DimaX: A Fault-Tolerant Multi-Agent Platform

b b

Nora Faci @ Zahia Guessoum 2 Olivier Marin

& Unwversity Reims Champagne-Ardenne, CReSTIC-MODECO Team,
Rue des Crayeres BP 1035, 51687 Reims, FRANCE
b University Pierre and Marie Curie, LIP6- OASIS and SRC Teams,
8 Rue du Capitaine Scott, 75015 Paris, FRANCE

Abstract

Fault tolerance is an important property of large-scale multi-agent systems as the fail-
ure rate grows with both the number of the hosts and deployed agents, and the duration of
computation. Several approaches have been introduced to deal with some aspects of the fault-
tolerance problem. However, most existing solutions are ad hoc. Thus, no existing multi-agent
architecture or platform provides a fault-tolerance service that can be reused to facilitate the
design and implementation of reliable multi-agent systems. So, we have developed a fault-
tolerant multi-agent platform (named DimaX) which deals with fail-stop failures like bugs
and/or break down machines. It brings fault-tolerance for multi-agent applications by using
replication techniques. It is based on a replication framework (named DARX).

1 Introduction

Fault tolerance is a relevant problem in multi-agent systems (MAS). Nowadays, MASs are naturally
employed to build distributed applications. In particular, we are interested in large-scale MASs
which are physically distributed and characterized by a dynamic environment with limited resources.
As the failure rate grows with both the number of hosts and deployed agents, and the duration of
computation, these applications are subject to more failures.

To deal with some aspects of the fault-tolerance problem, several approaches [14, 8, 13] were
introduced. For detecting and recovering faults in MAS, Hagg [8] introduced the sentinel concept.
In his project, agents interact for achieving functionalities. The designer associates a sentinel to
each functionality. These sentinels observe the different agents and detect functionality deviations
in order to diagnose faults and to repair them. Kumar et al. [14] proposed a brokers team to
recover faults unregarding the fault reasons. A broker offers several services like searching appro-
priate agents for a given task. As a task can be performed by several agents, an agent failure
remains transparent as long as there are safe agents. These approaches provide interesting solu-
tions. However, they are ad hoc and are suitable for small-scale multi-agent applications; they
could not be reused to build other multi-agent applications. For instance, the Hagg sentinels are
specific to each MAS like Kumar brokers that use domain knowledge for delivering their services.
Thus, no existing multi-agent architecture or platform provides a fault-tolerance service that can
be reused to facilitate the design and implementation of reliable multi-agent systems.

The aim of this paper is to present a fault-tolerant multi-agent platform (named DimaX).
The design of fault-tolerant MAS requires to deal with problems related to distribution and fault
tolerance. DimaX offers several services like naming, fault detection and recovery. To make MAS
reliable, DimaX uses replication techniques. Moreover, DimaX provides developers with libraries
of reusable components for building MAS.

The remainder of this paper is organized as follows. Section 2 presents our DimaX platform.
Section 3 shows how DimaX can be used through a toy problem. Section 4 gives the DimaX features
provided for fault-tolerant MAS development. Section 5 discusses the related work. Finally, Section
6 summarizes our approach and ongoing work.

2 DimaX

The present section aims at defining the type of failures DimaX deals with. Then, it presents the
DimaX services for developing fault-tolerant MAS.

2.1 Fault Model
The most generally accepted failure classification can be found in [17]:

1. A crash failure means a component stops producing output; it is the simplest failure to
contend with.

2. An omission failure is a transient crash failure: the faulty component will eventually resume
its output production.

3. A timing failure occurs when output is produced outside its specified time frame.

4. An arbitrary (or byzantine) failure equates to the production of arbitrary output values at
arbitrary times.

Given this classification, two types of failure models are usually considered in distributed envi-
ronments [17]:

e fail-silent, where the considered system allows only crash failures, and
e fail-uncontrolled, where any type of failure may occur.

In this work we focus on the fail-silent model. An agent failure is defined as its abnormal
termination due to failure in an underlying resource. This could be either a bug in the underlying
operating system, or a local host crash or a network disconnection.

