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Abstract

Word clusters have been empirically shown
to offer important performance improve-
ments on various Natural Language Process-
ing (NLP) tasks. Despite their importance,
their incorporation in the standard pipeline of
feature engineering relies more on a trial-and-
error procedure where one evaluates several
hyper-parameters, like the number of clus-
ters to be used. In order to better understand
the role of such features in NLP tasks we
perform a systematic empirical evaluation on
three tasks, that of named entity recognition,
fine grained sentiment classification and fine
grained sentiment quantification.

1 Introduction

Many research attempts have proposed novel features
that improve the performance of learning algorithms
in particular tasks. Such features are often motivated
by domain knowledge or manual labor. Although
useful and often state-of-the-art, adapting such solu-
tions on NLP systems across tasks can be tricky and
time-consuming (Dey et al., 2016). Therefore, sim-
ple yet general and powerful methods that perform
well across several datasets are valuable (Turian et al.,
2010).

An approach that has become extremely popular
lately in NLP tasks, is to train word embeddings in
an unsupervised way. These embeddings are dense
vectors that project words or short text spans like
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phrases in a vector space where dimensions are sup-
posed to capture text properties. Such embeddings
can then be used either as features with off-the-shelf
algorithms like Support Vector Machines, or to ini-
tialize deep learning systems (Goldberg, 2015). How-
ever, as shown in (Wang and Manning, 2013) linear
architectures perform better in high-dimensional dis-
crete spaces compared to continuous ones. The latter
is probably the main reason of the high performance
of the vector space model (Salton et al., 1975) in tasks
like text classification with linear models like SVMs.
Using linear algorithms, while taking advantage of the
expressiveness of text embeddings is the focus of this
work.

In this paper, we explore a hybrid approach, that
uses text embeddings as a proxy to create features.
Motivated by the argument that text embeddings man-
age to encode the semantics of text, we explore how
clustering text embeddings can impact the perfor-
mance of different NLP tasks. Although such an ap-
proach has been used in different studies during fea-
ture engineering, the selection of word vectors and the
number of clusters remain a trial-end-error procedure.
In this work we present an empirical evaluation across
diverse tasks to verify whether and when such features
are useful.

Word clusters have been used as features in various
tasks like Part-of-Speech tagging and NER. Owoputi
et al. (2013) use Brown clusters (Brown et al., 1992)
in a POS tagger showing that this type of features
carry rich lexical knowledge as they can substitute
lexical resources like gazetteers. Kiritchenko et al.
(2014) discusses their use on sentiment classification
while Hee et al. (2016) incorporate them in the task
of irony detection in Twitter. Ritter et al. (2011) in-
ject also word clusters in a NER tagger. While these
works show that word clusters are beneficial no clear
guidelines can be concluded of how and when to use
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them.
In this work, we empirically demonstrate that using

different types of embeddings on three NLP tasks with
twitter data we manage to achieve better or near to the
state-of-the art performance on three NLP tasks: (i)
Named Entity Recognition (NER) segmentation, (ii)
NER classification, (iii) fine-grained sentiment analy-
sis and (iv) fine-grained sentiment quantification. For
each of the three tasks, we achieve higher perfor-
mance than without using features which indicates the
effectiveness of the cluster membership features. Im-
portantly, our evaluation compared to previous work
(Guo et al., 2014) who focus on old and well stud-
ied datasets uses recent and challenging datasets com-
posed by tweets. The obtained results across all the
tasks permits us to reveal important aspects of the use
of word clusters and therefore provide guidelines. Al-
though our obtained scores are state-of-the-art, our
analysis reveals that the performance in such tasks is
far from perfect and, hence, identifies that there is still
much space for improvement and future work.

2 Word Clusters

Word embeddings associate words with dense, low-
dimensional vectors. Recently, several models have
been proposed in order to obtain these embeddings.
Among others, the skipgram (skipgram) model
with negative sampling (Mikolov et al., 2013), the
continuous bag-of-words (cbow) model (Mikolov
et al., 2013) and Glove (glove) (Pennington et al.,
2014) have been shown to be effective. Training those
models requires no annotated data and can be done
using big amounts of text. Such a model can be
seen as a function f that projects a word w in a D-
dimensional space: f(w) ∈ RD, where D is prede-
fined. Here, we focus on applications using data from
Twitter, which pose several difficulties due to being
particularly short, using creative vocabulary, abbrevi-
ations and slang.

