
Balancing Model Usability and Verifiability with SBVR

and Answer Set Programming

Deepali Kholkar
deepali.kholkar@tcs.com

Dushyanthi Mulpuru
dushyanthi.mulpuru@tcs.com

Vinay Kulkarni
vinay.vkulkarni@tcs.com

TCS Research
Pune, India

Abstract

Model driven engineering (MDE) approaches
necessitate verification and validation (V&V)
of the models used. Balancing usability of
modeling languages with verifiability of the
specification presents several challenges. We
present an approach and early results using
the Semantics of Business Vocabulary and
Business Rules (SBVR) standard as modeling
notation and answer set programming (ASP)
logic paradigm for verification of domain mod-
els as an attempt to address these challenges,
illustrated in the problem context of regula-
tory compliance for business enterprises with
an example from a real-life regulation.

1 Introduction

MDE seeks to enable development of large, complex
systems using models as basis, necessitating V&V of
the models. The vocabulary and business rules of the
problem domain need to be captured as the first step
in model building. It is desirable that models are pop-
ulated directly by subject matter experts (SMEs) to
minimize errors and provide them with greater con-
trol over the specification. Usability and verifiability
are therefore two key requirements from modeling lan-
guages. In practice, we find that modeling languages
that are easy to use by SMEs are less formal, there-
fore harder to verify e.g. Unified Modeling Language
(UML), while formal modeling languages such as Al-
loy, Kodkod, CSP, and SAT specification languages
that have automated solvers available are hard for
SMEs to use. Models facilitate V&V since they can
be used to generate the formal specification for vali-
dating themselves that can be solved using off-the-shelf
solvers as in [GD17, ABGR07, CCR08, FSB04, FF08].

In our earlier work we built a generic MDE frame-
work for rule checking that we applied to the complex
real-world problem of regulatory compliance by enter-
prises [RSKK17]. Our framework illustrated in Figure
1 comprises three parts: a) automated extraction from
natural language (NL) text of regulations to aid SMEs
in authoring a model of regulation rules [RSKK17],
b) model-based generation of formal logic specifica-
tion of rules [KSK17] and extraction of relevant en-
terprise data, and c) automated checking of extracted
data for rule compliance using an off-the-shelf rule en-
gine. V&V of the models used was not dealt with in
this work, and is the focus of the current paper.

Direct derivation of formal logic rules from NL reg-
ulation text is not feasible [LN13], therefore controlled
natural language (CNL) and a rule model are selected
as logical intermediate steps. Attempto Controlled
English is a CNL that translates directly to formal
specification while we need the intermediate model for
step b). We choose the SBVR modeling standard by
Object Management Group (OMG) to build the rule
model since SBVR a) is an expressive notation for
modeling business vocabulary and rules of any domain
and b) provides a CNL interface called SBVR Struc-
tured English (SBVR SE) usable by SMEs to populate
the model that is grounded in first-order logic (FOL).

Automated validation of models created using a
flexible CNL notation such as SBVR SE however poses
several problems. SAT solvers used in existing model
validation approaches [GD17, ABGR07, FSB04, FF08]
use programming paradigms that are much less expres-
sive than SBVR and do not support aggregates, rela-
tions, or functions. Alloy, Kodkod, and Object Con-
trol Language (OCL) support encoding of aggregates,
relations and constraints but not of rules with modal-
ities such as obligations and permissions, and default
behavior with exceptions, all of which frequently oc-
cur in real-world problem contexts such as regulation,



MDE framework

2 Model-based 

Generation

SBVR model 

of regulation

Solution: Tradeid / 

'1010000023TATA'

Success Rules: 

[defeasible(r_1, obligation, 

tradeIs_included_inMiFID_rep

orting(Tradeid,MiFID_reportin

gid), 

[rule1(Tradeid,Acquisitionid,D

isposalid,MiFID_reportingid)]).

]

fact(tradeTradetype(Tradeid,T

radetype)):-

fact(trade(Tradeid,_,_,Tradety

pe,_,_,_,_,_)).

Success Facts: 

fact(trade('1010000023TATA',

_,_,'buy',_,_,_,_,_)).

fact(tradeHasBuyer('1010000

023TATA','YFXS5XCH7N0Y05

NIXW11')).

