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Abstract. The cross-domain recommendation technique is an effective way of alleviating the
data sparse issue in recommender systems by leveraging the knowledge from relevant domains.
Transfer learning is a class of algorithms underlying these techniques. In this paper, we propose
a novel transfer learning approach for cross-domain recommendation by using neural networks
as the base model. In contrast to the matrix factorization based cross-domain techniques, our
method is deep transfer learning, which can learn complex user-item interaction relationships.
We assume that hidden layers in two base networks are connected by cross mappings, leading
to the collaborative cross networks (CoNet). CoNet enables dual knowledge transfer across
domains and is achieved in multi-layer feedforward networks which can be trained efficiently
by back-propagation. The proposed model is thoroughly evaluated on two large real-world
datasets. It outperforms baselines by relative improvements of 7.84% in NDCG. We demonstrate
the necessity of adaptively selecting representations to transfer. Our model can reduce tens of
thousands training examples without performance degradation by comparing with non-transfer
methods.

1 Introduction

Collaborative filtering (CF) approaches, which model the preference of users on items based on their
past interactions such as product ratings, are the corner stone for recommender systems. Matrix
factorization (MF) is a class of CF methods which learn user latent factors and item latent factors
by factorizing their interaction matrix [28,19]. Neural collaborative filtering is another class of CF
methods which use neural networks to learn the complex user-item interaction function [9,4,13]. Neural
networks have the ability to learn highly nonlinear function, which is suitable to learn the complex
user-item interaction. Both traditional MF and neural CF, however, suffer from the cold-start and
data sparse issues.

One effective solution is to transfer the knowledge from relevant domains and cross-domain
recommendation techniques address such problems [2,21,33,3]. In real life, a user typically participates
several systems to acquire different information services. For example, a user installs applications
in an app store as well as reads news from a website. It brings us an opportunity to improve the
recommendation performance in the target service (and all services) by learning across domains.
Following the above example, we can represent the app installation feedback using a binary matrix
where the entries indicate whether a user has installed an app. Similarly, we use another binary matrix
to indicate whether a user has read a news article. Typically these two matrices are highly sparse,
and it is beneficial to learn them simultaneously. This idea is sharpened into the collective matrix
factorization (CMF) [37] approach which jointly factorizes these two matrices by sharing the user
latent factors. It combines CF on a target domain and another CF on an auxiliary domain, enabling
knowledge transfer [31,45]. CMF, however, is a shallow model and has the difficulty in learning the
complex user-item interaction function [9,13]. Its knowledge sharing is only limited in the lower level
of user latent factors.

Motivated by benefitting from both knowledge transfer learning and learning interaction function, we
propose a novel deep transfer learning approach for cross-domain recommendation using neural networks
as the base model. Though neural CF approaches are proposed for single domain recommendation [13,40],
there are few related works to study knowledge transfer learning for cross-domain recommendation
using neural networks. Instead, neural networks have been used as the base model in natural language
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processing [5,43] and computer vision [44,27,8]. We explore how to use a neural network as the base
model for each domain and enable the knowledge transfer on the entire network across domains. Then
a few questions and challenges are raised: 1) What to transfer/share between these individual networks
for each domain? 2) How to transfer/share during the learning of these individual networks for each
domain? and 3) How is the performance compared with single domain neural learning and shallow
cross-domain models?

This paper aims at proposing a novel deep transfer learning approach by answering these questions
under cross-domain recommendation scenario. The usual transfer learning approach is to train a base
network and then copy its first several layers to the corresponding first layers of a target network with
fine-tuning or parameter frozen [44]. This way of transferring has possibly two weak points. Firstly,
the shared-layer assumption is strong in practice as we find that it does not work well on real-world
cross-domain datasets. Secondly, the knowledge transfer happens in one direction, i.e., only from source
to target. Instead, we assume that hidden layers in two base networks are connected by dual mappings,
which do not require them to be identical. We enable dual knowledge transfer across domains by
introducing cross connections from one base network to another and vice versa, letting them benefit
from each other. These ideas are sharpened into the proposed collaborative cross networks (CoNet).
CoNet is achieved in simple multi-layer feedforward networks by using dual shortcut connections and
joint loss functions, which can be trained efficiently by back-propagation.

The paper is organized as follows. We firstly introduce the preliminaries in Section 2, including
notations and the base network. In Section 3, we then present an intuitive model to realize the
cross-domain recommendation and point out several intrinsic weaknesses which limit its use. We
propose a novel deep transfer learning approach for cross-domain recommendation, named collaborative
cross networks (CoNet) in Section 4. The core component is the cross connection units which enable
knowledge transfer between source and target networks (Sec. 4.1). Its adaptive variant enforces the sparse
structure which adaptively controls when to transfer (Sec. 4.3). In Section 5, we experimentally show
the benefits of both transfer learning and deep learning for improving the recommendation performance
in terms of ranking metrics (Sec. 5.2). We show the necessity of adaptively selecting representations to
transfer (Sec. 5.3). We reduce tens of thousands training examples without performance degradation
by comparing with non-transfer models (Sec. 5.4), which can be used to save the cost/labor of labelling
data. We review related works in Section 6 and conclude the paper in Section 7.

