
Efficient Duplicate Elimination in SPARQL to
SQL Translation

Dimitris Bilidas and Manolis Koubarakis

National and Kapodistrian University of Athens, Greece
{d.bilidas,koubarak}@di.uoa.gr

Abstract. Redundant data processing is a key problem in SPARQL
to SQL query translation in Ontology Based Data Access (OBDA) sys-
tems. Many optimizations that aim to minimize this problem have been
proposed and implemented. However, a large number of redundant du-
plicate answers are still generated in many practical settings, and this is
a factor that impacts query execution. In this work we identify specific
query traits that lead to duplicate introduction and we track down the
mappings that are responsible for this behavior. Through experimental
evaluation using the OBDA system Ontop, we exhibit the benefits of
early duplicate elimination and show how to incorporate this technique
into query optimization decisions.

1 Introduction

Ontology Based Data Access (OBDA) is an approach for data integration in
which an ontology is linked to underlying data sources through mappings. An
end user can pose queries over the ontology, which we assume to represent a fa-
miliar vocabulary and conceptualization of the user domain. The OBDA system
automatically translates the query and sends it for execution to the underlying
data sources, providing the end user with a convenient abstraction over possi-
bly complex schemas and details about the data storage and query processing.
The query translation involves query rewriting, where the initial query is trans-
formed in order to take into consideration the ontology axioms, and query un-
folding where the rewritten query is transformed into another query expressed in
the query language of the underlying data sources. In what follows we consider
an OBDA setting, where an OWL ontology is linked through mappings to data
stored in a relational database management system (RDBMS) providing the user
with access to a virtual RDF graph. The original query is expressed over this
virtual RDF graph in the SPARQL query language, and the result of rewriting
and unfolding is a SQL query. As an example consider the relational table from
Figure 1a and the mapping from Figure 1c. In this mapping hasDirector is a
property defined in the ontology, whereas f and g are functions responsible for
constructing an object that acts as an ontology instance out of values occurring
in the database. In our setting, they construct an RDF term represented by an
IRI.



If an RDF graph is lean (i.e., if it has no instance which is a proper subgraph
of itself), evaluation of a basic graph pattern on this graph can never result in
duplicate answers [7]. However, duplicates in SPARQL query evaluation can be
introduced from the operations of projection and union. Therefore, it is crucial
that SQL query fragments resulting from the translation of basic graph patterns
are also duplicate-free when evaluated in a source database. Note also that, as
there is no restriction regarding the multiplicity of the results of SQL queries
used in a mapping, duplicates may be introduced even during evaluation of a
single triple pattern.

In this setting, duplicates are redundant answers whose impact can be detri-
mental for query evaluation, as the size of intermediate results can increase expo-
nentially in the number of triple patterns, in a query that involves several joins.
Even if the final SQL query produced by an OBDA system dictates that the
result should be duplicate-free using the SQL DISTINCT or UNION keyword,
relational systems rarely consider early duplicate elimination (DE) in order to
limit the size of intermediate results, but only perform the task on the final
query result. This behavior is justified by the fact that DE is a costly blocking
operation [1] and also that the SQL queries are usually formulated by expert
users who take into consideration the integrity constraints of normalized rela-
tional schemas. Under these assumptions, considering early DE options during
optimization is not usually regarded worthy. Contrary to this situation for SQL
queries, it has been ascertained [4] that in real world OBDA settings, duplicate
answers frequently dominate query results and also that this appears as “noise”
to end users that might be using a visual query formulation tool. In what follows
we briefly identify reasons for this behavior.

In a normalized relational schema duplicates usually show up in SQL queries
due to projections. As long as an OBDA mapping that generates virtual triples
uses a column or combination of columns whose values are unique, e.g. a primary
key of a table as the subject or object of each triple, then all triples coming from
this mapping will be distinct. However, a denormalized schema or mappings that
do not use unique columns can lead to duplicate introduction even during evalu-
ation of a single triple pattern. One more case in which duplicates are introduced
has to do with the use of property rdf :type. Mappings defining rdf :type prop-
erty should also be duplicate-free, but as OBDA systems employ reasoning with
respect to domain and range of properties, part of the mapping that defines a
property could be used for evaluating a triple pattern with rdf :type. Then the
other part of the mapping is projected out, which can lead to a large number of
duplicates as illustrated in Example 1.