1 Model 

Population

3 Compliance 

Checking

Generated artefacts

Data

Program Code

Rules

Legal text 

of 

regulation

Compliance 

report

Feedback {Inconsistencies, Solutions}

Extension of MDE 

for validation

NLP+ML 

extraction

Validation spec 
in ASPConstraints

Rules

ASP

solver

Figure 1: Extension of our MDE Framework for Model Validation
policy or contract compliance. SBVR supports these
features, however validating an SBVR model using any
of these languages requires implementation in terms of
the language primitives, a non-trivial task. To over-
come these limitations, we propose a V&V approach
for domain models built in SBVR using the ASP logic
programming paradigm detailed below.

2 Our V&V Approach for Domain
Models

We extend our earlier developed MDE framework to
generate the formal logic specification for V&V of the
SBVR model in the ASP paradigm, as shown in Figure
1. Model verification seeks to check that the model
does what it is expected to do, usually through an
implementing program1. We propose inconsistency
checking, scenario generation, and testing using a stan-
dard set of test cases and test data as verification tech-
niques in our approach.

The objective of model validation is to ascertain
that the model is a faithful representation of the prob-
lem space it represents1. We implement validation
by having SMEs certify scenarios generated from the
model for validity and coverage. We briefly touch
upon the SBVR and ASP technologies before explain-
ing the approach using an illustration from the KYC
regulation for Indian banks. KYC is an anti-money
laundering regulation that lays down guidelines for ac-
ceptance of new customers including risk categoriza-
tion and identification procedures.

2.1 SBVR

SBVR is a fact-oriented modeling notation [Nij07] that
encodes rules as logical formulations over fact types
that are relations between concepts2. Rules are stated
in SBVR SE to populate the model. Listing 1 shows
a few SBVR SE rules from the KYC example. Rules
r6 and r7 define obligations on the bank to open an
account for a customer. Rule r6 is populated in the

1http://www.inf.ed.ac.uk/teaching/courses/pm/Note16.pdf
2https://www.omg.org/spec/SBVR/1.3

SBVR model as a rule, meant by an obligationformula-
tion embedding an implication logical formulation over
fact types bank opensAccountFor customer and bank
verifiesIdentityOf customer that relate concepts bank
and customer.

Listing 1: Section of SBVR SE Rules from the KYC
Example

r u l e r1 I t i s n e c e s s a r y tha t customer @ i s
h i ghR i s kCus t | | customer @ i s l owR i skCus t

r u l e r2 I t i s n e c e s s a r y tha t customer @has
s o u r c eO fWe a l t h E a s i l y I d e n t i f i e d i f customer
@ i s l owR i skCus t

r u l e r4 I t i s n e c e s s a r y tha t customer @ i s
s a l a r i e d | | customer @ i s govtDept i f
customer @has
s o u r c eO fWe a l t h E a s i l y I d e n t i f i e d

r u l e r6 I t i s o b l i g a t o r y tha t bank
@opensAccountFor customer i f bank
@ v e r i f i e s I d e n t i t y O f customer

r u l e r7 I t i s o b l i g a t o r y tha t bank not
@opensAccountFor customer i f customer
@approaches bank && customer @ i s
bannedCustomer

r u l e r8 I t i s n e c e s s a r y tha t bank
@ v e r i f i e s I d e n t i t y O f customer i f customer
@approaches bank && customer @submits
document

2.2 ASP

We select ASP for automated verification since it a) is
a powerful, highly expressive logic programming nota-
tion supporting aggregates, functions, and optimiza-
tions and b) maps directly onto SBVR’s fact-oriented
model and underlying first-order logic formalism.

Rules in SBVR are translated as rules in ASP of
the form Head :- Body, where Body is the antecedent
that implies the consequent Head. Statement-type
rules without antecedents are translated as constraints
i.e. rules with empty head, as :- Body. Relations in
SBVR become predicates in ASP, with related con-
cepts as arguments referred by their ids e.g. bank
@opensAccountFor customer becomes opensAccount-
For(BankId,CustomerId). Our model-based generator
uses Eclipse Modeling Framework (EMF) generated
model traversal functions to traverse the SBVR model
and translate it to ASP rules and constraints. Listing



2 shows a fragment from the ASP program generated
for the KYC example.

Listing 2: ASP Fragment for KYC Example
h i ghR i s kCus t ( Customer Id ) v l owR i skCus t (

Customer Id ) :− customer ( Customer Id ) .
s o u r c eO fWe a l t h E a s i l y I d e n t i f i e d ( Customer Id ) :−

l owR i skCus t ( Customer Id ) .
s a l a r i e d ( Customer Id ) v govtDept ( Customer Id ) :−

s o u r c eO fWe a l t h E a s i l y I d e n t i f i e d ( Customer Id
) .

opensAccountFor ( BankId , Customer Id ) :−
v e r i f i e s I d e n t i t y O f ( BankId , Customer Id ) .