For all the tasks in our experimental study, we use
36 millions English tweets collected between August
and September 2017. A pre-processing step has been
applied to replace URLs with a placeholder and to pad
punctuation. The final vocabulary size was around 1.6
millions words.1 Additionally to the in-domain cor-

1We trained the word embeddings using the implementations
released from the authors of the papers. Unless differently stated
we used the default parameters.

pus we collected, we use GloVe vectors trained on
Wikipedia articles in order to investigate the impact
of out-of-domain word-vectors.2

We cluster the embeddings with k-Means. The k-
means clusters are initialized using “k-means++” as
proposed in (Arthur and Vassilvitskii, 2007), while the
algorithm is run for 300 iterations. We try different
values for k ∈ {100, 250, 500, 1000, 2000}. For each
k, we repeat the clustering experiment with different
seed initialization for 10 times and we select the clus-
tering result that minimizes the cluster inertia.

3 Experimental Evaluation

We evaluate the proposed approach for augmenting
the feature space in four tasks: (i) NER segmenta-
tion, (ii) NER classification, (iii) fine-grained sen-
timent classification and (iv) fine-grained sentiment
quantification. The next sections present the evalua-
tion settings we used. For each of the tasks, we use
the designated training sets to train the learning al-
gorithms, and we report the scores of the evaluation
measures used in the respective test parts.

3.1 Named-Entity Recognition in Twitter

NER concerns the classification of textual segments
in a predefined set of categories, like persons, organi-
zation and locations. We use the data of the last com-
petition in NER for Twitter which released as a part
of the 2nd Workshop on Noisy User-generated Text
(Strauss et al., 2016). More specifically, the organiz-
ers provided annotated tweets with 10 named-entity
types (person, movie, sportsteam, product etc.) and
the task comprised two sub-tasks: 1) the detection of
entity bounds and 2) the classification of an entity into
one of the 10 types. The evaluation measure for both
sub-tasks is the F1 measure.

The following is an example of a tweet which con-
tains two named entities. Note that named entities
may span several words in the text:

Facility︷ ︸︸ ︷
CLUB BLU tonite ... 90 ’s music .. oldskool
night wiith dj finese︸ ︷︷ ︸

Musicartist

2The pre-trained vectors are obtained from http://nlp.
stanford.edu/projects/glove/
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Learning algorithm

Our model for solving the task is a learning to search
approach. More specifically we follow (Partalas et al.,
2016) which has been ranked 2nd among 10 par-
ticipants in the aforementioned competition (Strauss
et al., 2016). The model uses handcrafted features like
n-grams, part-of-speech tags, capitalization and mem-
bership in gazetteers. The algorithm used belongs to
the family of learning to search for structured predic-
tion tasks (Daumé III et al., 2014). These methods
decompose the problem in a search space with states,
actions and policies and then learn a hypothesis con-
trolling a policy over the state-action space. The BIO
encoding is used for attributing the corresponding la-
bels to the tokens where B-type is used for the first
token of the entity, I-type for inside tokens in case
of multi-term entities and O for non entity tokens.

Results

Tables 1 and 2 present the results for the different
number of clusters across the three vector models used
to induce the clusters. For all the experiments we keep
the same parametrization for the learning algorithm
and we present the performance of each run on the
official test set.

Regarding the segmentation task we notice that
adding word clusters as features improve the perfor-
mance of the best model up to 1.1 F-score points while
it boosts performance in the majority of cases. In only
one case, for glove40 vectors, there is a drop across
all number of clusters used.

As for the number of clusters, the best results are
generally obtained between 250 and 1000 classes for
all word vector models. These dimensions seem to
be sufficient for the three-class sub-task that we deal
with. The different models of word vectors perform
similarly and thus one cannot privilege a certain type
of word vectors. Interestingly, the clusters learned on
the Wikipedia GloVe vectors offer competitive per-
formance with respect to the in-domain word vectors
used for the other cases showing that one can rely to
out-of-domain data for constructing such representa-
tions.