2.2 DimaX Services

DimaX is the result of an integration of a multi-agent platform (named DIMA[5]) and a fault
tolerance framework (named DARXJ[15, 1]). Figure 1 gives an overview of DimaX and its main
components and services. DimaX is founded on three levels: system (i.e., DARX middleware),
application (i.e., agents) and control. At the application level, DIMA provides a set of libraries to
build multi-agent applications. Moreover, DARX provides the mechanisms necessary for distribut-
ing, observing and replicating agents as services. These mechanisms operate at the middleware
level. Thus, a DimaX server offers the following services: naming, fault detection, observation
and replication. At the control level, DimaX provides a control mechanism of replication which is
automatically performed with cooperation of the observation service [7]. This mechanism decides
which agent to replicate and where to replicate it.

2.2.1 Naming Service

One of the problem related to multi-agent systems distribution is the agent localization at the time
of message sending. A naming server maintains the list (i.e., white pages) of all the agents within
its administration domain. When an agent is created, it is registered at both the DimaX server
and the naming server. To send messages to another, an agent needs to know the application-level
identifier of the receiver. However, the transmission of these messages through DimaX servers,
requires some knowledge about the physical localization (i.e., the IP address and a port number).
The local DimaX server requests this information from the naming server and locally stored it in
a cache. So, the cache contains the list of agents which have been contacted. This avoids that a
DimaX server repeats several times the same search.

Adaptive Control
Replication
Control
Application
(DIMA)
Observation

Replication Service Middleware
Service (DARX)

Naming

Service

Failure Detection
Service

Figure 1: Overview of DimaX

2.2.2 Fault Detection Service

Failure detection is an essential aspect of any fault-tolerant system; indeed it is necessary to recog-
nize a faulty agent. DARX fault detection service is based on the heartbeat technique; a process
sends an I am alive message to other processes for informing that it is safe (see Figure 2). This
technique has two parameters:

e the heartbeat period: the time between two emissions of the I am alive message,

e the timeout delay: the time between the last reception of an I am alive message from p and
the time where q suspects p, until an I am alive message from p is received.

The detection results may be incorrect; q detects that p is crashed while p is actually safe but its
transmissions are delayed for some reason (e.g., communication load). To overcome this problem,
one solution is to estimate the arrival date of the following I am alive message, with a dynamic
margin. These values are functions of the quality of service of the network and the application [1].

When a server detects a failure of another DimaX server, its naming module removes all the
replicated agents the faulty server hosted from the list and replaces these agents by their replicas
located on other hosts. The replacement is initiated by the failure notification.

HeartBeat Period
P
Q \ \ \\
Delay Timeout \—1

Delay Timeout Delay Timeout

FAULT DETECTION SAFE SAFE

ATQ FAULTY

Figure 2: The heartbeat technique

2.2.3 Observation Service

The functionalities of the observation service are fundamental for controlling replication. An ob-
servation module collects data at two levels:

e system level: data about the execution environment of the MAS like CPU time and mean
time between failures,

e application level: information about its dynamic characteristics like the interaction events
among agents (e.g., the sent and received messages).

The observation service relies on an organization of reactive agents (named host- and agent-
monitors) (see Figure 3). An agent-monitor is associated to each agent of the application (named
domain agents) and a host monitor is associated to each host. These monitoring agents (agent-
monitors and host-monitors) are hierarchically organized. Each agent-monitor communicates only
with one host-monitor. Host-monitors exchange their local information to build global information
(global number of messages, global exchanged quantity of information, ...).

After each interval of time At, the host-monitor sends the collected events and data to the
corresponding agent-monitors. When the criticality ' of the domain agent is significantly mod-
ified, the agent-monitor notifies its host-monitor. The latter informs the other host-monitors to
update global information. In turn, agent-monitors are informed by their host-monitor when global
information changes significantly (see [7] for more details).

