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Abstract. Reinforcement learning (RL) is a key method for providing
robots with appropriate control algorithms. Controller blending is a tech-
nique for combining the control output of several controllers. In this arti-
cle we use on-line RL to learn an optimal blending of controllers for novel
faults. Since one cannot anticipate all possible fault states, which are ex-
ponential in the number of possible faults, we instead apply learning on
the effects the faults have on the system. We use a quadcopter path-
following simulation in the presence of unknown rotor actuator faults
for which the system has not been tuned. We empirically demonstrate
the effectiveness of our novel on-line learning framework on a quadcopter
trajectory following task with unknown faults, even after a small number
of learning cycles. The authors are not aware of any other use of on-line
RL for fault tolerant control under unknown faults.

Keywords: Reinforcement Learning · Fault-tolerant Control · Quad-
copter control

1 Introduction

One of the most important uses of reinforcement learning (RL) is for controlling
robots, using reinforcement learning control (RLC). It has been shown, e.g., [1]
that RLC can provide a model-free method for learning control of a robot, e.g.,
a quadrotor.

Model-free RLC assumes that the control system starts with no model and
solves the Bellman equation based on running experiments with appropriate
rewards, to create a matrix of values that serves as the model. Although model-
free RLC can prove accurate, its main disadvantage is a long convergence time.
Since the policy space for robotic interactions can be extremely large, RLC
requires a large number of iterations to achieve convergence. In addition, if the
plant is unstable (as is that of a quadcopter), or safety is an issue, using RLC
can prove difficult in practice.

The alternative approach is to use model-based RLC, which is also known as
iterative learning control (ILC). ILC refines the reference or input signals of a
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desired maneuver based on data from previous executions. This can be used to
update model parameters or extend an existing model.

We assume that we have modelled the quadcopter with a linear approxi-
mation of the underlying non-linear flight dynamics. Further, we assume that
unmodeled dynamics (in our case, faults) can be represented as linear multi-
plicative term to the actuation dynamics. Given planned trajectory inputs uk,
each ILC iteration can be decomposed into two steps: (1) disturbance estimation,
where a Kalman filter computes the current estimate of the disturbance ; and
(2) input update,where we compute an improved quadrotor input, uk+1. Using
this framework, the input can be abstracted at any level; e.g., from robot thrust
and angular velocities [2] to the position commands for trajectory following [3–
5]. Experiments show that few iterations (on the order of 10-20) are needed to
characterize repeatable disturbances and improve tracking performance.

The majority of applications of RL assume that learning is done off-line.
However, there are many situations in which a robot will encounter novel situ-
ations and needs to adapt to those situations. We address that scenario in this
article. In particular, we examine a quadcopter that has been pre-programmed
with a set of controls and uses control blending to operate within a known control
environment. However, for novel scenarios the robot must adapt. We introduce
novel actuator faults into a quadcopter, and use ILC to learn new control laws.

We have defined the quadcopter to have a hierarchical control architecture.
The lower-level controllers use PID methods to control each of the quadcopters
three axis of movement. The higher-level controller uses blends of the lower-level
controllers to control flight trajectories. We have pre-defined a set of control laws
for nominal and fault modes. We then subject the quadcopter to unseen fault
and then allow the quadcopter to repeat the novel conditions for the unseen
faults to learn new high-level control laws.

This article proposes the first use of ILC for learning novel fault-tolerant
control laws. We empirically demonstrate that we can learn new controls from
a small number of learning trials.

2 Related Work

This work builds on extensive prior work in RL, fault-tolerant control (FTC)
and Fault Detection and Isolation (FDI).

A significant body of work exists for RL for robotics applications, dating
from [1]. This work is related to work on trajectory following, e.g., [3–5]. For this
class of application, several instances of learning quadcopter control have been
achieved [6]; however we are not aware of prior work that uses Reinforcement
Learning to learn the optimal blending of controllers and achieve fault tolerant
control.

In the area of FTC [7], a significant body of work has been developed and
applied to real-world systems. [8] presents a recent overview of FTC, and [9]
presents FTC with relation of system safety. Traditional methods for FTC em-
ploy a bank of observers coupled with dedicated controllers, and perform dis-
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crete switching. This approach enables designers to tune the system to dedicated
faults, but the speed of the system hinges on the speed of FDI. More recent ap-
proaches use mixing controllers, e.g., [10, 11], which blend the outputs of multiple
controllers and are less reliant on FDI.

