C Rec, 25 Feb 2014,

http://www.w3.org/TR/rdf-schema/

5. Drools, http://www.drools.org/

6. Elenius D.: SWRL-IQ: A Prolog-based Query Tool for OWL and SWRL. OWLED 2012

7. Friedman-Hill E. 2003. Jess in Action: Rule Based Systems in Java. Manning Publications.

ISBN 1-930110-89-8

8. Glimm B., Horrocks I., Motik B., Stoilos G., Wang Z., HermiT: An OWL 2 Reasoner, J

Automated Reasoning (2014) 53: 245.

9. Grosof B. N., Horrocks I., Volz R., Decker S. 2003. Description Logic Programs: Combin-

ing Logic Programs with Description Logic. In Proceedings of the International Conference

on World Wide Web (pp. 48-57). ACM Press.

10. Haarslev V., Hidde K., Möller R., Wessel M. The RacerPro knowledge representation and

reasoning system. Semantic Web Journal, 3(3):267–277, 2012.

3 Available at https://github.com/nbassili/SWRL2SPIN
4 https://github.com/nbassili/SWRL2SHACL

 SWRL2SPIN: Converting SWRL to SPIN 15

11. Harris S., Seaborne A., SPARQL 1.1 Query Language, W3C Rec, 21 Mar 2013.

http://www.w3.org/TR/sparql11-query/

12. Herrero-Zazo M., Segura-Bedmar I., Hastings J., Martínez P.: DINTO: Using OWL Ontol-

ogies and SWRL Rules to Infer Drug-Drug Interactions and their Mechanisms. J. of Chem-

ical Information and Modeling 55(8): 1698-1707 (2015)

13. Hitzler P., Krötzsch M., Parsia B., Patel-Schneider P. F., Rudolph S., OWL 2 Web Ontology

Language Primer (2nd Edition), W3C Rec, 11 Dec 2012. http://www.w3.org/TR/owl-primer

14. Horrocks I., Parsia B., Patel-Schneider P., Hendler J. 2005. Semantic Web Architecture:

Stack or Two Towers?. Principles and Practice of Semantic Web Reasoning. PPSWR 2005.

LNCS 3703. Springer.

15. Horrocks I., Patel-Schneider P. F., Bechhofer S., Tsarkov D., OWL rules: A proposal and

prototype implementation, Journal of Web Semantics, 3(1), 2005, pp. 23-40.

16. Horrocks I., Patel-Schneider P. F., Boley H., Tabet S., Grosof B., Dean M. 2004. SWRL: A

Semantic Web Rule Language Combining OWL and RuleML. W3C Member Submission.

21 May 2004. http://www.w3.org/Submission/SWRL/

17. Knublauch H., Allemang D., Steyskal S., SHACL Advanced Features, W3C Working Group

Note 08 June 2017, https://www.w3.org/TR/shacl-af/

18. Knublauch H., Hendler J. A., Idehen K., SPIN - Overview and Motivation, W3C Member

Submission, 22 Feb 2011. http://www.w3.org/Submission/spin-overview/

19. Knublauch H., SPIN - Modeling Vocabulary, W3C Member Submission, 22 Feb 2011.

http://www.w3.org/Submission/spin-modeling/

20. Knublauch H., SPIN - SPARQL Syntax, W3C Member Submission, 22 Feb 2011.

http://www.w3.org/Submission/spin-sparql/

21. Lloyd J. W. Foundations of logic programming (2nd edition). Springer series in symbolic

computation. Springer, 1987.

22. Matheus C. J., Baclawski K., Kokar M. M., Letkowski J. Using SWRL and OWL to Capture

Domain Knowledge for a Situation Awareness Application Applied to a Supply Logistics

Scenario. RuleML 2005: 130-144

23. Motik B., Cuenca Grau B., Horrocks I., Wu Z., Fokoue A., Lutz C., OWL 2 Web Ontology

Language Profiles (2nd Edition), W3C Recommendation 11 Dec 2012.

https://www.w3.org/TR/owl2-profiles/

24. Motik B., Sattler U., Studer R. 2005. Query Answering for OWL-DL with Rules. J. of Web

Semantics. 3(1): 41–60.

25. Protégé ontology editor. http://protege.stanford.edu/.

26. RuleML, http://wiki.ruleml.org/index.php/RuleML_Home

27. Sirin E., Parsia B., Grau B. C., Kalyanpur A., Katz Y. 2007. Pellet: A Practical OWL-DL

Reasoner. Journal of Web Semantics, 5(2), 51-53.

28. Somodevilla M. J., Mena I., Pineda Torres I. H., de Célis Herrero C. P.: Deducting Lifestyle

Patterns by Ontologies' SWRL Rules. DEXA Workshops 2015: 9-13

29. SWRL Drools Tab, 2012. http://protege.cim3.net/cgi-bin/wiki.pl?SWRLDroolsTab.

30. ter Horst H. J. Completeness, decidability and complexity of entailment for RDF Schema

and a semantic extension involving the OWL vocabulary. J. of Web Semantics 3(2–3):79–

115, 2005

31. TopQuadrant, TopBraid Composer, https://www.topquadrant.com/tools/IDE-topbraid-

composer-maestro-edition/

32. Tsarkov D., Horrocks I. 2006. Fact++ description logic reasoner: System description. In

Proceedings of Automated Reasoning (pp. 292-297). Springer.

33. W3C (2013). The Semantic Web Activity. http://www.w3.org/2001/sw/.

34. Wielemaker J., Schrijvers T., Triska M., Lager T.: SWI-Prolog. TPLP 12(1-2): 67-96 (2012)