2 Preliminary

We first give notations and describe the problem setting (Sec. 2.1). We then review a multi-layer neural
network as the base network for collaborative filtering (Sec. 2.2).

2.1 Notation

We are given two domains, a source domain S (e.g. the news recommendation) and a target domain
T (e.g. the app recommendation). As a running example, we let the app recommendation be the
target domain and the news recommendation be the source domain. The set of users in two domains
are shared, denoted by U (of size m = |U|). Denote the set of items in S and T by IS and IT (of
size nS = |IS | and nT = |IT |), respectively. Each domain is a problem of collaborative filtering for
implicit feedback [31,16]. For the target domain, let a binary matrix RT ∈ Rm×nT describe user-app
installing interactions, where an entry rui ∈ {0, 1} is 1 (observed entries) if user u has an interaction
with app i and 0 (unobserved) otherwise. Similarly, for the source domain, let another binary matrix
RS ∈ Rm×nS describe user-news reading interactions, where the entry ruj ∈ {0, 1} is 1 if user u has
an interaction with news j and 0 otherwise. Usually the interaction matrix is very sparse since a user
only consumed a very small subset of all items.

For the task of item recommendation, each user is only interested in identifying top-N items. The
items are ranked by their predicted scores: r̂ui = f(u, i|Θ), where f is the interaction function and
Θ are model parameters. For matrix factorization (MF) techniques, the match function is the fixed
dot product: r̂ui = P T

u Qi, and parameters are latent vectors of users and items Θ = {P ,Q} where
P ∈ Rm×d,Q ∈ Rn×d and d is the dimension. For neural CF approaches, neural networks are used to
parameterize function f and learn it from interactions:

f(xui|P ,Q, θf ) = φo(φL(...(φ1(xui))...)), (1)
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where the input xui = [P Txu,Q
Txi] is merged from projections of the user and the item, and the

projections are based on their one-hot encodings xu ∈ {0, 1}m,xi ∈ {0, 1}n and embedding matrices
P ∈ Rm×d,Q ∈ Rn×d. The output and hidden layers are computed by φo and {φl} in a multilayer
feedforward neural network (FFNN), and the connection weight matrices and biases are denoted by θf .

In our transfer/multitask learning approach for cross-domain recommendation, each domain is
modelled by a neural network and these networks are jointly learned to improve the performance
through mutual knowledge transfer. We review the base network in the following subsection before
introducing the proposed model.

2.2 Base Network

We adopt an FFNN as the base network to parameterize the interaction function (see Eq.(1)). The
base network is similar to the Deep model in [6,4] and the MLP model in [13]. The base network, as
shown in Figure 2 (the gray part or the blue part), consists of four modules with the information
flow from the input (u, i) to the output r̂ui as follows. Input : (u, i)→ xu,xi. This module encodes
user-item interaction indices. We adopt the one-hot encoding. It takes user u and item i, and maps
them into one-hot encodings xu ∈ {0, 1}m and xi ∈ {0, 1}n where only the element corresponding
to that index is 1 and all others are 0. Embedding : xu,xi → xui. This module embeds one-hot
encodings into continuous representations via two embedding matrices and then merges them as
xui = [P Txu,Q

Txi] to be the input of successive hidden layers. Hidden layers: xui  zui. This
module takes the continuous representations from the embedding module and then transforms, through
multi-hop say L, to a final latent representation zui = φL(...(φ1(xui)...). This module consists of
multiple hidden layers to learn nonlinear interaction between users and items. Output : zui → r̂ui.
This module predicts the score r̂ui for the given user-item pair based on the representation zui from
the last layer of multi-hop module. Since we focus on one-class collaborative filtering, the output is
the probability that the input pair is a positive interaction. This can be achieved by a softmax layer:
r̂ui = φo(zui) = 1/(1 + exp(−hTzui)), where h is parameter.

3 Cross-stitch Networks

We first introduce an intuitive model to realize cross-domain recommendation using neural networks,
and point out several intrinsic strong assumptions limiting its use, which inspire the design of our
model in the next section.

Intuitively, we can use an MLP model [13] on the target domain and use another MLP model on
the source domain. To enable knowledge transfer between two domains, we need some “cross” mapping
from the source to the target (and vice versa). We adapt cross-stitch units/networks (CSN) [27] for
cross-domain recommendation, which are originally proposed for visual recognition tasks (see Fig. 1a).

Given two activation maps aA and aB from the l-th layer for two tasks A and B, CSN learn
linear combinations ãA, ãB of both the input activations and feed these combinations as input to the
successive layers’ filters:

ãijA = αSa
ij
A + αDa

ij
B , ãijB = αSa

ij
B + αDa

ij
A , (2)

where the shared parameter αD controls information transferred from the other network, αS controls
information from the task-specific network, and (i, j) is the location in the activation map.