Concerning the classification task (Table 2) we
generally observe a drop in the performance of the
tagger as we deal with 10 classes. This essentially
corresponds to a multi-class problem with 21 classes:
one for the non-entity type and two classes for each

100 250 500 1000 2000

No clusters 55.29
skipgram40,w5 55.21 54.42 55.4 55.78 55.40
skipgram100,w5 54.94 55.32 54.02 54.51 53.79
skipgram100,w10 55.04 55.37 55.93 55.00 54.77
cbow40,w5 55.97 55.22 55.89 55.61 54.64
cbow100,w5 55.76 56.36 55.03 55.00 55.60
cbow100,w10 55.72 55.55 56.08 56.19 55.46
glove40,w5 53.73 53.93 53.96 54.58 55.07
glove100,w5 53.91 55.09 53.11 54.69 55.81
glove100,w10 55.50 55.84 55.33 53.73 55.15

glove50,wiki 55.56 55.50 55.92 55.87 53.96
glove100,wiki 55.54 56.38 55.68 54.74 54.91

Table 1: Scores on F1-measure for named entities seg-
mentation for the different word embeddings across
different number of clusters. For each embedding
type, we show its dimension and window size. For
instance, glove40,w5 is 40-dimensional glove embed-
dings with window size 5.

100 250 500 1000 2000

No clusters 40.10
skipgram40,w5 40.07 39.29 39.98 40.15 40.70
skipgram100,w5 40.03 39.63 39.42 40.25 40.06
skipgram100,w10 41.19 39.92 40.04 40.29 38.54
cbow40,w5 40.20 40.63 39.71 40.00 39.32
cbow100,w5 40.53 40.21 39.22 40.61 40.15
cbow100,w10 40.02 40.80 39.55 40.40 39.71
glove40,w5 39.09 40.06 38.73 39.35 38.23
glove100,w5 39.63 39.40 39.23 39.20 41.42
glove100,w10 39.55 39.98 39.99 39.53 40.67

glove50,wiki 40.40 41.09 40.82 40.84 41.24
glove100,wiki 39.52 39.78 41.04 41.73 40.39

Table 2: Results in terms of F1-score for named enti-
ties classification for the different word clusters across
different number of clusters.

entity type. In this setting we notice that the best re-
sults are obtained in most cases for higher number of
classes (1000 or 2000) possibly due to a better dis-
criminatory power in higher dimensions. Note also,
that in some cases the addition of word cluster fea-
tures does not necessarily improve the performance.
Contrary, it may degrade it as it is evident in the case
of glove40,w5 word clusters. Like in the case of seg-
mentation we do not observe a word vector model that
clearly outperforms the rest. Finally, we note the same
competitive performance of the Wikipedia word clus-
ters and notably for the glove100,wiki clusters which
obtain the best F1-score.

3.2 Fine-grained Sentiment Analysis

The task of fine grained sentiment classification
consists in predicting the sentiment of an input
text according to a five point scale (sentiment ∈
{VeryNegative, Negative, Neutral,
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Positive, VeryPositive}). We use the set-
ting of task 4 of SemEval2016 “Sentiment Analysis
in Twitter” and the dataset released by the organizers
for subtask 4 (Nakov et al., 2016).

In total, the training (resp. test) data consist of
9,070 (resp. 20,632) tweets.

The evaluation measure selected in (Nakov et al.,
2016) for the task in the macro-averaged Mean Abso-
lute Error (MAEM ). It is a measure of error, hence
lower values are better. The measure’s goal is to take
into account the order of the classes when penalizing
the decision of a classifier. For instance, misclassify-
ing a very negative example as very positive is a big-
ger mistake than classifying it as negative or neutral.
Penalizing a classifier according to how far the pre-
dictions are from the true class is captured by MAEM

(Baccianella et al., 2009). Also, the advantage of us-
ing the macro- version instead of the standard version
of the measure is the robustness against the class im-
balance in the data.

Learning algorithm To demonstrate the efficiency
of cluster membership features we rely on the system
of (Balikas and Amini, 2016) which was ranked 1st

among 11 participants and uses a Logistic Regression
as a learning algorithm. We follow the same feature
extraction steps which consist of extracting n-gram
and character n-gram features, part-of-speech counts
as well as sentiment scores using standard sentiment
lexicons such as the Bing Liu’s (Hu and Liu, 2004)
and the MPQA lexicons (Wilson et al., 2005). For the
full description, we refer the interested reader to (Ba-
likas and Amini, 2016).