Example 1. Consider the mapping from Figure 1c and also that the ontology
defines the range of property hasDirector to be the class Director. Now consider
a triple pattern ?x rdf :type Director that asks for the entities that belong to the
class Director. One way to obtain such entities is to use the entities participating
as objects to the property hasDirector. As we are not interested in the subjects
of the generated triples, we are projecting out the title column, adding only a



title1 director1
title2 director1
title1 director2

(a) Table movies(title, director)

SELECT ’ IRI ’ | | d i r e c t o r
FROM movies
WHERE t i t l e IS NOT NULL

(b) SQL query

movies(t, d)→ hasDirector(f(t), g(d))

(c) Example Mapping

Fig. 1: Movies Database

condition that this column should not be null. The resulting SQL to be sent for
evaluation is shown in Figure 1b.

This can become a heavy burden for query evaluation, especially when the
query involves several joins, as all these duplicate values need to be joined with
other tables, that may as well contain redundant values, and as a result, the
overall cost can be increased by orders of magnitude, depending on the exact
number of duplicates. A second issue is that, as the final answers need to be
distinct, DE has to be performed on the final query result that consists of tuples
of RDF terms instead of database values, making the relational engine perform
this over (usually large) unindexed string values.

In this work we present efficient solutions to the described problems, consid-
ering ontologies belonging to the OWL 2 QL language, as the W3C recommen-
dation for query answering against datasets stored in relational back-ends. We
start by providing some preliminaries regarding ontologies, mappings and rela-
tional databases (Section 2) and then proceed to describe a process, that given an
initial mapping collection, identifies the (possibly modified) mapping assertions
which are responsible for introduction of duplicates (Section 3). Duplicate-free
results of these assertions can be materialized offline and replace the original
assertions during query execution. In case materialized views are not a viable
option, for example because of read-only access to data or for efficiency reasons,
we proceed to deal with the problem of duplicates during query execution.

In Section 4, we describe how a structural optimization of pushing DE before
IRI construction can be applied and obtain an equivalent query with the one
produced during unfolding. Then, in Section 5 we propose a heuristic that can
help an OBDA system acting outside the relational engine to take decisions
regarding the DE of intermediate results. Having implemented our optimizations
in the state of the art OBDA system Ontop [9], in Section 6 we present their
impact on NPD and LUBM benchmarks using four different relational back-ends.
Specifically we show that duplicates are present in many mappings from both
benchmarks and that specific queries are heavily impacted by this fact, leading
to evaluation times of more than 20 minutes, which in some cases can be reduced
to a few seconds. Excluding the queries that give a timeout in the unoptimized
setting, the overall improvement for the rest of the queries can be more than
60%. Finally, we evaluate our heuristic and show that its usage is justified and



that for query mixes from the two benchmarks, such that low selectivity queries
do not dominate execution time, it can lead to overall improvement of up to
25%.

2 Preliminaries

We consider the following pairwise disjoint alphabets: ΣO of ontology predicates,
ΣR of database relation predicates, Const of constants, V ar of variables and Λ
of function symbols where each function symbol has an associated arity. We
also consider that Const is partitioned into DBConst of database constants and
OConst of ontology constants. As in [8], we use functions with symbols from
Λ in order to solve the so called impedance mismatch problem of constructing
ontology objects from values occurring in the database.

Databases and Queries. We start by giving definitions for database instances
and queries over them, following the bag semantics from [2]. A bag B is a pair
(A,µ), where A is a set called the underlying set of B and µ is a function from
elements of A to the positive integers, which gives the multiplicities of elements
of A in B. The underlying set of a bag B will be denoted by USB . A relation
instance is a bag of tuples of fixed arity using constants from DBConst. A source
schema S is a set of relation names from ΣR. A database instance D for a source
schema S is a mapping from relation names in S to relation instances.