Although the cross-stitch unit indeed incorporates knowledge from the source domain (and target
domain vice versa), there are several limitations of this simple stitch unit. Firstly, cross-stitch networks
cannot process the case that the dimensions of contiguous layers are different. In other words, it
assumes that the activations in successive layers are in the same vector space. This is not an issue in
convolutional networks for computer vision since the activation maps of contiguous layers are in the
same space [20]. For collaborative filtering, however, it is not the case in typical multi-layer FFNNs
where the architecture follows a tower pattern: the lower layers are wider and higher layers have
smaller number of neurons [6,13]. Secondly, it assumes that the representations from other networks
are equally important with weights being all the same scalar αD. Some features, however, are more
useful and predictive and it should be learned attentively from data [39]. Thirdly, it assumes that the
representations from other networks are all useful since it transfers activations from every location in
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a dense way. The sparse structure, however, plays a key role in general learning paradigm [8]. Instead,
our model can be extended to learn the sparse structure on the task relationship matrices which
are defined in Eq. (5), with the help of the existing sparsity-induced regularization. As we will see
in the experiments (see Table 2 and Figure 3), the sparse structure is necessary for generalization
performance.

Task A Task B

𝑎𝐵𝑎𝐴

α𝐷

෤𝑎𝐴 ෤𝑎𝐵

α𝐷

(a) Cross-stitch unit

Source network Target network

𝑎𝑎𝑝𝑝𝑎𝑛𝑒𝑤𝑠

𝐻

෤𝑎𝑛𝑒𝑤𝑠 ෤𝑎𝑎𝑝𝑝

𝐻

(b) Cross connection unit

Fig. 1: Left: The cross-stitch unit [27]. Right: The proposed cross connection unit. The shared transfer
parameter is a scalar αD in CSN while it is a matrix H in CoNet.

4 Collaborative Cross Networks

To alleviate the limitations of cross-stitch networks, we propose collaborative cross networks (CoNet)
to transfer knowledge for the cross-domain recommendation. The core component is cross connection
units (Sec. 4.1). Our cross unit generalizes the cross-stitch (Sec. 4.2) and exploits the sparse structure
(Sec. 4.3). We describe the model learning from implicit feedback data and the optimization process of
the joint loss (Sec. 4.4). A complexity analysis is also given (Sec. 4.5).

4.1 Cross Connections Unit

In this section, we present a novel soft-sharing approach for transferring knowledge for cross-domain
recommendation. It relaxes the hard-sharing assumption [44] and is motivated by the cross-stitch
networks [27].

We now introduce the cross connections unit to enable dual knowledge transfer as shown in Fig. 1b.
The central idea is simple, using a matrix rather than a scalar to transfer. Similarly to the cross-stitch
network, the target network receives information from the source network and vice versa. In detail,
let aapp be the representations of the l-th hidden layer and ãapp be the input to the l + 1-th in the
app network, respectively. Similarly, they are anews and ãnews in the news network. The cross unit
implements as follows:

ãapp = Wappaapp +Hanews, ãnews = Wnewsanews +Haapp, (3)

where Wapp and Wnews are weight matrices, and the matrix H controls the information from news
network to app network and vice versa. The knowledge transferring happens in two directions, from
source to target and from target to source. We enable dual knowledge transfer across domains and
let them benefit from each other. When target domain data is sparse, the target network can still
learn a good representation from that of the source network through the cross connection units. It only
needs to learn “residual” target representations with the reference of source representations, making
the target task learning easier and hence alleviating the data sparse issues. The role of matrix H is
similar to the scalar αD in the sense of enabling knowledge transfer between domains.

We give a closer look at the matrix H for it can alleviate all three issues faced by cross-stitch
unit. Firstly, the successive layers can be in different vector space (spaces with different dimensions)
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since the matrix H can be used to match their dimension. For example, if the l-th layer (aapp and
anews) has dimension 128, and the l + 1-th layer (ãapp and ãnews) has dimension 64, then the matrix
H ∈ R64×128. Secondly, the entries of H are learned from data. They are likely not to be all the same,
showing that the importances of transferred representations are different for each neuron/position.
Thirdly, we can enforce some prior on the matrix H to exploit the structure of the neural architecture.
The sparse structure can be enforced to adaptively select useful representations to transfer. Based on
the cross connection units, we propose the CoNet models in the following sections, including a basic
model (Sec. 4.2) and an adaptive variant (Sec. 4.3).

4.2 Basic Model

We propose the collaborative cross network (CoNet) model by adding cross connection units (see
Sec. 4.1) and the joint loss (see Sec. 4.4) to the entire FFNN, as shown in Figure 2. We firstly describe
a basic model in this section and then present an adaptive variant in the next section.