Results

To evaluate the performance of the proposed feature
augmentation technique, we present in Table 3 the
macro-averaged Mean Absolute Error scores for dif-
ferent settings on the official test set of (Nakov et al.,
2016). First, notice that the best score in the test data
is achieved using cluster membership features, where
the word embeddings are trained using the skipgram
model. The achieved score improves the state-of-the
art on the dataset, which to the best of our knowledge
was by (Balikas and Amini, 2016). Also, note that
the score on the test data improves for each type of
embeddings used, which means that augmenting the
feature space using cluster membership features helps
the sentiment classification task.

clusters 100 250 500 1000 2000

no clusters 0.721
skipgram40,w5 0.712 0.691 0.699 0.665 0.720
skipgram100,w5 0.69 0.701 0.684 0.706 0.689
skipgram100,w10 0.715 0.722 0.700 0.711 0.681
cbow40,w5 0.705 0.707 0.690 0.700 0.675
cbow100,w5 0.686 0.699 0.713 0.683 0.697
cbow100,w10 0.712 0.690 0.707 0.676 0.703
glove40,w5 0.680 0.689 0.679 0.702 0.706
glove100,w5 0.687 0.670 0.668 0.678 0.693
glove100,w10 0.696 0.689 0.693 0.687 0.703

glove50,wiki 0.712 0.678 0.710 0.711 0.694
glove100,wiki 0.699 0.701 0.699 0.689 0.714

Table 3: MAEM scores (lower is better) for sentiment
classification across different types of word embed-
dings and number of clusters.

Note, also, that using the clusters produced by the
out-of-domain embeddings trained on wikipedia that
were released as part of (Pennington et al., 2014) per-
forms surprisingly well. One might have expected
their addition to hurt the performance. However, their
value probably stems from the sheer amount of data
used for their training as well as the relatively sim-
ple type of words (like awesome, terrible) which are
discriminative for this task. Lastly, note that in each
of the settings, the best results are achieved when the
number of clusters is within {500, 1000, 2000} as in
the NER tasks. Comparing the performance across the
different embeddings, one cannot claim that a particu-
lar embedding performs better. It is evident though
that augmenting the feature space with feature de-
rived using the proposed method, preferably with in-
domain data, helps the classification performance and
reduces MAEM .

From the results of Table 3 it is clear that the addi-
tion of the cluster membership features improves the
sentiment classification performance. To better un-
derstand though why these clusters help, we manu-
ally examined a sample of the words associated with
the clusters. To improve the eligibility of those re-
sults we first removed the hashtags and we filter the
results using an English vocabulary. In Table 4 we
present sample words from two of the most charac-
teristic clusters with respect to the task of sentiment
classification. Notice how words with positive and
negative meanings are put in the respective clusters.

3.3 Fine-Grained Sentiment Quantification

Quantification is the problem of estimating the preva-
lence of a class in a dataset. While classification con-
cerns assigning a category to a single instance, like la-
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Positive

hotness, melodious, congratulation, wishers,
appreciable, festivity, superb, amazing, awesomeness,
awaited, wishes, joyous, phenomenal, anniversaries,
memorable, heartiest, excitement, birthdays,
unforgettable, gorgeousness,

Negative

jerk, damnit, carelessly, exaggerates, egoistic,
panicking, fault, problematic, harasses, insufferable,
terrible, bad, psycho, stupidest, screwed, regret,
messed, messes, rest, pisses, pissed, saddest,
intimidating, unpleasant, ditched, negative

Table 4: Sample from two clusters that were found
useful for the sentiment classification. Words with
positive or negative meaning are grouped together.

