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Abstract. One of the most significant achievements in machine learning
is the development of Ensemble techniques, which gave a powerful tool
for tuning classifiers. The most popular methods are Random Forests,
Bagging and Boosting. In this paper we present a novel ensemble model,
named Random Granular Reflections. This algorithm creates an ensem-
ble of homogenous granular decision systems. In each iteration of learning
process, the training decision system is covered by random homogenous
granules and the granular reflection is created, which takes part in clas-
sification process. Seeing the initial results - our approach is promising
and seems to be comparable with the selected popular models.
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1 Introduction

This paper is about the application of granular rough computing in new Ensem-
ble model. The techique that we use to prepare the data for each iteration of
learning process was inspired by Polkowski standard granulation - see [16]. This
method was the beginning of many new algorithms with diverse applications,
for instance in Artiemjew [1]-[3], Polkowski [15]-[20], Polkowski and Artiemjew
[21] we have the presentation of standard granulation, concept dependent and
layered granulation in the context of training data size reduction, missing values
absorbtion and usage in the classification processes.

In our recent works - see [24] and [25] - we have developed a new granula-
tion technique - homogenous granulation (see. detail decription and toy example
in Sect. 2). This approximation technique is based on creation of groups of
r-indiscernible objects around each training object by lowering the ratio of in-
discernibility until the granules contain only homogoneus objects in the sense
of their decision class. In this method - what distinguishes it from previously
studied - there is no need to estimate optimal parameter of approximation. The
r-indiscernibility level for each central training object is formed in automatic
way and depends on the homogeneity in decision classes.



The ensemble scheme of classification is really effective in many contexts, for
instance in rough set methods the exemplary succesfull applications can be found
in [6-8,26,29]. The recently developed approximation technique - homogenous
granulation - gave us motivation to check it in ensemble model creation. Addi-
tionally to Random Forests, Bagging and Boosting we propose a novel algorithm
- Ensemble of Random Granular Reflections. The method is based on represen-
tation of original training system by its granular reflections formed from random
homogenous granules, which covers it in each iteration of learning process. Each
granular reflection of training decision system is additionally reduced in size in
comparison with original training decision system. The granular reflection of
each iteration represents the internal knowledge from original system using the
random coverage. The level of data reduction is up to 50 per cent of original
data.

In this work we have first sight into this method and for simplicity we treat all
attributes as cathegorical. For experiments we performed 50 iterations of learning
process with use of CSG classifier - the classifier based on simple granules of
knowledge - see [4].

We have compared our new method with selected ensemble models - see Sect.
3.

The rest of the work contains the following content. In Sect. 2 we have in-
troduction to homogenous granulation algorithm. In Sect 3 we have brief intro-
duction to selected Ensemble models. In Sect. 4 we present our novel ensemblme
model - The Random Granular Reflections technique. In Sect. 5 we show the
results of the experiments, and we conclude the paper in Sect. 6.

2 Homogenous granulation

Detailed theoretical introduction to rough inclusions is available in Polkowski
[15] — [20].

For given objects u,v from training decision system, r granulation radius,
and A the set of attributes, the standard rough inclusion p is defined as

IND(u,v)|
w(v,u,r) < Al >r (1)
where
IND(u,v) ={a € A:a(u) =a(v)}, (2)

The homogenous granules are formed as follows,
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2.1 The process of training system covering

In the process of covering - the objects from training system are covered based
on chosen strategy. We use simple random choice because it is the most effective
method among studied ones - see [21]).

The last step of the granulation process is shown in the next section.

2.2 Granular reflections

In this step we formed the granular reflections of the original training sys-
tem based on the granules from the found coverage (the coverage is the set of
granules, which cover the universe of traning objects completly). Each granule
g € COV (U, p,r) from the coverage is finally represented by single object formed
using the Majority Voting (MV) strategy (choice the most common values).

{MV({a(u) :ueg}):ac AU{d}} (3)

The granular reflection of the decision system D = (U, A,d) is the decision
system (COV (U, u, 1), the set of objects formed from granules.

v € g¢%(u) if and only if u(v,u,r) and (d(u) = d(v)) (4)

for a given rough (weak) inclusion pu.

Toy example of described granulation method is presented in the next section.

2.3 Toy example of homogenous granulation

Considering training decision system from Tab. 1.

Homogenous granules for all training objects:

9075(U1) = (Ul)




Table 1. Training data system (Ugrn, A, d), (a sample from Quinlan data set [23])

al a2 as a4 d
u1 | sunny hot high strong|no
uz | rain  cool normal strong|no
us |overcast cool normal strong|yes
us | sunny mild high weak |no
us | sunny cool normal weak |yes
ue | rain mild normal weak |yes
uy7 |overcast hot high weak |yes
ug | sunny mild normal strong|yes
ug |overcast mild high strong|yes
uio| rain  mild high weak |yes
ui1|overcast hot normal weak |yes

3

90-75(us) = (us)
90-75(ug) = (ug, u1p)
90-75(u7) = (u7,u11)
90-75(ug) = (us)
90-75(ug) = (uyg)
91(u10) = (u10)

9o-5(u11) = (u3,us, ug, ur, u11)

Granules covering training system by random choice:

90.75(U1) = (’U,l)

91(u2) = (uz)
91(us) = (ua)
90-75(ug) = (ug, u10)
90-75(u7) = (u7,u11)
90-75(ug) = (ug)
90-75(ug) = (uo)

go-5(u11) = (u3, us, ug, ur, u11)

Granular decision system from above granules is as follows:



Table 2. Granular decision system formed from Covering granules

g0.75(u1)| sunny hot high strong|no

g1(u2) rain  cool normal strong|no

g1(ua) | sunny mild high weak |no
90.75(ue)| rain mild normal weak |yes
go.75(u7)|overcast hot high weak |yes
90.75(us)| sunny mild normal strong|yes
90.75(ug)|overcast mild high strong|yes
go-5(u11) |overcast cool mormal weak |yes

In the next section there is a brief description of the selected popular En-
semble models.

3 Selected popular ensemble models

There are many techniques in the family of Enssemble models. One of the most
popular are Random Forests, Bagging and Boosting - see [31]. Short description
of mentioned models is to be found below.

Bootstrap Ensembles - Pure Bagging: It is the random committee of bootstraps
[33]. It is a method in which the original decision system - the basic knowledge
- is split into (TRN) training data set, and (T'STwvalid) validation test data set.
And from the TRN system, for a fixed number of iterations, we form a new
Training systems (NewT RN) by random choice with returning of card{T RN}
objects. In all iterations we classify the TRNvalid system in two ways: the first
based on the actual NewT RN system and the second based on the committee
of all performed classifications. In the committee majority voting is performed
and the ties are resolved randomly.

Bagging based on Arcing - Bagging: The main difference between this method
and Bootstrap Ensembles is that the TRN is split into two data sets NewT RN
and NewT'ST - see [5] and [27]. This split is based on Bootstraps where weights
determine the probability with which objects are assigned to NewTRN set.
Initially weights are equal, but after first classification of the NewTST using
NewTRN weights are lowered for well-classified objects. The next step is normal-
ization of weights. This algorithm which shows forming of Bootstraps is called
Arcing. Classifying the T'STwvalid with NewT RN in a single iteration as the
committee of classifiers is the last step of this method. In Arcing weights are
modified with the factor equal to ﬁ#.

Boosting based on Ada-Boost with Monte Carlo split: Classification method used
in this algorithm is similar to the previously described with the difference that
the NewTRN and NewTST are formed in a different way - see [9], [28] and [34].



Objects for NewTRN are chosen based on weights and fixed ratio is used to split
the TRN data set. Previous experiments show that split ratio equal to 0.6 is
optimal, as it is close to the approximate size of the distinguishable objects in
the bootstraps. Other parts of this algorithm works like in the previous one.

Random forests: In this model random trees are created based on randomly
chosen attributes and then they take part in the classification process in each
iteration. This method can be usefull in other classifiers using the random set
of attributes before usage in classification process. The number of attributes,
which should be chosen depending on internal data logic, have to be found in an
experimental way.

In the following section we present introduction to our new Ensemble method.

4 Ensemble of Random Granular Reflections

In each iteration of our new ensemble model we have used a different homoge-
nous granular decision system formed from random homogenous granules, which
covers the original training system. The visualization of the model can be found
in Fig. 1.

The time comlexity of this model is quadratic. The most time consuming
part is granulation, which main component takes ((no._of _obj.)?) * (no._of att.)
operations.
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random granular reflections
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Fig. 1. Ensemble of Random Granular Reflections



5 Experimental Session

To perform initial experiments we used the australian credit data set from UCI
Machine Learning Repository [30]. We have run our algorithm with 50 itera-
tions of learning for each tested Ensemble model. As a reference point we have
chosen Committee of Bootstraps (Pure Bagging) [33], Boosting based on Arcing
(Bagging) [5], [27], and Ada-Boost with Monte Carlo split [9], [28] and [34] - for
details see Sect. 3. As a reference classifier we used CSG classifier [4] with radius
0.5. The effectiveness is evaluated by percentage of properly classified objects -
the accuracy.

The first result of Random Granular Reflections technique for chosen data set
is presented in Fig. 2. The results of the other popular ensemble models are to be
found in Figs. 3, 4 and 5. For selected data set our new technique outperformed
the other checked methods.
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Fig. 2. Ensemble of Random Granular Reflections for australian credit dataset - the
accuracy of classification - 5 times 50 iterations of learning
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Fig. 3. Bagging ensemble model for australian credit dataset - the accuracy of classi-
fication - 5 times 50 iterations of learning
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Fig. 4. AdaBoost ensemble model for australian credit dataset - the accuracy of clas-
sification - 5 times 50 iterations of learning
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Fig. 5. Pure Bagging ensemble model for australian credit dataset - the accuracy of
classification - 5 times 50 iterations of learning

6 Conclusions

The results of the experiments show the effectivenes of our new technique. The
Ensemble of Random Granular Reflections turn out to be competitive with other
techniqes like Bagging and Boosting. Despite promising initial results, much is
left to be done to evaluate the effectiveness and set of applications of this new
method.

In the future works we have a plan to extensively check the effectiveness
of new model and we are planning to apply the other types of granules in the
proposed ensemble model.
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