We decompose the model parameters into two parts, task-shared and task-specific: Θapp =
{P , (H l)L1 } ∪ {Qapp, θf app} and Θnews = {P , (H l)L1 }∪{Qnews, θfnews} where P is the user em-
bedding matrix and Q are the item embedding matrices with the subscript specifying the corresponding
domain. We stack the cross connections units on the top of the shared user embeddings, enabling deep
knowledge transfer. Denote by W l the weight matrix connecting from the l-th to the l + 1-th layer
(we ignore biases for simplicity), and by H l the linear projection underlying the corresponding cross
connections. Then two base networks are coupled by cross connections:

al+1
app = σ(W l

appa
l
app +H lal

news), (4a)

al+1
news = σ(W l

newsa
l
news +H lal

app), (4b)

where the function σ(·) is the widely used rectified activation units (ReLU) [29]. We can see that
al+1
app receives two information flows: one is from the transform gate controlled by W l

app and one is
from the transfer gate controlled by H l (similarly for the al+1

news in source network). We call H l the
relationship/transfer matrix since it learns to control how much sharing is needed. To reduce model
parameters and make the model compact, we use the same linear transformation H l for two directions,
similar to the cross-stitch networks. Actually, using different matrices for two directions did not improve
results on the evaluated datasets.

u ij

Ƹ𝑟𝑢𝑗 Ƹ𝑟𝑢𝑖

user appnewsInput

Embedding

1st layer

2nd layer

3rd layer

Output

Cross 

Unit

𝑷 𝑸𝑎𝑝𝑝𝑸𝑛𝑒𝑤𝑠

𝒙𝑢𝑖𝒙𝑢𝑗

𝒛𝑢𝑗 𝒛𝑢𝑖

Fig. 2: The proposed collaborative cross networks (a version of three hidden layers and two cross
units). We adopt a multilayer FFNN as the base network (grey or blue part, see Sec. 2.2). The red
dotted lines indicate the cross connections which enable the dual knowledge transfer across domains (a
cross unit is illustrated in the dotted rectangle box, see Fig. ??).
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4.3 Adaptive Model

As we can see, the task relationship matrices {H l} are crucial to the proposed CoNet model. They
control the representation transfer from another domain. We can enforce these matrices to have some
structure. The assumption is that not all representations from another network are useful. We may
expect that the representations coming from other domains are sparse and selective. The selective
mechanism can help transfer general/useful representations while ignore the specific/noisy ones. The
sparse representations are widely adopted in multitask/transfer learning [1,8,42].

This corresponds to enforcing a sparse prior on the structure and can be achieved by penalizing
the task relationship matrix {H l} via some regularization. It may help the individual network to learn
intrinsic representations for itself and other tasks. In other words, {H l} adaptively controls when to
transfer.

We adopt the widely used sparsity-induced regularization—least absolute shrinkage and selection
operator (lasso) [38]. In detail, denote by r × p the size of matrix H l (usually r = p/2). That is, H l

linearly transforms representations al
news ∈ Rp in the news network and the result is as part of the

input to the next layer ãl+1
app ∈ Rr in the app network (see Eq.(4) and Eq.(3)). Denote by hij the (i, j)

entry of H l. To induce overall sparsity, we impose the `1-norm penalty on the entries {hij} of H l:

Ω(H l) = λ
∑r

i=1

∑p

j=1
|hij |, (5)

where hyperparameter λ controls the degree of sparsity. This corresponds to the lasso regularization.
We call this sparse variant as the SCoNet model.

Other priors like low-rank factorization are alternatives of sparse structure. And the lasso variants
like group lasso and sparse group lasso are also possible. We adopt the general sparse prior and the
widely used lasso regularization.

4.4 Model Learning

Due to the nature of the implicit feedback and the task of item recommendation, the squared loss is
not suitable since it is usually for rating regression/prediction. Instead, we adopt the cross-entropy loss:

L0 = −
∑

(u,i)∈R+∪R−
rui log r̂ui + (1− rui) log(1− r̂ui), (6)

where R+ and R− are the observed interaction matrix and randomly sampled negative examples [31],
respectively. This objective function has probabilistic interpretation and is the negative logarithm
likelihood of the following likelihood function: L(Θ|R+ ∪ R−) =

∏
(u,i)∈R+ r̂ui

∏
(u,i)∈R−(1 − r̂ui),

where Θ are model parameters.
Now we define the joint loss function, leading to the proposed CoNet model which can be trained

efficiently by back-propagation. Instantiating the base loss (L0) described in Eq. (6) by the loss of app
(Lapp) and loss of news (Lnews) recommendation, the objective function for the CoNet model is their
joint losses: L(Θ) = Lapp(Θapp) + Lnews(Θnews), where model parameters: Θ = Θapp ∪Θnews. Note
that Θapp and Θnews share user embeddings and transfer matrices {P , (Hl)Ll=1}. For the CoNet-sparse
model, the objective function is added by the term Ω(H l) in Eq.(5).

The objective function can be optimized by stochastic gradient descent and its variants like adaptive
moment method (Adam) [17]. The update equations are: Θnew ← Θold − η∂L(Θ)/∂Θ, where η is the
learning rate. Typical deep learning library like TensorFlow (https://www.tensorflow.org) provides
automatic differentiation and hence we omit the gradient equations ∂L(Θ)/∂Θ which can be computed
by chain rule in back-propagation.

