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Abstract. meta-models are cardinal assets in Model-Driven Engineer-
ing because a diversity of artifacts depend on them, including visual
editors. Similar to any other software entity, meta-models are expected
to evolve during their life-cycle. Consequently, whenever a meta-model
changes, any related artifact must be consistently adapted to preserve
its well-formedness, consistency, or intrinsic correctness. Sirius-based ed-
itors are no exception. In this paper, we present a study that analyzes
the impact of meta-model changes over visual editors based on the Sir-
ius framework. Changes are classified according to their adverse effects
in order to provide designers with the possibility to perform an early
assessment of the effort needed to restore the editor consistency.
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1 Introduction

It is well recognized that meta-models in Model-Driven Engineering [15] (MDE)
represent cardinal assets for any modeling environment. Indeed, the artifacts
defined upon a meta-model, whether they be model transformations, code gen-
erators, or visual editors, are numerous and at different degrees of dependency [6].
For instance, rules in a model transformation are typically guarded by means
of OCL3 expressions that predicate over the source meta-model and contribute
to a relationship typically called domain conformance. Similarly to any other
software artifact, meta-models are prone to changes in response to requests for
improvements, unforeseen requirements, and new insights emerged from the do-
main. However, whenever a meta-model changes, any related entity must be
consistently adapted for preserving its well-formedness, consistency, or intrinsic
correctness [4]. Restoring the consistency between an artifact and the evolved
3 https://www.omg.org/spec/OCL/



meta-model is a challenging task that may lead to a meta-model lock-in where
designers lack confidence when confronted with it. Consequently, designers might
decide to procrastinate or even discard meta-model changes to avoid repercus-
sions over the modeling environment.

While the problem of co-evolution of models and meta-models has been ex-
tensively investigated (see [10] for a survey) and numerous approaches already
exist, e.g., [16, 1, 11], the co-evolution of visual editors and meta-models remains
largely unexplored. Despite the significance of maintaining a modeling environ-
ment in a consistent state, only one approach on the co-evolution of editors based
on GMF4 has been proposed [7] - to the best of our knowledge. While there is a
considerable number of active projects adopting GMF (e.g., Rational Software
Architect), recently the use of Sirius5 is increasingly gaining traction [13]. Sir-
ius is an Eclipse project based on GMF and the Eclipse modeling Framework6

(EMF) that is increasingly replacing GMF in building modern graphical editors
because it requires little programming overhead.

In this paper, a catalog of atomic meta-model changes borrowed from [7] has
analyzed in-depth. In particular, each change is discussed and classified according
to its impact over Sirius-based editors, and their definition is given by means
of the mapping model (see Sect. 2). Moreover, to better characterize the change
impact, the catalog has been extended by specializing the changes affecting a
property in a generic way, for instance ’add property’, by distinguishing between
attributes and references as they may expose different (and adverse) impact. The
possibility of performing an automated consistency restoration is also considered
for each meta-model change. The analysis focuses on editors only and does not
consider other artifacts that are affected by the changes as well, such as models,
transformations, or constraints.
Structure of the paper. The paper is organized as follows. In the next sec-
tion, a brief introduction to the Sirius framework is given. Section 3 presents
a classification of changes according to their impact on the editors. In Sect. 4,
each change in the catalog is analyzed and its impact over Sirius-based editors
is described. Finally, in Sect. 6 some conclusions are drawn.

2 Sirius

Sirius is an Eclipse project that enables the development of graphical model-
ing environments by leveraging well-established technologies. Starting from a
metamodel (called domain model in the Sirius jargon), it allows a model-based
specification of visual concrete syntax organized in viewpoints, i.e., models can
be authored by means of different notations that suit the needs of various stake-
holders. An example editor (for a simple mindmap metamodel) generated with
Sirius is represented in Fig. 1a whose perspective includes the graphical editor,
the tooling palette, and the property view.
4 https://www.eclipse.org/gmf-tooling/
5 https://www.eclipse.org/sirius/
6 https://www.eclipse.org/modeling/emf/



(a) A simple mindmap editor (b) A mapping model

Fig. 1: The Sirius framework

Sirius allows the conceptual separation between the metamodel and the
corresponding representation(s) by means of Viewpoint Specification Models
(VSMs)7, also referred to as mapping models throughout the paper. A map-
ping model consistently specifies the structure, appearance, and behavior of an
editor according to the domain model and it is given in the .odesign format. In
particular, viewpoints are given in combination with their representation speci-
fication that can be grouped in order to provide consistent visual attributions:

– the representation description specifies how models are represented, i.e., in
the form of diagrams, sequence diagrams, tables, and cross-tables, or trees;
user-defined representations can be given also by proper extensions;

– the representation extensions that enable the customization of diagrams, i.e.,
each representation can be endowed with extra functions;

– the validation rules are given for validating purposes and for suggesting
quick-fixes while editing, and finally

– Java extensions define additional functionalities to be associated with editor
commands or gestures.