Agent_Monitorl

g Agent_Monitor3
EI Q\C) Agent_Monitor4 Agent_Monitor5
§ ; Agent_Monitor2 ! \Q T
o ! O 1 \A\ Host_Monitor i Host_MonitoV(i
-~ : I Mc |
o I | | & i
T ! SendMessage ‘
- T | | e :
| . >§§ . ____=Event |
= SN T ———| S | =
é) Domain Agentl 3 \ S ___.Control
< | Domain Agent3 >

§ Domain Agent4 Domain Agent5

Domain Agent2

Figure 3: Architecture of the Observation Service

2.2.4 Replication Service

Replication is an effective way to achieve fault tolerance in distributed systems. It has proved its
efficiency [12]. We propose therefore to use replication mechanisms to avoid failures of multi-agent
systems. Replication enables to run multi-agent systems without interruption, in spite of failures.
A replicated agent (see Section 2.4) is an entity that possesses two or more copies of its behavior
(or replicas) on different hosts. There are two main types of replication protocols:

e active replication, in which all replicas process concurrently all input messages, and

e passive replication, in which only one of the replicas processes all input messages and period-
ically transmits its current state to the other replicas in order to maintain consistency.

Active replication strategies provide fast recovery but lead to a high overhead. If the degree of
replication is n, the n replicas are activated simultaneously. Passive replication minimizes processor
utilization by activating redundant replicas only in case of failures. That is: if the active replica
is found to be faulty, a new replica is elected among the set of passive ones and the execution is
restarted from the last saved state. This technique requires less CPU resources than the active one
but it needs a checkpoint management which remains expensive in processing time and space.

Many toolkits (e.g., see [4, 20]) use only one of these techniques. So, they may suffer from the
disadvantages of the used technique. Contrary to these approaches, DimaX relies on the DARX
replication framework [15] which uses these both techniques, in an adaptive manner, depending
on the evolution of the MAS context. The designer can dynamically change replication strategies
during the MAS execution.

IThe criticality of an agent, regarding an organization of agents it belongs to, is the measure of the potential
impact of the failure of that individual agent on the failure of the whole organization

2.3 Control of Replication in DimaX

Replication has been successfully applied to several distributed applications. These distributed
applications are characterized by a small number of components and the criticality of these com-
ponents is often static. So, the number of replicas and the replication strategy are explicitily
and statically defined by the designer before runtime. However, multi-agent applications are more
complex than traditional distributed ones. They have dynamic organizational structures, adaptive
behaviors of agents and a large number of agents. So, the criticality of agents may evolve dynami-
cally during the course of computation. Our solution is a control mechanism of replication which
decides, dynamically, which agent should be replicated and with what strategy (how many repli-
cas and where to create the replicas). This control mechanism dynamically estimates the agents’
criticality. We have experimented two strategies based on organizational concepts to estimate the
criticality of an agent.

The first strategy we studied is based on the concept of role. A role, within an organization,
represents a pattern of services, activities and relations. As such, it captures some information about
the relative importance of roles and their interdependencies. A role analysis thus represents the
set of interaction events resulting from the domain agent interactions (sent and received messages).
These events are then used to determine the roles of the agent. This strategy is described in [6].
A second alternative strategy that we studied is based on the concept of dependency. Intuitively,
the more an agent has other agents depending on it, the more it is critical in the organization.
The dependencies are inferred through the analysis of communication between agents. That second
strategy is described in [7].

2.4 DimaX Agents

DimaX offers several libraries and mechanisms to facilitate the design and implementation of fault-
tolerant multi-agent systems. These libraries and mechanisms are provided by DIMA and DARX.

2.4.1 DIMA Agent Behaviors

DIMA is a Java multi-agent platform. Its kernel is a framework of proactive components which
represent autonomous and proactive entities. A simple DIMA agent architecture consists of: a
proactive component, an agent engine, and a communication component (see Figure 4).