4.5 Complexity Analysis

The model parametersΘ include {P , (Hl)Ll=1}∪{Qapp, (W
l
app, b

l
app)

L
l=1,happ}∪ {Qnews, (W

l
news, b

l
news)

L
l=1,

hnews}, where the embedding matrices P , Qapp and Qnews contain a large number of parameters since
they depend on the input size of users and items. Typically, the number of neurons in a hidden layer is
about one hundred. That is, the size of connection weight matrices and task relationship matrices is
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hundreds by hundreds. In total, the size of model parameters is linear with the input size and is close
to the size of typical latent factors models [19] and neural CF approaches [13].

During training, we update the target network using the target domain data and update the
source network using the source domain data. The learning procedure is similar to the cross-stitch
networks [27]. And the cost of learning each base network is approximately equal to that of running a
typical neural CF approach [13]. In total, the entire network can be efficiently trained by BP using
mini-batch stochastic optimization.

5 Experiment

We conduct thorough experiments to evaluate the proposed models. We show their superior performance
over the state-of-the-art recommendation algorithms in a wide range of baselines (Sec. 5.2) and
demonstrate the effectiveness of the sparse variant to select representations (Sec. 5.3). We quantify
the benefit of knowledge transfer by reducing training examples (Sec. 5.4). Furthermore, we conduct
analyses on the sensitivity and sparsity (Sec. 5.5).

5.1 Experimental Setup

We begin the experiments by introducing the datasets, evaluation protocol, baselines, and implementa-
tion details.
Dataset We evaluate on two real-world cross-domain datasets. The first dataset, Mobile, is provided
by a large internet company, i.e., Cheetah Mobile (http://www.cmcm.com/en-us/). The information
contains logs of user reading news, the history of app installation, and some metadata such as news
publisher and user gender collected in one month in the US. The dataset we used contains 1,164,394
user-app installations and 617,146 user-news reading records. There are 23,111 shared users, 14,348 apps,
and 29,921 news articles. We aim to improve the app recommendation by transferring knowledge from
relevant news reading domain. The data sparsity is over 99.6%. The second dataset is a public Amazon
dataset (http://jmcauley.ucsd.edu/data/amazon/), which has been widely used to evaluate the
performance of collaborative filtering approaches [12]. We use the two largest categories, Books and
Movies & TV, as the cross-domain. We convert the ratings of 4-5 as positive samples. The dataset we
used contains 1,323,101 user-book ratings and 963,373 user-movie ratings. There are 80,763 shared
users, 93,799 books, and 35,896 movies. We aim to improve the book recommendation by transferring
knowledge from relevant movie watching domain. The data sparsity is over 99.9%. The statistics are
summarized in Table 1. As we can see, both datasets are very sparse and hence we hope improve
performance by transferring knowledge from auxiliary domains.
Evaluation Protocol For item recommendation task, the leave-one-out (LOO) evaluation is widely
used and we follow the protocol in [13]. That is, we reserve one interaction as the test item for each
user. We determine hyper-parameters by randomly sampling another interaction per user as the
validation/development set. We follow the common strategy which randomly samples 99 (negative)
items that are not interacted by the user and then evaluate how well the recommender can rank the test
item against these negative ones. Since we aim at top-N item recommendation, the typical evaluation
metrics are hit ratio (HR), normalized discounted cumulative gain (NDCG), and mean reciprocal rank
(MRR), where the ranked list is cut off at topN = 10. HR intuitively measures whether the reserved test
item is present on the top-N list, defined as: HR = 1

|U|
∑

u∈U δ(pu ≤ topN), where pu is the hit position
for the test item of user u, and δ(·) is the indicator function. NDCG and MRR also account for the
rank of the hit position, respectively defined as: NDCG = 1

|U|
∑

u∈U
log 2

log(pu+1) , MRR = 1
|U|

∑
u∈U

1
pu
.

Baseline We compare with various baselines:

Table 1: Datasets and Statistics.

Dataset #user Target Domain Source Domain
#item #interaction density #item #interaction density

Mobile 23,111 14,348 1,164,394 0.351% 29,921 617,146 0.089%
Amazon 80,763 93,799 1,323,101 0.017% 35,896 963,373 0.033%

KDD 2018 Workshop on Knowledge Discovery and User Modelling for Smart Cities
August 20, 2018 - London, United Kingdom

Copyright c© 2018 for the individual papers by the papers’ authors. Copying permitted for private and
academic purposes. This volume is published and copyrighted by its editors.