A SQL query over a relational schema S is an expression of form:Query(x)←
α, where α is a first order expression containing predicates from ΣR, which are
among the relations that belong to S, Query ∈ ΣR, Query 6∈ S and x is a
vector of constants from DBConst and variables from V ar that appear in α. A
conjunctive query CQ over a relational schema S is a SQL query, where α has
the form R1(x1) ∧ ... ∧ Rn(xn), where x1, ...,xn are vectors of constants from
DBConst and variables from V ar, and R1, ..., Rn ∈ S. Variables from x1, ...,xn

that do not appear in x are existentially quantified, but we omit the quantifiers
in order to simplify the reading. CQs roughly correspond to SQL Select-From-
Where queries. Let q be the SQL query Query(x)← α, we will denote by

∏
i(q)

the query resulting from the projection of the i-th answer term of q, that is the
query: Query(xi)← α. The duplicate-tuple ratio DTRR of a relation instance R

is equal to
∑

t∈USR
µ(t)

|USR| . A relation instance with DTR equal to 1, will be called

a duplicate-free relation instance.

Later on, in Section 3, when we will want to see if the result of a mapping
assertion is duplicate-free, we will use the following important proposition of [6]:

Proposition 1. Let Q be a conjunctive query over a source schema S. Then,
if for each Ri(ui) in the body of Q there is a key dependency X → Y in S
and for each element uij ∈ πX(R(ui)), either uij ∈ DBConst or uij appears in
Query(x), then the result of Query(x) is a duplicate-free relation instance on
any database instance for S.



Ontology and Mappings. A TBox is a finite set of ontology axioms. An ABox
is a finite set of membership assertions A(ρ) or role filling assertions P (ρ, ρ′),
where ρ, ρ′ ∈ OConst and A,P ∈ ΣO denote a concept name and role name
respectively. A DL ontology O is a pair 〈T ,A〉 where T is a TBox and A an
ABox.

A mapping assertion m from a source schema S to a TBox T has the form:
φ(x) → ψ, where φ(x) will be denoted by body(m) and it is a SQL query over
a database instance D, ψ has the form P (cc1(x1), cc2(x2)) or C(cc1(x1)) with
P ( respectively C) ∈ ΣO a property (respectively concept) name, and each
ccj ∈ Λ is a function with arity equal to the length of xj and range a subset of
OConst. All variables in ψ also appear in x. The right hand side will be denoted
by head(m). A mapping M is a finite set of such mapping assertions. Note that
according to this definition, in this paper we consider only global-as-view (GAV)
mappings. We will use the symbolMCQ to denote the assertions fromM whose
body is a CQ over the database schema.

In correspondence with CQs over a relational schema, we define a CQ over
an ontology O as an expression of the form: Query(x)← P1(x1) ∧ ... ∧ Pn(xn)
where x1, ...,xn are vectors of constants from OConst and variables from V ar,
x is a vector of constants from OConst and variables from V ar that appear in
x1, ...,xn, and P1, ..., Pn ∈ ΣO are ontology predicates that appear in O. A
union of conjunctive queries UCQ over an ontology O is an expression of the
form Query(x) ← CQ1(x) ∨ ... ∨ CQn(x), where each CQi for i = 1...n is an
expression of the form P i1(xi

1) ∧ ... ∧ P in(xi
n) as in the previous definition.

Query Rewriting and Unfolding As we mentioned in Section 1, query answering
in OBDA involves query rewriting and query unfolding. During query rewriting,
an initial CQ over an ontology is rewritten in order to take into consideration
the ontological axioms. The result of this process is a query, that when posed
over the ABox (that is by disregarding all the ontological axioms), will return
the same answers as the initial query posed over the ontology. This is done
using the notion of certain answers, that is answers present in every model of
the ontology [8]. We omit details, as in this work we mainly consider the result
query of this process. We just need to note that several methods exist for query
rewriting over OWL 2 QL ontologies. In this work we consider that the result of
this step is a UCQ over the ontology.