At its very essence, a mapping model is a weaving model describing how each el-
ement in the meta-model is represented in the editor. An example of a viewpoint
specification is given in Fig. 1b.

Giving an exhaustive description of Sirius goes beyond the scope of this
paper. Many aspects have been deliberately ignored (e.g., the way Sirius leaves
models unpolluted with the layout and context-specific data by means of .aird

7 https://www.eclipse.org/sirius/doc/specifier/general/Specifying_Viewpoints.html



files) because not pertaining to the discussion. However, the interested reader
can refer to the online resources that are given throughout the paper.

3 Change impact classification

As already mentioned, meta-models are expected to evolve during their life-cycle,
thus causing possible problems to existing artifacts which refer to the old version
of the meta-model and are not consistent to the new version anymore. Classifying
changes according to their adverse impact is relevant because it provides design-
ers with the possibility to perform an early assessment of the required effort for
restoring the editor consistency. A well-established classification already exists
in literature for the co-evolution of models and meta-models [1, 9]: in particular,
changes are called non-breaking when the conformance of models to the corre-
sponding meta-model is not affected; breaking and resolvable when conformance
is broken but can be automatically restored; and breaking and unresolvable when
conformance is broken and its restoration requires human intervention.

Unfortunately, such classification does not apply to the co-evolution of other
kinds of artifacts, i.e., each different kind of artifact is depending on one or more
meta-models in different ways, for instance domain conformance in transforma-
tions is different from model conformance. Therefore, a specific classification
for Sirius-based editors has been defined. In this context, we have considered
the resilience of an editor as its ability to withstand changes in its environ-
ment. Therefore, the classification of changes is given by means of a number
of attributes that describe how editors and their specifications are affected as
follows.
Editor attributes. The resilience of a Sirius-based editor is explained by its
ability to survive meta-model changes and by the degree its expected behavior
is still exposed. We characterize the editor resilience by means of the following
attributes:

– non-breaking : an editor is non-breaking when despite the changes to the
meta-model, it is still possible to open and use the editor;

– complete: an editor is complete when after a meta-model change, each ele-
ment in the meta-model has a graphical counterpart within the editor, e.g.,
as part of the tooling palette;

– valid : an editor is valid when it exposes a correct behavior despite the meta-
model modifications, i.e., it is still possible to instantiate a model conforming
to the new version of the meta-model.

It is worth noting that a non-breaking editor may still be non-complete or non-
valid; or that a complete editor may be non-valid because some of the graphical
elements in the editor are misplaced, for instance. Moreover, the impact analysis
does not consider what happens when a non-breaking editor opens an existing
model.
Mapping model attributes. As already described, the mapping model spec-
ifies how each modeling element in the meta-model must be visually denoted.



A meta-model change can severely affect the editor specification given by the
mapping model stored in the .odesign file. The mapping model resilience is
characterized by the following attributes:

– complete: a mapping model is complete, if after a meta-model change it still
contains the graphical denotations for all model elements in the meta-model;

– valid : a mapping model is valid, if it consistently defines the graphical deno-
tation for the elements in the meta-model, despite the meta-model changes8;

– resolvable: a mapping model is resolvable, if after meta-model modifications
its validity and completeness can be restored by means of an automated
procedure.

The attributes given above are used for classifying the changes in the catalog
in [7] as described in the next section and summarized in Table 1. It is worth
noting that the proposed example covers the concepts of the node, edge, and
related palette elements. Thus, the analysis coverage does not comprehend the
so-called ’advanced’ features as defined in the Sirius documentation9.

4 How Sirius is affected

The change impact over the Sirius framework is discussed according to the at-
tributes given in the previous section. Additional change have been added with
the purpose of specializing modifications in order to be able to distinguish be-
tween different editor behaviors, as for instance in the case of ’add property’ that
has been split into attributes and references. For the sake of reproducibility and
ease of reference, all artifacts used in the impact analysis related to a change
have been made available as individual branches in a Git repository10 and named
with the same change identifier. A detailed summary of the classification is given
in Table 1, where all the atomic changes are given together with their impact on
the editor and its corresponding mapping model.
c1 - Add empty, concrete class. The addition of a concrete class in the meta-
model is non-breaking. The editor is non-complete because it does not expose
the new meta-class in the tooling palette. The editor is valid, because the change
does not affect its behavior: in EMF it is allowed to instantiate an empty meta-
class that does not belong to a container.11 The corresponding mapping model
is non-complete because it does not contain references to the new meta-class,
however, it is still valid. The completeness is not resolvable by any automated
procedure because it cannot be established ex-ante what is the graphical entity
that has to denote the added meta-class. In the following, we have also considered
8 More formally, a mapping model is valid when the correspondences between the
model elements in the meta-model and the mapping model are compatible (in alge-
braic sense), i.e., if there exists a homomorphism between them.