A proactive component (the AgentBehavior class) represents an autonomous and proactive
entity. It provides the basic structure to represent behaviors. The main functionalities of a proactive
component may be extended in the subclasses. An instance of AgentBehavior describes:

e The goal of the proactive component, it is implicilty or explicitly described by the method
isAlive().

e The basic behaviors of the proactive component. A behavior is a sequence of actions that
allow to change the internal state or to send a message to other components.

AgentBehavior
step() ProactiveComponentEngine ‘
isAlive() : bool ‘ |
proactivitylLoop()
startUp()
AgentEngine
+ run()
CommunicatingAgentBehavior
+ activate() CommunicationComponent

+ activateWithDarX()
+ sendMessage()
+ readAllMessage()

+ sendMessage()
+ receiveMessage()

Figure 4: DIMA agent architecture

The class AgentBehavior and its subclasses represent the internal activity of the agent. The
instance method proactivityLoop() (see Table 2.4.1), used by startup, defines the basic loop of

the agents. An Agent Engine is provided to launch and support the agent activity. AgentEgine
implements Runnable. In the latter, the method run has been redefined:

public class AgentEngine extends
ProactiveComponentEngine implements Runnable {
protected ProactiveComponent proactivity;
public Thread thread; }

public void run(){

proactivity.startUp(); }

Methods Description

public abstract boolean isAlive() || Tests if the agent has not reached its goal.
public abstract void step() Represents an execution cycle of the agent.
void proactivityLoop() Represents the control of agent behavior.

public void proactivityLoop()

{ while (this.isAlive()) {

this.preActivity();

this.step();

this.postActivity();} }

public void startUp() Initializes and activates the control of agent
behavior.

public void startUp() {
this.proactivityInitialize();
this.proactivityLoop();
this.proactivity Terminate(); }

Table 1: Main methods of AgentBehavior Class

DIMA also provides several services like the directory facilitator service. DIMA can be used
easily to build MASs. To make them reliable, we realized an integration of DIMA agents and DarX
tasks. Before desccribing the result of this integration, we define the DarX tasks.

2.4.2 DarX Tasks

DARX [15] is a framework to design reliable distributed applications which include a set of dis-
tributed communicating entities (named DarX tasks). It includes transparent replication manage-
ment. DARX handles replication groups. Each of these groups consists in software entities (the
replicas) which are the representation of the same DarX task (see Figure 5). A DarX task can be
replicated several times and with different replication strategies. It is wrapped into a TaskShell
which is responsible for replication group management. To maintain coherence between the dif-
ferent replicas, the TaskShell delivers received messages to all active replicas. Also, it periodically
updates the state of the passive replicas; this requires to suspend the DarX task then to resume
it. When it receives several identical replies from different replicas of the same task, it uses a filter
mechanism to forward the first reply and discard the other redondant ones.

The TasKShell sends outgoing messages through its encapsulated DarXCommlInterface. The
communication between distinct TaskShells is performed via a proxy: the RemoteTask (see Figure
7).

Thus, the sender of a message does not need to know the replicas number of the receiver; the
RemoteTask of the receiver delegates the messages to the corresponding TaskShell which transmits
them to all replicas of the same agent. The replication has a cost in communication but DARX
optimizes it by piggybacking application-level messages on the I am alive messages (see Section
2.2.2).

Replication

T 1

TaskShell

RemoteTask [~~~

TaskShell

Taskshell\\

TaskShell

Replication TaskShell TaskShell
Group 2

Figure 5: Communication between DarX tasks

% DarXComComponent

7~ + sendMessage()
+ receiveMessage()

DarXT:

DarXTaskExecutor + run() C icatil i
+ startTask() [|
+ terminateTask()

Figure 6: Fault-tolerant Agent Model

2.4.3 Fault-Tolerant Agents

Figure 6 gives the main classes to model fault-tolerant agents. As the DarXTask is an active entity
and each fault-tolerant agent needs to have the structure of a DarXTask, the DarXTask needs to be
autonomous and proactive. To make the DarXTask autonomous, we encapsulate the DIMA agent
behavior into the DarXTask (see Figure 7). This agent architecture enables to replicate the agent
several times. As the DARX middleware and the DIMA platform both provide mechanisms for
execution control, communication and naming but at different levels, their integration requires a set
of some additional components; This set calls, transparently, for DARX services (e.g., replication,
naming) when executing multi-agent applications developed with DIMA; at the application level,
any code modification is required. It controls the execution of agents built under DimaX and offers
a communication interface between remote agents, through DimaX servers.