Regarding query unfolding with respect to a mappingM, a method based on
partial Datalog evaluation with functional terms is presented in [8]. As before,
we omit a detailed description and note that the result of this process is a query
over the relational schema that has the form

Query(x)← Q1(x) ∨ ... ∨Qn(x) (1)

where each Qi for i = 1...n is an expression of the form Qi(fi(xi))← Aux1(xi
1)∧

... ∧Auxl(xi
l)

where each f ji ∈ fi is a function whose function name belongs in Λ and whose
variable arguments are among the variables of xi

1, ...,x
i
l and each Auxj for j =

1...l corresponds to body(m) for some m ∈M.



3 Offline DE With Materialized Views

One solution to the problem of duplicates, is to track down the mapping as-
sertions which are responsible for duplicates, create materialized views with the
distinct results, possibly with indexes, and then use these views instead of the
original assertions during query unfolding. It is reasonable to expect that this
solution will give the best performance during query execution, but on the other
hand this incurs expensive preprocessing and also, using materialized views in
the database increases the database maintenance load, especially for frequently
updated tables, as well as the database size. Also, this solution will not take into
consideration duplicates due to projections in the SPARQL query and finally, it
is not in line with the overall approach of providing the end user with access to
several underlying data sources, without the need to modify data, and on a prac-
tical level, such access may not be even possible. Nevertheless, even in the case
where one chooses to use materialized views, it is not straightforward exactly
which of the mapping assertions should be chosen. In the rest of this section we
describe a process to find the exact assertions for this setting, whereas in the
following sections we consider the case where no materialization happens and all
processing needs to be done during query execution.

Given a mappingM and a database instance D over a schema S, a straight-
forward solution is to materialize all m ∈ M such that DTRhead(m)(D) > 1,
but as the query produced after rewriting takes into consideration the ontology
axioms, implied assertions may be used, such that a specific variable has been
projected out from the outputs of the body of an existing assertion due to reason-
ing for class instances with respect to domain or range of a property. Situations
like this can be identified offline, by analyzing the ontology and the original
mapping. The first step is to find the ontology axioms of the form ∃P.> v C
and ∃P−.> v C (or equivalently > v ∀P.C) that define the domain and range
of some property P to be a class C in our ontology. Then we identify the map-
ping assertion in M that generates RDF triples which have as predicate the
property P and we modify the target SQL query of the mapping, by projecting
out the columns used for the subject or object respectively. At this point, we
can skip certain mappings that are covered by the corresponding rdf :type map-
ping for a given class, as OBDA systems eliminate the usage of the property
triple pattern for these cases based on foreign key relationships [9]. Consider
again the case of Example 1: if we had one more database table director info
which has a primary key id and we also know that director in movies is a
foreign key that references this primary key, then if we also had the mapping
director info(id, ...) → Director(f(id)) the previously obtained mapping can
be skipped as it is redundant and will not be used by the OBDA system.

The method is described in Algorithm 1. ComputeDTR is a function that
returns the DTR for the query passed as argument. If DTR = 1 according
to proposition 1, then access to data in order to collect statistical information
is avoided altogether, otherwise the actual DTR is computed by sending two
count queries: with and without the distinct modifier. Later, when the DTR
needs to be determined during query optimization, an estimation based on data



Algorithm 1: Track down SQL queries that contain duplicates
1 GetDuplicates (mappingM, ontology O, database schema S, database instance D);

Output: Mapping assertions possibly annotated with a projected column
2 result := ∅;
3 for m ∈ M do
4 if head(m) is Class assertion then
5 if ComputeDTR(body(m), S,D) > 1 then add m to result;
6 else

/* head(m) is Property assertion with predicate P */
7 if O contains ∃P.> v C and ComputeDTR(