Page 20 of 40

http://www.cmcm.com/en-us/
http://jmcauley.ucsd.edu/data/amazon/


Peer-reviewed Papers

Baselines Shallow method Deep method
Single-domain BPRMF [36] MLP [13]
Cross-domain CDCF [24], CMF [37] MLP++, CSN [27]

Table 2: Comparison results of different methods on two datasets. The best results are boldfaced and
the best baselines are marked with stars.
Dataset Metric BPRMF CMF CDCF MLP MLP++ CSN CoNet SCoNet improve paired t-test

HR .6175 .7879 .7812 .8405 .8445 .8458* .8480 .8583 1.47% p = 0.20

Mobile NDCG .4891 .5740 .5875 .6615 .6683 .6733* .6754 .6887 2.29% p = 0.25

MRR .4489 .5067 .5265 .6210 .6268 .6366* .6373 .6475 1.71% p = 0.34

HR .4723 .3712 .3685 .5014 .5050* .4962 .5167 .5338 5.70% p = 0.02

Amazon NDCG .3016 .2378 .2307 .3143 .3175* .3068 .3261 .3424 7.84% p = 0.03

MRR .2971 .1966 .1884 .3113* .3053 .2964 .3163 .3351 7.65% p = 0.05

BPRMF: Bayesian personalized ranking [36] is a typical latent factors CF approach which learns the
user and item factors via MF and pairwise rank loss. It is a shallow model and learns on the target
domain only. MLP: Multilayer perceptron [13] is a typical neural CF approach which learns user-item
interaction function using neural networks. MLP corresponds to the base network as described in
Section 2.2. It is a deep model and learns on the target domain only. MLP++: We combine two MLPs
by sharing the user embedding matrix only. This is a degenerated CoNet which has no cross connection
units. It is a simple/shallow knowledge transfer approach applied to two domains. CDCF: Cross-
domain CF with factorization machines (FM) [24] is a state-of-the-art cross-domain recommendation
which extends FM [35]. It is a context-aware approach which applies factorization on the merged
domains (aligned by the shared users). That is, the auxiliary domain is used as context. On the Mobile
dataset, the context for a user in the target app domain is her history of reading news in the source
news domain. Similarly, the context for a user in the target book domain is her history of watching
movies in the source movie domain on the Amazon dataset. The feature vector for the input is a sparse
vector x ∈ Rm+nT+nS where the non-zero entries are as follows: 1) the index for user id, 2) the index
for item id (target domain), and all indices for her reading articles/watching movies (source domain).
Since FM can mimic MF, CDCF can be thought of as a single-domain factorization method applied
on the merged source-target rating matrix. It showed better performance than other cross-domain
methods like triadic (tensor) factorization [15]. It is a shallow cross-domain model. CMF: Collective
MF [37] is a multi-relation learning approach which jointly factorizes matrices of individual domains.
Here, the relation is user-item interaction. On Mobile, the two matrices are A = “user by app” and
B = “user by news” respectively. The shared user factors P enable knowledge transfer between two
domains. Then CMF factorizes matrices A and B simultaneously by sharing the user latent factors:
A ≈ PTQA and B ≈ PTQB. It is a shallow model and jointly learns on two domains. This can be
thought of a non-deep transfer/multitask learning approach for cross-domain recommendation. CSN:
The cross-stitch network [27], described in Sect, 3, is a good competitor. It is a deep multitask learning
model which jointly learns two base networks. It enables knowledge transfer via a linear combination
of activation maps from two networks via a shared coefficient, i.e., αD in Eq.(2). This is a deep
transfer/multitask learning approach for cross-domain recommendation.
Implementation For BPRMF, we use LightFM’s implementation1 which is a popular CF library.
For CDCF, we adapt the official libFM implementation2. For MLP, we use the code released by its
authors3. For CMF, we use a Python version reference to the original Matlab code4. Our methods are
implemented using TensorFlow. Parameters are randomly initialized from Gaussian N (0, 0.012). The
optimizer is Adam with initial learning rate 0.001. The size of mini batch is 128. The ratio of negative
sampling is 1. As for the design of network structure, we adopt a tower pattern, halving the layer size

1 https://github.com/lyst/lightfm
2 http://www.libfm.org
3 https://github.com/hexiangnan/neuralcollaborativefiltering
4 http://www.cs.cmu.edu/ajit/cmf/
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for each successive higher layer. Specifically, the configuration of hidden layers in the base network is
[64→ 32→ 16→ 8]. This is also the network configuration of the MLP model. For CSN, it requires
that the number of neurons in each hidden layer is the same. The configuration notation [64] ∗ 4 equals
[64→ 64→ 64→ 64]. We investigate several typical configurations.

5.2 Comparing Different Approaches

In this section, we report the recommendation performance of different methods and discuss the
findings. Table 2 shows the results of different models on the two datasets under three ranking metrics.
The last two columns are the relative improvement and its paired t-test of our model vs. the best
baselines. We can see that our proposed neural models are better than the base network (MLP), the
shallow cross-domain models (CMF and CDCF) learned using two domains information, and the deep
cross-domain model (MLP++ and CSN) on both datasets.