−opensAccountFor ( BankId , Customer Id ) :−
approaches ( CustomerId , BankId ) ,
bannedCustomer ( Customer Id ) .

v e r i f i e s I d e n t i t y O f ( BankId , Customer Id ) :−
approaches ( CustomerId , BankId ) , submi t s (
CustomerId , DocumentId ) .

submi t s ( CustomerId , DocumentId ) :− s a l a r i e d (
Customer Id ) , l e t t e rO f I d e n t i t y F r omCo r p o r a t e (
DocumentId ) .

ASP supports encoding of extended logic programs
with choice, cardinality, classical negation, and dis-
junction in the head of rules, not supported by normal
logic programs, enabling verification of these features
that are supported in SBVR SE. Disjunction in rule
heads is a powerful feature used to model mutually
exclusive paths, such as high and low risk categoriza-
tion in rule r1 and and two types of low risk customers
in rule r4 in Listing1. Classical negation allows ex-
plicit statement or derivation of negative knowledge,
e.g. rule r7 in Listing1.

ASP solvers perform automated analysis by ground-
ing the program i.e. generating variable-free rules
given a set of ground facts and using techniques simi-
lar to SAT solving to generate solutions or answer sets
of the program.

2.3 V&V using ASP

We use the DLV system [LPF+06] as the solver for our
generated ASP programs. The solver performs con-
sistency checking of the rule base, indicating conflict-
ing rules or constraints and generating answer sets for
paths where no conflicts exist. Answer sets by defini-
tion are minimal, i.e. no answer set can be contained
in another [Lif08], and represent the minimal set of
unique scenarios for the input model. These are pre-
sented to SMEs to check whether the generated sce-
narios are valid and whether all important scenarios
have been covered.

The KYC program of Listing2 generates four an-
swer sets corresponding to two risk categories and four
customer types. Listing3 shows ground facts provided
for a single customer with id 301 and a sample answer
set for salaried customer.

Listing 3: Input Ground Facts and Sample Answer Set
% Ground Fac t s :

customer (301) .
app roaches (301 ,201) .
l e t t e rO f I d e n t i t y F r omCo r p o r a t e (401) .
%bannedCustomer (301) .
% So l u t i o n s :
{ customer (301) , app roaches (301 ,201) ,

l e t t e rO f I d e n t i t y F r omCo r p o r a t e (401) ,
l owR i skCus t (301) ,
s o u r c eO fWe a l t h E a s i l y I d e n t i f i e d (301) ,
s a l a r i e d (301) , submi t s (301 ,401) ,
v e r i f i e s I d e n t i t y O f (201 ,301) ,
opensAccountFor (201 ,301) }

Although minimal, number of answer sets can grow
combinatorially with conditions and ground instances.
To constrain number of scenarios, only critically im-
portant conditions are modeled as disjunctions that
create independent scenarios for each condition, while
non-critical conditions such as id proof submitted by
a customer e.g. letterOfIdentityFromCorporate are
modeled as normal clauses and minimal number of
ground facts are provided to prevent combinatorial ex-
plosion.

Another verification step is testing the ASP pro-
gram using a set of manually created positive and neg-
ative test cases with test data provided as ground facts
and checking generated scenarios against expected re-
sults. When test data in the form of ground fact
bannedCustomer(301) is added, rule r7 becomes true,
conflicting with rule r6 and displays the inconsistency
as shown in Listing 4.

Listing 4: Inconsistencies Shown by ASP Solver
% Fact s d e r i v e d as t r u e i n e v e r y answer s e t :
−opensAccountFor (201 ,301) .
% I n c o n s i s t e n c i e s :
:− opensAccountFor (201 ,301) .

Inconsistencies need to be corrected in the model and
solutions re-generated iteratively until no anomalies
remain.

2.4 Discussion

In our experience of using our framework over two
years on sections from three real-life regulations, we
trained several groups of SMEs who found SBVR SE
to be an easily usable notation to understand and spec-
ify rules without requiring knowledge of underlying
technologies. Using a general-purpose CNL and model
saves us the effort of implementing a DSL, also keeps
the approach generic and usable for any problem do-
main. CNL being more flexible, verification is harder
than in case of a DSL. Our SBVR SE language imple-
mentation therefore places some restrictions on sen-
tence structure and keywords for ease of verification,
taking care not to compromise on feature support.