9 https://wiki.eclipse.org/Sirius/Tutorials/AdvancedTutorial
10 https://github.com/MDEGroup/sirius-coevolution
11 An exception occurs if the added meta-class is the root node, but this is nonsensical

as it would not contain any further element.



Fig. 2: Delete attribute errors

when the empty, concrete class is associated with an existing one distinguishing
between mandatory and optional case.
c1.1 - The new class is ‘optional’. The new class is added with an incoming
association with multiplicity 0. The editor is non-breaking. However, it is non-
complete since the class is not exposed in the tooling palette (as the added
optional reference) because the corresponding descriptions are not-present in
the mapping model, which is therefore non-complete. The editor and mapping
model is valid. As the change (c1), this is a non-resolvable change.
c1.2 - The new class is ‘mandatory’. The new class is added with an incoming
mandatory association. The editor is non-breaking, non-complete and non-valid
change. Specifically, the non-validity is due to the mandatory association that is
not possible to instantiate (because of the editor non-completeness). The map-
ping model is non-complete is valid and non-resolvable.
c2 - Add empty, abstract class. Adding an empty abstract class does not
break the editor that is still complete and valid because an abstract class does
not have a graphical denotation in the editor. Analogously, the mapping model is
complete and valid. Thus, it is not required to restore its consistency. A variant
of this change is considered below.
c3 - Add Specialization. This change specifies new inheritance properties for
an existing meta-classes. As to the editor, the change is breaking. The mapping
model is non-complete and is non-valid. The change is resolvable.
c4 - Delete Concrete Class. The change breaks the editor. The mapping
model is complete but non-valid. The change is resolvable.



c5 - Rename Class. This is a non-breaking change; however, it is non-complete
and non-valid. The mapping model is complete but non-valid (it still refers to
the previous name of the class). It is resolvable.
c6 - Add Property. c6.1 - Add Attribute. This change does not break the
editor; however, it is complete and valid (the added attribute can be entered
through the property panel). The mapping model is complete and valid.
c6.2 - Add Reference. As in the previous case, the change does not break the
editor. Concerning editor completeness and validity, the change has the following
impact: no visual counterpart for the reference is provided, thus the editor is non-
complete and non-valid (if the reference is mandatory). However, the property
panel still allows the specification of the reference. The mapping model is non-
complete but valid. The change is not resolvable.
c7 - Delete Property. The change does not break the editor. However, it
should be considered non-complete and non-valid because of message errors in
the editor and in the ’problems panel’ as illustrated in Fig. 2 (that refers to
the deletion of an attribute). The mapping model is non-complete and non-valid
because of dangling references to the deleted property. The change is resolvable
as dangling references can be removed automatically. The impact of the change
is very similar for both attributes and references.
c8 - Rename Property.
c8.1 - Rename Attribute. The change does not break the editor. However, be-
cause of dangling references the editor is non-complete and non-valid. Error
messages are displayed in the editor and in the ’problems panel’. The mapping
model is complete but non-valid. The change is resolvable.
c8.2 - Rename Reference. The change does not break the editor. However,
because of dangling references the editor is non-complete and non-valid because
the renamed references are not displayed. Errors are displayed in the error log.
The mapping model is complete but non-valid. The change is resolvable.
c9 - Move Property. The change does not break the editor. However, it
should be considered non-complete and non-valid because of message errors in
the ’problems panel’. Similarly to the ’add property’ change (c6), the property
panel allows the property to be updated. The mapping model is complete but
non-valid because of dangling references (the behavior is similar to that of a
deletion followed by an addition). The change is resolvable as dangling references
can be removed automatically. The impact of the change is almost the same for
attributes and references.
c10 - Pull up Property. The property is moved from an extended class to
a base class. The change does not break the editor that is complete and valid.
The mapping model is complete and valid as well. The impact of the change is
almost the same for attributes and references.
c11 - Change Property Type.
c11.1 - Change Attribute Type The editor does not break. Moreover is complete
and valid. The mapping model is complete and valid as well.
c11.2 - Change Reference Type This is a non-breaking change. However, the
editor is non-complete and non-valid as the changed reference is not shown in