On Mobile, our model achieves 4.28% improvements in terms of MRR comparing with the non-
transfer MLP, showing the benefits of knowledge transfer. Note that, the way of pre-training an MLP
on source domain and then transferring user embeddings to target domain as warm-up did not achieve
much improvement. In fact, the improvement is so small that it can be ignored. It shows the necessity
of dual knowledge transfer in a deep way. Our model improves more than 20% in terms of MRR
comparing with CDCF and CMF, showing the effectiveness of deep neural approaches. Together, our
neural models consistently give better performance than other existing methods. Within our models
(SCoNet vs CoNet), enforcing sparse structure on the task relationship matrices are useful. Note that,
the dropout technique and `2 norm penalty did not achieve these improvements. They may harm the
performance in some cases. It shows the necessity of selecting representations.

On Amazon, our model achieves 7.84% improvements in terms of NDCG comparing with the best
baselines (MLP++), showing the benefits of knowledge transfer. Compared to the BPRMF, the inferior
performance of CMF and CDCF shows the difficulty in transferring knowledge between Amazon Books
and Movies, but our models also achieve good results. Comparing MLP++ and MLP, sharing user
embedding is sightly better than the base network due to shallow knowledge transfer. Within our
models, enforcing sparse structure on the task relationship matrices are also useful.

CSN is inferior to the proposed CoNet models on both datasets. Moreover, it is surprising that
the CSN has some difficulty in benefitting from knowledge transfer on the Amazon dataset since it is
inferior to the non-transfer base network MLP. The reason is possibly that the assumptions of CSN are
not appropriate: all representations from the auxiliary domain are equally important and are all useful.
By using a matrix H rather than a scalar αD, we can relax the first assumption. And by enforcing a
sparse structure on the matrix, we also relax the second assumption.

Note that the relative improvement of the proposed model vs. the best baseline is more significant
on the Amazon dataset than that on the Mobile dataset, though the Amazon is much sparser than
the Mobile (see Table 1). One explanation is that the relatedness the book and movie domains is
much larger than that between the app and news domains. This will benefit all cross-domain methods
including CMF, CDCF, and CSN, since they exploit information from both two domains. Another
possibility is that the noise from auxiliary domain proposes a challenge for transferring knowledge.
This shows that the proposed model is more effective since it can select useful representations from the
source network and ignore the noisy ones. In the next section, we give a closer look at the impact of
the sparse structure.

5.3 Impact of Selecting Representations

On two real-world datasets, it both shows the usefulness of enforcing sparse structure on the task
relationship matrices H. We now quantify the contributions of the sparsity to CoNet. We investigate
the impact of the sparsity by controlling the difference of architectures between CSN and CoNet. That
is, we let them have the same architecture configuration. As a consequence, the performance of ablation
comes from different means of knowledge transfer: scalar αD used in CSN and sparse matrix H used
in SCoNet.

Figure 3 shows the results on the Mobile and Amazon datasets under several typical architectures.
We can see that the sparsity contributes to performance improvements and it is necessary to introduce
the sparsity in general settings. On the Mobile data, introducing the sparsity improves the NDCG
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Fig. 3: Impact of the sparsity on the Mobile data. From left to right, configurations are {16, 32, 64, 80}∗4.

by relatively 2.29%. On the Amazon data, introducing the sparsity improves the NDCG by relatively
4.21%. These results show that it is beneficial to introduce the sparsity and to select representations to
transfer on both datasets.

5.4 Benefit of Transferring Knowledge

Transfer learning can reduce the labor and cost of labelling data instances. In this section, we quantify
the benefit of knowledge transfer by comparing with non-transfer methods. We do not compare with
the cross-domain baselines like CSN in this case because we are to investigate the benefits of transfer
learning approaches, not the effectiveness of the proposed model which has demonstrated in the above
Sec. 5.2. That is, we gradually reduce the number of training examples in the target domain until
the performance of the proposed model is inferior to the non-transfer MLP model. The more training
examples we can reduce, the more benefit we can get from transferring knowledge. Note that this is
similar to the settings of varying with the cold-start profile size when evaluating new users [18,11].

Referring to Table 1, there are about 50 examples per user on the Mobile dataset. We gradually
reduce one and two training examples per user, respectively, to investigate the benefit of knowledge
transfer. To be fair, we ensure that every user has at least one training example since the non-transfer
MLP cannot deal with the cold-start user issue. The results are shown in Table 3 where the rows
corresponding to reduction percentage 0% are copied from Table 2 for clarity. The reduction amount is
how many training examples that we remove and the reduction percent is the ratio of reduction amount
over the original total training examples. The results show that we can save the cost of labelling about
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Table 3: The performance varying with the reduction of training examples. Results with stars are
inferior to MLP.

Dataset Method Reduction HR NDCG MRR
percent amount

Mobile

MLP 0% 0 .8405 .6615 .6210

SCoNet
0% 0 .8547 .6802 .6431

2.05% 23,031 .8439 .6640 .6238
4.06% 45,468 .8347* .6515* .6115*

Amazon

MLP 0% 0 .5014 .3143 .3113

SCoNet
0% 0 .5338 .3424 .3351

1.11% 12,850 .5110 .3209 .3080*
2.18% 25,318 .4946* .3082* .2968*

30, 000 training examples by transferring knowledge from the news domain but still have comparable
performance with the MLP model, a non-transfer baseline.