∏
1(body(m)), S,D) > 1 and not

(∃m2 ∈ M s.t. predicate of head(m2) is C and
ExistsFK(S,

∏
1(body(m)), body(m2)) then add m to result for projection of

1st column;

8 if O contains ∃P−.> v C and ComputeDTR(
∏

2(body(m)), S,D) > 1 and not
(∃m2 ∈ M s.t. predicate of head(m2) is C and
ExistsFK(S,

∏
2(body(m)), body(m2)) then add m to result for projection of

2nd column;

9 end

10 end
11 return result;

summarization is used instead (Section 5). Function ExistsFK returns true if
a foreign key exists between the output column of the query passed as second
argument and the output column of the query passed as third argument. The
result of this algorithm is a set of mapping assertions, possibly annotated with
information about the projection of a column. Modification of the produced SQL
query in order to take into consideration the views created for these mappings,
instead of the original body of the mapping, can simply be performed in the final
step of the query unfolding, where each Auxj is replaced by the corresponding
SQL, and as a result it is independent of the query rewriting method.

4 Pushing DE Before IRI Construction

In SPARQL to SQL approaches, pushing joins inside unions is a well known
structural optimization, so that joins over IRIs are avoided and relational columns,
whose values are possibly indexed, are used instead. Methods for unfolding based
in partial datalog evaluation (see Section 2) produce such queries, where addi-
tionally, union subqueries that contain joins between incompatible IRIs, that
when evaluated will produce an empty result, are completely discarded. In a
similar manner, it can be very useful to perform DE before IRI construction. In
this section we discuss the process of transforming the unfolded query that has
the form shown in formula (1) at page 5, into an equivalent one, such that DE
is performed on database values. To do so, we must group together union sub-
queries that have the same select clause up to variable (column name) renaming.
Starting from a query as in formula (1), we obtain a query that has the form

Query(x)← UCQ1(x) ∨ ... ∨ UCQl(x) (2)

where each UCQi for i = 1...l is an expression of the form

UCQi(fi(vi))← Q1
i (vi) ∨ ... ∨Qli(vi) (3)

where vi is a vector of variables not occurring in (1) and Q1
i (vi) ∨ ... ∨ Qli(vi)

result from exactly those conjuncts of (1) that have fi in the left hand side,



by replacing each variable in xi with the variable in the same position in vi

and adding a conjunction of variable equalities EQ between variables of vi that
correspond to positions of xi where the same variable occurred. That is, each
Qji for j = 1...k has the form

Qji (vi)← Aux1(v1
i ) ∧ ... ∧Auxn(vk

i ) ∧ EQ. (4)

In the corresponding SQL query, disjunctions in (2) can be translated to UNION
ALL and only disjunctions in (3) need to be translated to UNION (or add DIS-
TINCT if there is only one disjunct) avoiding DE over IRIs. Also, EQ can be
replaced by choosing one variable for each equality and replacing all occurrences
with the specific variable, and then add a renaming operator on the Select clause
corresponding to Qji (vi). Note that UNION ALL operator is simply concatenat-
ing the results. When the UNION ALL is the outer operator of a query, it is
reasonable for the RDBMS to start sending the results in a pipelining fashion,
as they are produced from each subquery without saving or waiting for all the
results to be produced. In this sense, it can be considered a “cheap” operator
in contrast to UNION. Also, the DISTINCT keyword can be entirely avoided in
some cases where Proposition 1 is applicable. Even if this is not the case, the
resulted query has several advantages over the initial. First, the DE process has
been separated over multiple result subsets and also each tuple is smaller in size.
This gives to the RDBMS the opportunity to better utilize available memory,
as it now has smaller datasets to perform DE, or even parallelize the process.
Available indexes on the columns can be used. Also, as discussed, when there is
no blocking outer operator, results are produced in a pipelined fashion with first
results obtained very quickly and, as IRI construction is an expensive operation,
the difference can be impressive when we have large results and the processing
for each subquery is relatively cheap.