Fault-Tolerant Control (FTC) can be divided into two types, passive and
active. Passive fault tolerant controllers are designed off-line against predefined
models for certain operating conditions and have no ability to react to unantici-
pated faults. Passive FTC enables fast adaptation to faults, within the predefined
operating conditions. Active FTC uses on-line data to reconfigure the controller
to stabilise the plant. For a comprehensive study between the two approaches
see [12]. Both active and passive FTC rely on specifying the space of faults
that the system will encounter. For passive FTC, approaches such as blending
of controllers tuned to nominal and failure modes are used to maintain system
stability, e.g., [13]. Analogously, active FTC can rely on being able to detect pre-
specified faults, such as using a bank of observers, with each observer tuned to a
particular fault, e.g. [14]. For complex systems, it is impossible to pre-specify all
faults, since there are too many fault combinations to consider, and it may be
impossible to know all possible faults a priori. As a consequence, it is imperative
that a system designer understand the space of possible faults and their impact
on a system. Very little work has been conducted on exploring the space of faults
and their impact on active vs passive FTC.

3 Reinforcement Learning

Reinforcement learning (RL) [15] is a technique for learning control actions that
are optimal for particular states, using interactions of an agent with the envi-
ronment in which the agent obtains rewards for actions. Reinforcement learning
is typcially formalized as a Markov decision process (MDP), which is a tuple
M = 〈S,U, T,R, γ〉, where

– S is the set of possible world states,
– U is the set of possible control actions,
– T is a transition function T : S × U → P (S),
– R is the reward function R : S × U → R,
– and γ is a discount factor such that 0 ≤ γ ≤ 1.

Reinforcement learning learns a policy Π : S → U , which defines which ac-
tions should be taken in each state. Q-learning [16] is a model-free reinforcement
learning technique that uses a Q-value Q(s, u) to estimate the expected future
discounted rewards for taking action u in state s. At each step, Q-learning applies
an update equation for Q(s, u) given by

Q(st, ut)← Q(st, ut) + α
(
rt+1 + γmax

u
Q[st+1, ut]−Q[st, ut]

)
where rt+1 is the reward observed after performing action ut in state st, α is
the learning rate (0 ≤ α ≤ 1), and st+1 is the state that the agent transitions to
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after performing action ut. After Q(st, ut) converges, the optimal action for the
agent in state st is arg maxuQ(st, u).

In Q-learning and related algorithms, an agent maintains a table of Q[S,U ]
based on its history of interaction with the environment. An experience 〈s, u, r, s′〉
provides one data point for the value of Q(s, u). The data point is that the agent
received the future value of r+γV (s′), where V (s′) = maxu′ Q(s′, u′); this is the
actual current reward plus the discounted estimated future value. This new data
point is called a return. The agent can use the temporal difference equation to
update its estimate for Q(s, u):

Q[s, u]Q[s, u] + α(r + γmax
u′

Q[s′, u′]−Q[s, u])

or, equivalently,

Q[s, u](1− α)Q[s, u] + α(r + γmax
u′

Q[s′, u′]).

4 RL Results

This section presents a summary of our results. We have shown that RL can
be used to dynamically learn how to stabilise a robot’s trajectory given previ-
ously unseen faults. We used a quadcopter to demonstrate how path-following
deviations can be reduced following learning epochs.

We will firstly present the final Q-Matrix (Figure 1) that was learned. Positive
and negative Q-values represent good and bad performance respectively. There
is a large amount of negative values which can be attributed to our reward
function, see Section 5.1. We say the matrix has converged perfectly if only
a single positive Q-Value exists per row. This is not evident in this matrix but
with adjustments to the reward function and enough learning epochs this matrix
would converge. Another interesting point to note is the magnitude of the Q-
Values. The first row has significantly higher values than the rest. This is because
the first row represents the lowest deviation rate and this row will get trained
for every fault since for the deviation rate to increase to the higher partitions
it must first go through first partition. To see the improvements in trajectory
following performance for a quadcopter, we compared the RLC with the original
quadcopter configuration. As far as the authors are aware there is currently no
baseline controller for unknown faults to compare against. In future we intend
to run comparisons against other FTC architectures. We use total trajectory
deviation in centimetres to gauge how much the tracking accuracy improved.
Table 1 shows this comparison for several magnitudes of unknown rotor faults.
We denote the number of learning cycles of RLC using µ. We noticed a 63-75%
decrease in the trajectory deviation after a small number of learning cycles.

Figure 2 shows the time it took to re-stabilize the quadcopter along its trajec-
tory with acceptable deviation after each completed learning cycle. It is clearly
visible that after a small number of learning iterations the time to re-stabilize
drastically reduces but never converges to 0. The spikes in the graph show an
increase in the magnitude of a benchmark fault induced.
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Fig. 1. Matrix learned after 250 learning cycles. Rows represent different system states
and each column represents a blended controller.