According to Table 1, there are about 16 examples per user on the Amazon dataset. With a similar
setting to the Mobile dataset, the results shown in Table 3 indicates that we can save the cost of
labelling about 20, 000 training examples by transferring knowledge from movie domain. Note that the
Amazon dataset is extremely sparse (the density is only 0.017%), implying that there is difficulty in
acquiring many training examples. Under this scenario, our transfer models are an effective way of
alleviating the issue of data sparsity and the cost of collecting data.

5.5 Analysis

We analyze the sensitivity to penalty λ in Eq.(5) which controls the sparsity. Results are shown on
the Mobile data only due to space limit and we give the corresponding conclusions on the Amazon
data. Figure 4 (left) shows the performance varying with the penalty of sparsity enforcing on the task
relationship matrices H. On the Mobile data, the performance achieves good results at 0.1 (default)
and 5.0, and it is 0.1 (default) and 1.0 on the Amazon data (not shown).
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Fig. 4: Left: Sparsity penalty λ. Right: Ratio of zeros in transfer matrix H.

Since the sparsity of transfer matrices (H l)L1 is crucial to select representations for transferring,
we show the change of zero entries over training epochs. For clarity and due to space limit, we only
show the results of the first transfer matrix H1 which connects the first and the second hidden layers.
Figure 4 (right) shows the results where we use a 4-order polynomial to robustly fit the data. We can
see that the matrix becomes sparser for the first 25 iterations, and the general trend is to sparsify.
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The average percent of zero entries in H1 is 6.5%. For the second and third transfer matrices, the
percentage becomes 6.0% and 6.3%, respectively. In summary, sparse transfer matrices are learned
and they can adaptively select partial representations to transfer across domains. It may be better to
transfer many instead of all representations.

6 Related Works

Our work is related to research fields of (cross-domain) recommender systems and (deep) transfer
learning.
Recommender systems Recommender systems aim at learning user preferences on unknown items
from their past history. Content-based recommendations are based on the matching between user
profiles and item descriptions [34]. It is difficult to build the profile for each user when there is no/few
content. Collaborative filtering (CF) alleviates this issue by predicting user preferences based on
the user-item interaction behavior, agnostic to the content [7,46]. Latent factor models are typical
CF methods which learn feature vectors for users and items mainly based on matrix factorization
(MF) techniques [19]. MF has probabilistic interpretations [28] and flexible extensions to integrate
social relations [25] and item content [26] and both [14], leading to the hybrid methods. Recently,
neural networks are proposed to push the learning of feature vectors towards (highly) non-linear
representations, learning the user-item interaction function from data rather than using the fixed dot
inner used in MF [9,6,13]. Both MF and neural CF models, however, suffer from the data sparsity
issue.

Cross-domain recommendation [3] is an effective technique to alleviate sparse issue. A class of
methods are based on MF applied to each domain, including the collective MF [37], factorization on both
real numbers and binary values matrices [33], and transferring cluster-level patterns transfer [21,22].
Some other shallow methods exploit the bandit learning [23] and the graph-based approach [41]. The
deep multi-view neural approach [10] models the shared users as the pivot view and the source/target
items as other views by neural networks. We follow this deep learning research thread by using deep
networks to learn the interaction function through highly nonlinear transformations.
Transfer and multitask learning Transfer learning (TL) aims at improving the performance of
the target domain by exploiting knowledge from source domains [32] which matches the core idea of
cross-domain recommendation techniques. The typical TL technique in neural networks is to initialize
a target network with transferred features from a pre-trained source network [30,44]. Different from
this approach, we transfer knowledge in a deep way such that the two base networks benefit from
each other during the learning procedures, motivated by the cross-stitch network [27] which enables
information sharing between the two base networks. We generalize it by relaxing the underlying
assumption, especially via the idea of selecting representations to transfer.

7 Conclusions

We proposed a novel deep transfer learning for cross-domain recommendation. The sparse target
user-item interaction matrix can be reconstructed with the knowledge guidance from the source
domain. We demonstrated the necessity of selecting representations to transfer since it may harm the
performance by transferring all of them with equal importance. We found that naive deep transfer
models may be inferior to the shallow/neural non-transfer methods in some cases. Our transfer models
can reduce tens of thousands training examples by comparing with non-transfer methods without
performance degradation. Experiments validated their effectiveness by comparing with shallow/deep,
single/cross-domain baselines.

The evaluated Mobile dataset is collected from mobile smart devices in different states of the U.S.
We found that some hot states like TX, FL, CA, IL and NY have a lot of records while other states
are scarce, showing a challenge in reliably learning personalization model in these sparse states. We
hypothesize that we can transfer the knowledge from hot states to sparse states, i.e. enabling knowledge
transfer between two states. A possible solution is to exploit shared items (apps/news) as a bridge
between states, indicating that users in two states are similar if they install/read the same apps/news.
The proposed models are then applicable.
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