beling a tweet with the sentiment it conveys, the goal
of quantification is, given a set of instances, to esti-
mate the relative frequency of single class. Therefore,
sentiment quantification tries to answer questions like
“Given a set of tweets about the new iPhone, what is
the fraction of VeryPositive ones?”. In the rest, we
show the effect of the features derived from the word
embeddings clusters in the fine-grained classification
problem, which was also part of the SemEval-2016
“Sentiment Analysis in Twitter” task (Nakov et al.,
2016).
Learning Algorithm To perform the quantification
task, we rely on a classify and count approach, which
was shown effective in a related binary quantification
problem (Balikas and Amini, 2016). The idea is that
given a set of instances on a particular subject, one
first classifies the instances and then aggregates the
counts. To this end, we use the same feature repre-
sentation steps and data with the ones used for fine
grained classification (Section 3.2). Note that the data
of the task are associated with subjects (described in
full detail at (Nakov et al., 2016)), and, hence, quan-
tification is performed for the tweets of a subject. For
each of the five categories, the output of the approach
is a 5-dimensional vector with the estimated preva-
lence of the categories.

The evaluation measure for the problem is the Earth
Movers Distance (EMD) (Rubner et al., 2000). EMD
is a measure of error, hence lower values are better. It
assumes ordered categories, which in our problem is
naturally defined. Further assuming that the distance
of consecutive categories (e.g., Positive and VeryPos-
itive) is 1, the measure is calculated by:

EMD(p, p̂) =

|C|−1∑

j=1

|
j∑

i=1

p̂(ci)−
j∑

i=1

p(ci)|

where |C| is number of categories (five in our case)
and p̂(ci) and p(ci) are the true and predicted preva-

clusters 100 250 500 1000 2000

no clusters 0.228 [0.243]
skipgram40,w5 0.223 0.223 0.221 0.221 0.222
skipgram100,w5 0.223 0.224 0.221 0.223 0.222
skipgram100,w10 0.225 0.223 0.220 0.221 0.222
cbow40,w5 0.227 0.221 0.228 0.222 0.223
cbow100,w5 0.225 0.225 0.227 0.224 0.225
cbow100,w10 0.226 0.226 0.231 0.224 0.224
glove40,w5 0.222 0.222 0.220 0.221 0.222
glove100,w5 0.223 0.221 0.221 0.220 0.221
glove100,w10 0.220 0.222 0.224 0.224 0.223

glove50,wiki 0.222 0.221 0.219 0.220 0.221
glove100,wiki 0.221 0.221 0.222 0.220 0.222

Table 5: Earth Movers Distance for fine-grained senti-
ment quantification across different types of word em-
beddings and number of clusters. The score in brack-
ets denotes the best performance achieved in the chal-
lenge.

lence respectively (Esuli and Sebastiani, 2010).
Results Table 5 presents the results of augmenting the
feature set with the proposed features. We use Lo-
gistic Regression as a base classifier for the classify
and count approach. Notice the positive impact of
the features in the performance in the task. Adding
the features derived from clustering the embeddings
consistently improves the performance. Interestingly,
the best performance (0.219) is achieved using the
out-of-domain vectors, as in the NER classification
task. Also, notice how the approach improves over the
state-of-the-art performance in the challenge (0.243)
(Nakov et al., 2016), held by the method of (Martino
et al., 2016). The improvement over the method of
(Martino et al., 2016) however, does not necessarily
mean that classify and count performs better in the
task. It implies that the feature set we used is richer,
that in turn highlights the value of robust feature ex-
traction mechanisms which is the subject of this paper.

4 Conclusion

We have shown empirically the effectiveness of in-
corporating cluster membership features in the feature
extraction pipeline of Named-Entity recognition, sen-
timent classification and quantification tasks. Our re-
sults strongly suggest that incorporating cluster mem-
bership features benefit the performance in the tasks.
The fact that the performance improvements are con-
sistent in the four tasks we investigated, further high-
lights their usefulness, both for practitioners and re-
searchers.

Although our study does not identify a clear win-
ner with respect to the type of word vectors (skip-
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gram, cbow, or GloVe), our findings suggest that one
should first try skip-gram embeddings of low dimen-
sionality (D = 40) and high number of clusters (e.g.,
K ∈ {500, 1000, 2000}) as the results obtained using
these settings are consistently competitive. Our re-
sults also suggest that using out-of-domain data, like
Wikipedia articles in this case, to construct the word
embeddings is a good practice, as the results we ob-
tained with these vectors are also competitive. The
positive of out-of-domain embeddings and their com-
bination with in-domain ones remains to be further
studied.
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