Duplicated
MeRsages Taskshell

\ DarXComminterface
RemoteTask R :
(group proxy) [------ > *» request buffe d ;
[: : I

DarXTaskEngine
(A Specific DarX Task)

DarXMessage:
- sender: agentID —(DIMA Ag_ent !
- content: DIMA message Behavior

DarXTaskExecutor

DIMA Messages

[DarXCommunication Componer} N

Figure 7: DimaX Agent Architecture

A DimaX agent is a DIMA agent encapsulated in a particular entity, the DarXTaskFEngine.

CommunicatingAgentBehavior

+ activate()

+ activateWithDarX()
+ step()

+ readAllMessage()
+ sendMessage()

AgentFact AgentMult
- couple : Vector - couple : Vector
+ step() + step()
- isAlive() : bool + multiply()
+ result()
+ proactivitylnitialize()

Figure 8: UML Diagram of Factorial Application

The DarXTaskEngine is a DarXTask, with autonomous behaviors of the original DIMA agent. It
includes the agent engine (called the DarX TaskExecutor) which executes the lifecycle of the agent
(see below the proactivityLoop method). For coherence reasons, the execution of the agent lifecycle
may be suspended during the creation and/or updates of the replicas. When a DimaX agent sends
messages to other agents, DimaX provides communication mechanisms to localize agents and deliver
them messages. This delivery is realized through the communication component of DimaX agents
(DarXComComponent) which delegates the DIMA message transmissions to the associated DarX-
CommlInterface. This communication interface enables DARX entities to communicate between
them. So, at the application level, the agents communicate DIMA messages which are transmitted
via the DARX middleware.

3 Example

The aim of DimaX is to augment an already built MAS with fault-tolerance capabilities. So, this
section presents a MAS which has been developed by DIMA and shows how to make it fault tolerant.

To exemplify DimaX, we propose the Factorial toy problem (n!). This toy problem gives some
insights to distributed problem solving. We consider two kinds of agents:

1. AgentFact: these agents have the needed behavior to compute a factorial but they do not
have the behavior to multiply numbers.

2. AgentMult: these agents have a behavior to compute a multiplication.

These agents are implemented as subclasses of CommunicatingAgentBehavior class (see Figure
8). To compute n!, AgentFact creates a list (named couple) with the numbers from 1 to n:

pubilc void proactivityInitialize(){
for (int i=1, i<=n, i++){
couple.addElement (i); }

}

Then, it sends requests to AgentMult with all possible couples of numbers. When it receives a
result, it puts it into the list:

pubilc void result(int i){
couple.addElement (i) ;

// nbRequests is the number of resquests
nbRequests --;

}

If the list has more than one element, new requests are then sent to AgentMult. It repeats this
action while the list contains more than one number or AgentFact has not the responses to all the
sent requests. This test is performed by its isAlive() method as follows:

pubilc boolean isAlive(){
return ((couple.size() > 1) or not(hasAllResponses()));

}

The AgentFact behavior is defined by:

pubilc void step(){

readAllMessages () ;

while (couple.size()>1) {

sendMessage (‘ ‘multiply’’,couple.elementAt(0), couple.elementAt(1l) ,new AgentName(‘‘multiplier’’));
couple.remove(0);

couple.remove(1);

nbRequests++;}

}

The AgentMult behavior is as follows:

public void step(){
readAllMessages() ;

}

The multiply action of MultAgent is:

public void multiply(int a, int b){
int c=a*b;
sendMessage (‘ ‘result’’,c, new AgentName(‘‘factorial’’));}