id change 
editor mapping model 

non breaking complete valid complete valid resolvable 

c1 Add empty, concrete 
class 

YES NO YES NO YES NO 

c1.1 Add empty, optional, 
concrete class 

YES NO YES NO YES NO 

c1.2 Add empty, mandatory, 
concrete class 

YES NO NO NO YES NO 

c2 Add empty, abstract class YES YES YES YES YES ⎼ 

c3 Add specialization NO ⎼ ⎼ NO NO YES 

c4 Delete concrete class NO ⎼ ⎼ YES NO YES 

c5 Rename class YES ⎼ ⎼ YES YES NO 

c6 Add property  

c6.1  Add attribute YES YES YES YES YES ⎼ 

c6.2 Add reference YES NO* NO* NO YES NO 

c7 Delete property YES NO NO NO NO YES 

c8 Rename property 

c8.1  Rename Attribute YES NO NO YES NO YES 

c8.2 Rename Reference YES NO NO YES NO YES 

c9  Move property YES NO* NO* YES NO NO 

c10 Pull up property YES YES YES YES YES ⎼ 

c11 Change property type 

c11.1 Change attribute type YES YES YES YES YES ⎼ 

c11.2 Change reference type YES NO NO NO NO YES 

Table 1: Summary of the change impact (– = not applicable, * = involves property
view)

the editor (not even in the property panel). The mapping model is non-complete
and non-valid (if the reference is mandatory). The change is resolvable.

5 Related Work

The problem of co-evolution [5] has been extensively investigated for mod-
els [10]. Existing approaches can be distinguished in state-based approaches [1]
and operation-based ones [11, 14, 17]: the former derive migration procedures
from the meta-model differences, whereas the latter programmatically specify
how models must be co-adapted.

Different approaches have been proposed for the co-evolution of model trans-
formations: in [8] higher-order transformations generate a pre-packaged solution
to be customized according to the designer’s needs, predefined migration actions
are proposed in [11, 12], whereas in [18] mapping operators are used. All the



mentioned approaches are considered deterministic, i.e., they identify one trans-
formation adaptation, typically based on some heuristics, also in those cases
where multiple valid alternatives are possible. The problem of non-deterministic
transformation adaptation has been discussed and addressed in [3], where al-
ternative solutions have been combined together by means of variability models
expressing the different valid migration policies. Designers can then explore the
solution space in order to choose the right migration according to criteria that
normally cannot be expressed easily in procedural terms.

In [6] the problem of co-evolution is discussed under a different light, i.e.,
that available approaches focus on one specific kind of migration (for instance
the migration of models, transformation, or the adaptation of editors). As a con-
sequence, if the whole modeling environment must be co-evolved, then designers
must become familiar with a diversity of techniques, making the overall endeavor
difficult and prone to mistakes. Thus, the authors advocate the need for a holistic
approach that let designers express the rationale behind meta-model evolution
to be used for the migration of the whole environment.

Finally, the problem of the co-evolution of GMF editors is addressed in [7].
The work analyzes the dependencies between a meta-model and all the mod-
els defining a GMF editor, classifies the changes according to the impact, and
proposes a (semi) automated procedure for its adaptation. Clearly, our classifi-
cation presents similarities with the approach in [7]. However, the classification
proposed for GMF editors is based on the final effect on the editor rather than
understanding the exact dependencies among the meta-model and the editor
specification, which is the main focus of this paper. Moreover, in GMF the edi-
tor specification is different from that in Sirius, therefore it is not easy to extend
the results in [7] to Sirius.

While the work in [7] is (to the best of our knowledge) the only systematic
classification of the metamodel change impact, a number of platforms, including
MetaEdit+12 and Whole Platform13, provide some support to coupled evolution
by allowing the combination and extension of languages and the corresponding
environments [2]. However, an analysis of the change impact for them (compa-
rable to that in [7]) is not available.

It is worth noting that the corpus of research about coupled evolution is
extensive. In this paper, we discussed the most prominent works about the co-
evolution of the most important artifacts.

6 Conclusions

The Sirius framework is an increasingly adopted tool for the definition of visual
modeling environments built by leveraging EMF meta-models. Similarly to what
happens with models (and other artifacts), changes to a meta-model typically
reverberate through the editor at different degrees of severity putting the overall
project in jeopardy. In this paper, we have analyzed and classified a catalog of
12 https://www.metacase.com/mep/
13 http://whole.sourceforge.net



atomic changes borrowed from [7] in accordance with their impact over Sirius
editors. For each change, it has been observed whether the editor fails to open and
whether it exposes correct and complete behavior. Moreover, we analyzed the
impact on the editor definition, i.e., the mapping model, to understand whether
the restoration procedure can be automated or if user intervention is needed. The
work in this paper is preliminary to the analysis of more extended and composite
refactoring patterns and to the definition of (semi) automated procedures for the
consistency restoration. Besides more extended changes, future work includes
also the analysis of changes operated on meta-model OCL invariants and how
they affect editor resilience.
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