5 Incorporating Decisions for DE in Query Execution

In this section we consider a query that has the form shown in formula (2)
and describe a process that decides about early DE. We start by considering
separately each union subquery that has the form shown in formula (4). If we
consider Aux1, ..., Auxn to be relation names belonging to the database schema,
this is a CQ, but in practice Aux1(vi

1), ..., Auxn(v1
k) are arbitrary SQL queries.

Our method relies on an estimation about the final result size of each union
subquery. To obtain this estimation, DTR for every mapping assertion inM is no
longer enough, as it was the case when creating materialized views, but we should
gather some statistics from the database in the form of data summarization for
all the columns that can be possibly referenced from a query, that is all the
columns in the SQL query of some mapping assertion. As making an estimation
for an arbitrary SQL query is an involved process, we make a distinction between
assertions inMCQ and assertions inM\MCQ. We consider that the latter are
primitive tables as if they were virtual views, and we collect statistics only for
the output columns, whereas the former are parsed and we collect statistics for
all the referenced columns. Adopting the commonly used value independence



assumption between the result attributes and the uniformity of values in an
attribute [11], we estimate the distinct tuples of the relation to be the product
of the distinct values of its attributes. In case this value is larger than the number
of tuples in the relation, we estimate that all tuples are distinct.

As a result, we can consider that each union subquery has the form

Q(x)← Aux1(x1) ∧ ... ∧Auxn(xn) ∧R1(xn+1) ∧ ... ∧Rm(xn+m) (5)

where each Aux1, ..., Auxn corresponds to body(m) for some mapping assertion
m ∈ M \MCQ and R1, ..., Rm are relation names from the database schema.
We will refer to each conjunct in the right hand side of (5) as an input table of
query Q(x). Let q be a query as in (5) and Ii(xi) be an input table of q. The
query ans(xci) ← Ii(xi), where xci contains exactly the variables of xi that
appear more than once in q, will be called the projection query of input table
Ii(xi) from q.

Let us suppose for now that we have a single SQL subquery coming from
the translation of a SPARQL query and we have to take the decision regarding
a single input table (either “real” primitive table or virtual view) used in this
subquery. In this case, it may be beneficial to dictate the RDBMS to perform
the DE on projection query of the specific input table at the beginning of query
execution, store the duplicate-free intermediate result in a temporary table and
use it for the specific query. This can be done in several ways depending on the
exact SQL dialect and capabilities of the underlying system. For example one
can use (non-recursive) common table expressions or temporary table definitions.
Of course the exact decisions as to when this should happen depend on several
factors, including the exact query, the DTR of the projection query of the input
table, the number of uses of the specific input table in the query, the choice to
save the temporary table on disk or keep it in memory and several other factors
that depend on the database physical design, database tuning parameters, the
exact query execution plan and the evaluation methods chosen by the optimizer
of the RDBMS. Uncertainty about query execution costs is an inherent problem
in data integration and as the OBDA system operates outside the database
engine, knowing all these factors is difficult or even impossible. In what follows,
we propose to take this decision according to a heuristic that depends only on
the size of the data and the DTR of the input table, whose estimation can be
obtained using data summarization.

The main assumption that we make and will help us take decisions regarding
DE states that the impact of an input table with DTR equal to a constant
number n in the number of tuples of the final query result is proportional to
n. As a result of this assumption, the selectivity of the query plays the most
important role regarding the DE decisions. Intuitively, a query whose result size
is much larger than the size of the intermediate result for which we examine the
DE option, it is expected to be faster if we first perform the elimination, as each
tuple of the intermediate result has as impact the creation of a large number of
tuples in the final result. On the other hand, when we have very selective queries
with few results, whereas the size of the intermediate result under consideration
is much larger, one would expect that each tuple of the intermediate result does



not add that much to the total cost of the query in order to counterbalance
the cost of a DE, especially when expecting the optimizer to limit the sizes of
intermediate query results as soon as possible.