}

The initialization of the MAS is performed as:

public void main (String [] args) {

// agents behavior initialization
AgentFact a= new AgentFact(‘‘factorial’’);
AgentMult b=new AgentMult(‘‘multiplier’’);
// agents activation on the same machine
a.activate();

b.activate();

}

After the designer builds the agents behavior by using the DIMA multi-agent platform, he/she
uses the activate WithDarX method to deploy his/her MAS and to endow it with fault-tolerance
capabilities (i.e., replication). This activation method enables to encapsulate the agent behavior in
a DarXTask (see Section 2.4) and register the agent in the system (i.e., the naming service). Its
parameters are the url and port of the host where the agent will be replicated. The deployment
can be performed as follows:

public void main (String [1 args) {
AgentFact a= new AgentFact(‘‘factorial’’);
AgentMult b=new AgentMult(‘‘multiplier’’);
// agents activation on two different machines
a.activateWithDarX(urll, portl);
b.activateWithDarX(url2, port2);

}

As we can see, the distribution and replication have not required any code modification. The
distribution cost is therefore minimal. Thus, DimaX facilitates the development of fault-tolerant
MAS for developers not trained in fault-tolerance techniques. They need only to focus on problem
solving issues like the agents behavior and their interactions. The factorial example is very simple.
However, the solution is similar even if the application is more complex.

4 DimaX Features

This section presents DimaX main features which are provided to the development and deployment
of fault-tolerant large-scale MAS: scalability, reusability, robustness, and adaptability.

1. Scalability. A platform is said to be scalable if it can handle the increasing of the problem
size (number of agents) and complexity without suffering a noticeable loss of performance.
In DimaX, the proposed solution is to organize hierarchically the components of the differ-
ent services in order to minimize the communication overload caused by them. DimaX also
provides global state of MAS (e.g., the average number of exchanged messages), in a dis-
tributed manner. Indeed, this reduces remote access and avoids bottleneck, contrary to the
case of a central component. Moreover, the messages used by the failure detection service are
piggybacked by the other services messages and those of the application.

2. Reusability. To faciliate the design and implementation of fault-tolerant large-scale MAS,
for developers not trained in fault-tolerance techniques, DimaX provides several component
libraries to build multi-agent systems: decision components, communication components,
interaction protocols. For example, the library of interaction protocols provides a generic
implementation of interaction protocols. Interaction protocols are resuable components.

3. Robustness. The robustness of MAS is almost always a major concern when they are applied
to critical domains like spacecraft, or medicine. It is important that this kind of application
runs without interruption, in spite of failures, like crashes. DimaX achieves robustness of
MASSs by using adaptive replication mechanisms. To evaluate the reliability of the platform,
we have run the robustness test based on fault injection techniques. The results show that
our platform achieves a robustness degree interesting of the application. Also, the platform
must continue to deliver its services in despite of one of its services components failure. The
failure of a machine or a connection often involves the failure of the associated DimaX server.
However, in our solution, the fault tolerance protocols are agent-dependent and not-place
dependent, i.e., the mechanisms built for providing the continuity of the computation are
integrated in the replication groups, and not in the server.

4. Adaptability. To deal with limited resource problem for replicating agents, a good replication
mechanism should adapt the replication strategy to the evolution of the environment. Thus,
we have introduced, in DimaX, a multiagent monitoring architecture to control replication.
This architecure implements our adaptation mechanisms to define the agent criticality. These
mechanisms rely on organizational concepts like role and interdependence graph [7]. Moreover,
due to the heterogeneous resource problem (i.e., different and dynamic characteristics of the
hosts), DimaX uses an adaptive approach to resource management for determining the number
of replicas and their placement.