Rotor Fault Original Quadcopter(cm) RLC Quadcopter (cm) µ Improvement

4% 532.81 131.39 100 75.34%
6% 2188.1 650.92 200 70.25%
7% 5439.9 1995.1 250 63.32%

Table 1. Empirical Analysis of RLC improvment in path deviation error against the
original controller.

Fig. 2. Evaluation phase τ timings.
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5 Reinforcement Learning Blended Control

This section describes the mapping of the RL approach to our experimental do-
main, i.e. what the RL tuple 〈S,U, T,R, γ〉 means for our quadcopter domain.
For the experimental set-up we used an opensource Matlab implementation of a
quadcopter flight simulation [20]. This implementation used 4 tuned PID (Pro-
portional Integral Derivative) controllers to control Roll, Pitch, Yaw and Altitude
(Figure 3 Right) respectively.

Fig. 3. Left: Simulation Path. Right: Roll , Pitch and Yaw axis of the quadcopter.

Our objective with this simulation is to implement on-line reinforcement
learning for faults of unknown origin and magnitude. As far as the authors are
aware not much work has been done using RL to learn a blended controller for
unknown faults on-line. The simulations core task is trajectory following which
is defined as a list of time indexed way point locations in the form of a triplet
(X , Y, t), presenting desired X and Y position at time t. Given the quadcopters
current position at time t as (x̄, ȳ) the deviation from the trajectory can be
computed as:

δt =

√
(X − x̄)

2
+ (Y − ȳ)

2

The trajectory used is a square and can be seen in Figure 3 Left. We define a
single learning cycle for RL as a single execution of the shown trajectory with one
unknown faults. The faults are injected at the same point in the trajectory for
consistency. After every learning cycle we allow for time to fully stabilize along
its trajectory so no residual effects from previous learning cycles will influence
future learning quality. Since we have a cyclic trajectory we can continuously
repeat the learning cycles and analyse the performance improvements over time
and on-line. Each learning cycle can be defined in terms of four phases, which
are:

1. Stabilize - Ensure nominal operating conditions.
2. Learning - Random fault in specified range and stabilizing using RL.
3. Stabilize - Ensure nominal operating conditions.
4. Evaluate - Test against a benchmark error to check improvement.
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The Stabilize phases simply ensure the quadcopter returns to its trajectory
with acceptable deviation rate and in nominal operating conditions before pro-
ceeding to the following phases. The Learning phase consists of random fault
injection and stabilizing with RL. The Evaluation evaluates the current learned
policy against a benchmark fault to record the improvements learned over time,
Figure 2.

RL States The space of unknown faults is simply too large to apply learning to
each fault individually. We hence classify the states S for our RL implementation
in terms of the effect that unknown faults have on the trajectory following task.
For this metric we chose the deviation rate from the desired trajectory, which
we define as:

ρ =
d

dt

4∑
i=0

δt−i,

where δi is the trajectory error between current and desired position at time
step t− i. We then define S as a partition over the parameter space of ρ into N
regions of equal size.

RL Actions Our action space U is defined in terms of blended control for which
we use a linear combination of predefined controllers. In other words, given a
set of M predefined controllers Λ = {Λ1, · · · , ΛM} and corresponding weights
{ϕ1, · · · , ϕM}, our applied blended control is given by

Λ∗ =

M∑
i=1

ϕiΛi. (1)

where
∑M

i=1 ϕi = 1. We define our action space U as a partition of size P
over the parameter space of ϕ. The granularity of this partition will dictate how
many different blended controllers are being learned on.

We then define our Q-Matrix as Q(S,U) and set N and P to 5 and 10
respectively. In other words we are learning the optimal blended controller for
each deviation-rate sub-partition. The size of the matrix increases drastically
with the size of the partitions. We hence chose small enough partition sizes to
concentrate the learning into a smaller region. The transition function T maps
the current state and action chosen to the new state. In our context T is already
given by the simulation itself.

For RL to be able to learn on-line we must have some performance metric to
evaluate how well a controller performed during the fault recovery for each sep-
arate learning cycle. For this metric we choose the time, τ , until the quadcopter
is stabilized on its desired trajectory.
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RL Rewards Since we use τ as our performance metric we must also compute
a baseline value to compare this against, which indicates positive or negative
reward for the blended controller used. Since we have no prior knowledge about
the faults, we compute τ̄ , a running average of τ . For each subspace of Si we
define τ̄ i to allow larger errors more time to stabilize. We assign credit based on
the performance against the running average.