A Heuristic Regarding DE. Given a database instance D, a query q that has
the form (5) and whose result over D is the relation instance Q and an input
table Ii(xi) of q, then perform DE on input table Ii(xi) prior to execution of q
if

SizeQ −
SizeQ
DTRAns

>
SizeAns
DTRAns

where relation instance Ans is the result of the projection query of Ii(xi) from
q on D and SizeQ and SizeAns are the estimated sizes of relation instances Q
and Ans respectively. That is, DE should be performed if it is expected that
the reduction on the size of the final result will be bigger than the size of the
intermediate result with DE.

When more than one input tables with DTR > 1 exist for a query a greedy
approach is used, choosing at first the one that gives the biggest gain according
to the heuristic (considering the heuristic as a fraction instead of an inequality).
Then the chosen input table is excluded and a new estimation for the final result
is made, considering that DE is performed on the chosen input table and this
step is repeated until none of the rest input tables gives gain according to the
heuristic. Also, when dealing with multiple subqueries of a UNION query the
heuristic must be modified such that the left hand side is replaced by a sum over
all subqueries. Details can be found in a technical report available online1.

6 Implementation and Experimental Evaluation

We have implemented all the described optimizations in an prototype extension
of Ontop version 1.18.0. Our extension is available in github2, as a fork of the
official Ontop repository. All experiments were carried out on a machine with
an Intel Core i7-3770K processor with 8 cores and 16 GB of RAM running
UBUNTU 16.04. As our intention was to examine how our optimizations perform
in different underlying systems, we used four different back-ends: PostgreSQL
(version 9.3), MySQL (version 5.7) and two of the most widely used proprietary
RDBM systems, which due to their license we will call System I and System
X. We have performed an experimental evaluation of our techniques using the
LUBM [3] and NPD [5] benchmarks. For LUBM benchmark in total 84 mapping
assertions were produced as T -Mappings from Ontop. Out of these, we only
needed to make DTR estimations using statistics for 15, as we found all the
others to have DTR=1 according to Proposition 1. Offline gathering and building
of statistics for the columns referenced in the candidate mapping assertions took
28 sec. Making DTR estimations for the result of the 15 mappings took less
that 0.5 seconds. For NPD, out of 1091 produced assertions in T -Mappings

1 https://github.com/dbilid/ontop/tree/version3/results/de-tech.pdf
2 https://github.com/dbilid/ontop



112 where found to have DTR > 1. Building statistics took 45 sec. and making
DTR estimations about 2 sec.

Effects of Early DE. We examined the effect of early DE on several queries
from these two benchmarks such that our optimization is applicable. In order to
isolate the impact of early DE, we executed the queries with the optimization
for pushing IRI construction before DE disabled. Results for all systems are pre-
sented in Table 1, where SI-D stands for System-I with only early DE enabled
and SI for the execution without any optimization in System I. Same holds for
System X (SX), PostgreSQL (PG) and MySQL (MS). For all systems, queries
for both settings produced identical results. All produced queries are available in
github. From the results we can see that the impact of early DE varies depending
on each query and each system. For example, in query USER19 (from [10] com-
ing from user requirements), the decision leads to a slight increase in execution
time for both systems I and X, but it is very beneficial for PostgreSQL. On a
closer inspection, we saw that both these systems do take advantage of early DE
opportunities in some cases, such as when distinct rows can be obtained without
extra effort using an index of a base table for all projected columns. Learning ex-
actly when these system consider early DE can lead to even larger improvement,
if it is taken into consideration from our method as system-specific optimization.
In any case, from our experiments it seems that even these systems miss many
opportunities for early DE that lead to better plans and certainly do not consider
using the same duplicate elimination result for different union subqueries. As a
result, even with the system-agnostic version, our method effectively eliminates
most timeouts. Even in System X, where no timeout occurs in the unoptimized
setting, early DE alone leads to a decrease of 38% in total execution time.