It is desirable that V&V ensures that specified rules
form a correct inferencing hierarchy. Work to supple-
ment the approach described here with static analysis



of the model to flag rules that are not explicated fur-
ther as possible cases of missing rules, check for cycles
and reachability is ongoing. However the same clause
may get specified in multiple ways. The extra work to
be performed for verification is compensated by other
advantages of the SBVR-ASP combination mentioned
earlier, also minimal translation effort from SBVR to
ASP. Not having to implement an input DSL that re-
duces the development and testing effort on language
engineering and model transformations. SBVR helps
identify and map to actual data if available, else gen-
erate mock data in our framework [RSKK17].

Having so far worked with partial regulations, we
plan to encode a few complete regulations that specify
rules at different levels of abstraction in order to test
adequacy of the SBVR and ASP notations.

3 Conclusion

Usability and verifiability of modeling languages are
both critical in any MDE approach, however often
conflict in practice. We proposed using CNL as a
stepping stone to populate models and reviewed the
challenges faced in verification of such a model us-
ing commonly used model checking languages. We
described our V&V approach using SBVR and ASP
to address these challenges and illustrated it with an
example from the KYC regulation for Indian banks.
Ongoing investigations include managing conflicts be-
tween rules using priorities and automated generation
of positive and negative ground data for verification.

4 References

References

[ABGR07] Kyriakos Anastasakis, Behzad Bordbar,
Geri Georg, and Indrakshi Ray. Uml2alloy:
A challenging model transformation. In
Model Driven Engineering Languages and
Systems, 10th International Conference,
MoDELS 2007, Nashville, USA, Septem-
ber 30 - October 5, 2007, Proceedings,
2007.

[CCR08] Jordi Cabot, Robert Clarisó, and Daniel
Riera. Verification of UML/OCL class
diagrams using constraint programming.
In First International Conference on Soft-
ware Testing Verification and Validation,
ICST 2008, Lillehammer, Norway, April
9-11, 2008, Workshops Proceedings, 2008.

[FF08] S. Feja and D. Ftsch. Model checking with
graphical validation rules. In 15th An-
nual IEEE International Conference and

Workshop on the Engineering of Computer
Based Systems (ecbs 2008), 2008.

[FSB04] F. Fleurey, J. Steel, and B. Baudry. Vali-
dation in model-driven engineering: test-
ing model transformations. In Proceed-
ings. 2004 First International Workshop
on Model, Design and Validation., 2004.

[GD17] Martin Gogolla and Khanh-Hoang Doan.
Quality improvement of conceptual UML
and OCL schemata through model valida-
tion and verification. In Conceptual Mod-
eling Perspectives., pages 155–168, 2017.

[KSK17] Deepali Kholkar, Sagar Sunkle, and Vinay
Kulkarni. Towards automated generation
of regulation rule bases using MDA. In
Proceedings of the 5th International Con-
ference on Model-Driven Engineering and
Software Development, MODELSWARD
2017, Porto, Portugal, February 19-21,
2017., 2017.

[Lif08] Vladimir Lifschitz. What is answer set pro-
gramming? In Proceedings of the Twenty-
Third AAAI Conference on Artificial In-
telligence,AAAI 2008, Chicago, Illinois,
USA, July 13-17, 2008.

[LN13] François Lévy and Adeline Nazarenko.
Formalization of natural language regula-
tions through SBVR structured english -
(tutorial). In Theory, Practice, and Appli-
cations of Rules on the Web - 7th Interna-
tional Symposium, RuleML 2013, Seattle,
WA, USA, July 11-13, 2013. Proceedings,
pages 19–33, 2013.

[LPF+06] Nicola Leone, Gerald Pfeifer, Wolfgang
Faber, Thomas Eiter, Georg Gottlob, Si-
mona Perri, and Francesco Scarcello. The
DLV system for knowledge representation
and reasoning. ACM Trans. Comput. Log.,
7(3):499–562, 2006.

[Nij07] Sjir Nijssen. SBVR: Semantics for busi-
ness. 2007.

[RSKK17] Suman Roychoudhury, Sagar Sunkle,
Deepali Kholkar, and Vinay Kulkarni.
From natural language to SBVR model au-
thoring using structured english for com-
pliance checking. In 21st IEEE Interna-
tional Enterprise Distributed Object Com-
puting Conference, EDOC 2017, Quebec
City, QC, Canada, October 10-13, 2017.