5 Related Work

In the multi-agent literature [18], we can find a large number of multi-agent platforms but only few
ones offer fault-tolerance mechanisms. Several corrective solutions to fault tolerance problem have
been proposed. The diagnostic approaches ([8, 10, 11]) are examples of such solutions. For instance,
Kaminka et al. [11] propose a monitoring approach in order to detect, to diagnose and recover faults.
They use models of relations between mental states of agents. They adopt a procedural plan-
recognition based approach to identify inconsistencies. However, the adaptation is only structural,
the relation models may change but the contents of plans are static. Their main hypothesis is that
any failure comes from incompletness of beliefs. The diagnostic approaches are attractive ones.
However, they are complex; they need a deep knowledge about the behavior of the system. It is not
always possible to have a precise description of the whole multi-agent system. Exception handling
approaches are also other examples of corrective solutions. Contrary to diagnostic approches where
fault recovery is performed, these approaches focus on error recovery ([13, 19]). For instance,
Souchon et al.[19] propose an exception handling system (named SAGE), designed for MASs, that
addresses some exception handling problems (e.g., the exception propagation) related to MAS issues
such as preservation of the agent paradigm features and concurrency. To summarize, the corrective

approaches are not suitable for critical applications where the diagnosis, or exception propagation,
and correction must be done in real-time.

Kumar et al. [14] advocate fault-tolerance approach by using broker teams. A broker accepts
requests, locates capable agents, routing requests and responses, etc. They use multiple brokers
which form a team with appropriate commitments. The team members should recover from broker
failures insofar they have team and/or individual commitments like to connect to a registered agent
which gets disconnected. In other words, this brokering knowledge is shared among the members.
This work presents some interesting results, but stays at the theoretical stage. Moreover, they
don’t address scalability and reusability issues.

Cougaar [9] is a Java-based architecture for the construction of large-scale distributed agent-
based applications. An agent is a set of problem solving behaviors interacting via blackboards. If
an agent is unable to contact a member of its community it could send a health alert message to
a health monitor. This agent is responsible for the recovery of agents. For instance, the recovery
of a domain agent consists either to retrieve an appropriate community state needed to pursue the
problem solving or to re-join its community which has began a new problem solving stage. However,
the approach lacks adaptability; no guarantee is given that the MAS will correctly pursue its goals,
in spite of agent failures. Failures could cause interblocked situations; the progress of the problem
solving depends on each other.

The FATMAS methodology [16] provides mainly four models used to design and implement
the target system and a fault-tolerance technique where only a certain number of agents will be
replicated. Here, an agent is critical as it performs at least one task that cannot be performed by
any other agent in the system. If the agent is non-critical, then it is not replicated and its tasks are
replicated in other agents. If it is a critical agent, then it must be replicated. FATMAS proposes
guidelines for the analysis and the design of fault-tolerant MAS. Moreover, it provides agent and
task replication. This enables to reduce the replication cost. However, the approach addresses to
closed MAS; the agent criticality is defined at design time. The replication is static.

A. Fedoruk and R. Deters [2] propose to use proxies to make transparent the use of agent
replication, i.e. enabling the replicas of an agent to act as a same entity regarding the other agents.
The proxy manages the state of the replicas. All the external and internal communications of the
group are redirected to the proxy. However this increases the workload of the proxy, which is a
quasi central entity. To make it reliable, they propose to build a hierarchy of proxies for each group
of replicas. This approach lacks reusability; in particular concerning the replication control.

6 Conclusion

In this paper, we presented a new fault-tolerant multiagent platform named DimaX. The design
and the implementation of fault tolerant large scale multiagent systems require to deal with prob-
lems related to distribution and fault-tolerance. For that, DimaX provides several services namely
naming service for agent localization, fault detection service for reconginizing faulty agents, obser-
vation service for collecting relevant information, and replication service for supporting replication
techniques. Thanks to these services and their implementation, DimaX has interesting features like
scalability, reusability, robustness, and adaptability for fault-tolerant MAS development. Thus, we
achieve robustness by using replication techniques. Contrary to other approaches (i.e., diagnosis),
replication enables us to run the critical multiagent applications without interruption. Moreover,
our control of replication enables to change dynamically replication strategies, for better adapting
to the evolution of the MAS context.

To generalize our approach, the futur work will propose a design methodology for fault-tolerant
large-scale MAS. The principles developed in our approach to the failure problem in MAS will be
the basis of the methodology.