Query SI-D SI SX-D SX PG-D PG MS-D MS
NPD24 7 8.3 7.99 8.09 5.35 5.71 10.8 11.1
NPD31 49.2 T/O 158 174 72.8 T/O T/O T/O
NPD32 4.31 8.18 1.46 5.16 0.72 191 8.31 T/O
NPD33 116 170 177 295 108 T/O T/O T/O
NPD34 11.2 11.4 7.44 6.92 4.23 9.78 6.23 7.66
USER13 147 157 113 315 T/O T/O T/O T/O
USER19 2.85 2.16 1.88 1.44 3.16 32.3 10.9 144
LUBM2 14.1 12.4 15.4 14.3 4.27 T/O 8.28 488
LUBM9 214 280 65.3 69.6 78.6 153 352 T/O
Total 566 >649 547 890 >277 >392 >397 >651

Table 1: Effect of Early Duplicate Elimination (Times in sec.)

We have also evaluated our DE heuristic by applying extra filters in several
query fragments upon which DE is applicable, in order to test our heuristic with
different selectivities. We have executed these queries following three different
strategies regarding DE: always-perform, never-perform and perform according
to heuristic. The never-perform has the worst performance overall due to low
selectivity queries dominating the execution times, but it is often better than
never-perform for highly selective queries. Our heuristic is always better from the
other two strategies on average for all tested queries, leading to an improvement
of up to 25% for query mixes where low selectivity queries do not dominate
execution time.



References

1. Dina Bitton and David J DeWitt. Duplicate record elimination in large data files.
ACM Transactions on database systems (TODS), 8(2), 1983.

2. Surajit Chaudhuri and Moshe Y Vardi. Optimization of real conjunctive queries.
In Proceedings of the twelfth ACM SIGACT-SIGMOD-SIGART. ACM, 1993.

3. Yuanbo Guo, Zhengxiang Pan, and Jeff Heflin. Lubm: A benchmark for owl knowl-
edge base systems. Web Semantics: Science, Services and Agents on the World
Wide Web, 3(2), 2005.

4. Evgeny Kharlamov, Dag Hovland, Ernesto Jiménez-Ruiz, Davide Lanti, Hallstein
Lie, Christoph Pinkel, Martin Rezk, Martin G Skjæveland, Evgenij Thorstensen,
Guohui Xiao, Dmitriy Zheleznyakov, and Ian Horrocks. Ontology based access to
exploration data at Statoil. In International Semantic Web Conference. Springer,
2015.

5. Davide Lanti, Martin Rezk, Guohui Xiao, and Diego Calvanese. The NPD bench-
mark: Reality check for OBDA systems. In Proc. of the 18th Int. Conf. on Extend-
ing Database Technology (EDBT), 2015.

6. Glenn N Paulley and Per-Åke Larson. Exploiting uniqueness in query optimiza-
tion. In Proceedings of the 1993 conference of the Centre for Advanced Studies on
Collaborative research: distributed computing-Volume 2. IBM Press, 1993.

7. Jorge Pérez, Marcelo Arenas, and Claudio Gutierrez. Semantics and complexity
of SPARQL. ACM Transactions on Database Systems (TODS), 34(3), 2009.

8. Antonella Poggi, Domenico Lembo, Diego Calvanese, Giuseppe De Giacomo, Mau-
rizio Lenzerini, and Riccardo Rosati. Linking data to ontologies. In Journal on
data semantics. Springer, 2008.

9. Mariano Rodriguez-Muro, Roman Kontchakov, and Michael Zakharyaschev.
Ontology-based data access: Ontop of databases. In International Semantic Web
Conference. Springer, 2013.

10. Martin G Skjæveland, Espen H Lian, and Ian Horrocks. Publishing the norwegian
petroleum directorates factpages as semantic web data. In International Semantic
Web Conference. Springer, 2013.

11. Arun Swami and K Bernhard Schiefer. On the estimation of join result sizes. In
International Conference on Extending Database Technology. Springer, 1994.