C =

{
1 if τ ≤ τ̄ i
-1 if τ > τ̄ i

given that max(ρ) < Si. The τ̄ values for each fault mode after the RL
simulation can be found in Table 2.

Si S1 S2 S3 S4 S5

τ̄ i (sec) 2.8 3.6 3.9 4.3 4.7

Table 2. τ̄ i values for each partition of S after the RL simulation.

Credit Assignment Problem The Credit Assignment Problem [21] refers to
the problem of identifying which action was the one deserving credit. In our
case the problem is identifying which partition Si should receive the credit af-
ter a learning phase. This is because ρ will naturally vary across multiple sub-
partitions of S during a single learning cycle. We hence apply RL for each of
the sub-partitions. The blended controller used to control the system is changed
when ρ transitions from its current Si to Si−1 or Si+1. Figure 4 shows various
signals and the bounds of each Si indicated as Levels from the quadcopter simu-
lation during a single learning cycle. The Green signal represents the changing ρ.
We indicate the transition between sub-partitions of S with red arrows. Notice
the blue signal representing the applied control signal changes when the devia-
tion magnitude changes. However this implementation makes it difficult to assign
credit to a single subspace, since learning was potentially applied on multiple
subspaces. We combat this by assigning proportional credit to each subspace
depending on how long the value of ρ stayed in each of the parameter subspaces.
That is, the credit assigned to each Si is:

R(Si) = C ∗ t
τ

where t is the duration that ρ was in the bounds of Si and C and τ are as
previously defined.

For this implementation we do not use γ, the future expected reward. Esti-
mating the expected deviation rate ρt+1 is challenging as the controller is syn-
thesised on-line and the faults are unknown. In future work we will extend the
reward function to include the γ term.
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Fig. 4. Graph showing ρ (green), current error (orange) and blended controller used
(blue). The subspaces S1, S2, ..., S5 are indicated along the Y-axis using the Level
terminology.

Error Generation We focus solely on unknown rotor faults for this article for
simplicity but this framework works for any unknown faults that cause trajectory
deviations. More specifically, we use a multiplicative term ι on the rotor speed
to represent the unknown fault. To achieve an even distribution of learning we
randomize ι, such 0 ≤ ι ≤ Γ , where Γ is the upper limit on the fault. We
incrementally increase Γ after a number of learning cycles. This will give a
larger variance of deviations allowing the system to apply learning across all
sub-partitions. Figure 5 shows the rotor fault magnitudes used over 250 learning
cycles. Note this figure shows the benchmark errors used as well as randomized
errors for training.

Fig. 5. Rotor Fault magnitude ι and benchmark errors Γ throughout simulation. Note:
larger errors are given longer time to stabilize.
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5.1 Simulation Details

For completeness we will give a full list of low level controllers and other pa-
rameters used for the experiments. The PID controller coefficients for nominal
and fault (indicated by superscript N and F) controller for each control axis
(indicated by subscript φ, θ, ψ) can be seen in Table 3. It is worth noting that
these controllers are not tuned for any specific fault; they are simply tuned with
a more ”aggressive” coefficient. Figure 1 shows the matrix after 250 learning
cycles. We set the initial value for Γ to 3% and increased this after every 50
learning iterations up to 7%. We apply the fault to the same rotor every time.

Controller λNφ λFφ λNθ λFθ λNψ λFψ
P 2 10 2 10 4 14

I 1.1 5 1.1 5 0.5 2

D 1.2 3 1.2 3 3.5 5
Table 3. Low level nominal and fault controller tuning for each control axis.

6 Conclusion

In this article we presented a novel reinforcement learning approach for on-
line, real-time learning for unknown faults. We empirically demonstrated the
effectiveness of this approach on a Quadcopter trajectory following task. We
noticed a 63-75% decrease in the trajectory deviation due to an unknown fault
after a small number of learning cycles. In this set of experiments only rotor
faults where investigated but given appropriate controller pairs for blending the
authors believe this approach will work for other system disturbances such as
wind or sensor faults. Since we are learning on the disturbance space ,instead
of the fault parameter space, this learning approach will work for most faults
that cause a path deviation. The novelty of this approach is that the learning
phase can be conducted on-line and needs very few iterations before converging
compared to traditional RL methods. Further more, we are not aware of any
other RL based approach for FTC under novel faults. This could provide adaptive
FTC capabilities to systems that are not easily fixable or reconfigurable such as
satellites or space rovers. Our future work includes focusing on improving the
learning process and attempting training on a multitude of errors. For simplicity,
this article also only explores a two controller blending strategy but in theory
this is not a limitation. Larger sets of predefined controllers for blending can be
trained using our described method but with a considerably larger number of
training phases which will also be explored in future work.
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