References

[1] M. Bertier, O. Marin, and P. Sens. Performance analysis of a hierarchical failure detector. In
Proceedings of the International Conference on Dependable Systems and Networks (DSN’2003),
pages 635-644, San Francisco, USA, June 2003.

2]

A. Fedoruk and R. Deters. Improving fault-tolerance in mas with dynamic proxy replicate
groups. In IAT, pages 364-370, 2003.

FIPA Foundation for Intelligent Physical Agents. Fipa acl message structure specification.

R. Guerraoui and A. Schiper. Software-based replication for fault-tolerance. IEEE Computer,
30(3):68-74, 1997.

7. Guessoum and J.P. Briot. From active object to autonomous agents. IEEE Concurrency,
7(3):68-78, 1999.

Z. Guessoum, J.P. Briot, O. Marin, A. Hamel, and P. Sens. Dynamic and adaptive replication
for large-scale reliable multi-agent systems. In Proc. Second Workshop on Software Engineering
for Large-Scale Multi-Agent Systems (SELMAS °03), LNCS 2603, pages 182-198, Oregon,
USA, May 2001.

Z. Guessoum, N. Faci, and J-P. Briot. Adaptive replication of large scale mass: Towards a
fault-tolerant multiagent platform. In Springer Verlag, 2006.

S. Hagg. A sentinel approach to fault handling in multi-agent systems. volume 1286 of LNCYS,
pages 190-195. Springer-Verlag, 1997.

A. Helsinger, M. Thome, and T. Wright. Cougaar: a scalable, distributed multi-agent archi-
tecture. In SMC' (2), pages 1910-1917, 2004.

B. Horling, B. Benyo, and V. Lesser. Using self-diagnosis to adapt organizational structures.
In Proc.In 5th International Conference on Autonomous Agents, pages 529-536, Montreal,
Canada, June 2001.

G.A. Kaminka, D.V. Pynadah, and M. Tambe. Monitoring teams by overhearing: A multi-
agent plan-recognition approach. Journal of Intelligence Artificial Research, 17(1):83-135,
2002.

A1 Kistijantoro, G. Morgan, S.K. Shrivastava, and M.C. Little. Component replication in
distributed systems: a case study using enterprise. In 22nd International Symposium on
Reliable Distributed Systems (SRDS’03), pages 89-99, 2003.

M. Klein, J. Rodriguez-Aguilar, and C. Dellarocas. Using domain-independent exception han-
dling services to enable robust open multi-agent systems: the case of agent death. Journal of
Autonomous Agents and Multi-Agent Systems, 7(1-2):179-189, 2003.

S. Kumar and P.R. Cohen. Towards a fault-tolerant multiagent system architecture. In Proc.of
4th International Conference on Autonomous Agents, pages 459-466, New York, USA, June
2000.

O. Marin, P. Sens, J.P. Briot, and Z. Guessoum. Towards adaptive fault-tolerance for dis-
tributed multi-agents systems. In Proc. Fourth European Research Seminar on Advances in
Distributed Systems (ERSADS’01), pages 195-201, Bertinoro, Italy, May 2001.

S. Mellouli, B. Moulin, and G.W. Mineau. Towards a modelling methodology for fault-tolerant
multi-agent systems. In Informatica Journal 28, pages 31-40, 2004.

D. Powell. Delta-4: A generic architecture for dependable distributed computing. In Springer
Verlag, 1991.

P-M. Ricordel and Y. Demazeau. From analysis to deployment: A multi-agent platform survey.
volume 1972 of LNAI pages 93-106. Springer-Verlag, 2004.

F. Souchon, C. Urtado, S. Vauttier, and C. Dony. A proposition of exception handling in multi-
agent systems. In Proc. Second Workshop on Software Engineering for Large-Scale Multi-Agent
Systems (SELMAS '03), LNCS 2603, page 8, Oregon, USA, May 2003.

R. van Renesse, K. Birman, and S. Maffeis. A flexible group communication system. Commu-
nications of the ACM, 39(4):76-83, 1996.

