
Explainable PCGML via Game Design Patterns

Matthew Guzdial1, Joshua Reno1, Jonathan Chen1, Gillian Smith2, and Mark Riedl1
Georgia Institute of Technology1

Worcester Polytechnic Institute2
{mguzdial3, jreno, jonathanchen}@gatech.edu, gmsmith@wpi.edu, riedl@cc.gatech.edu

Abstract

Procedural content generation via Machine Learning 
(PCGML) is the umbrella term for approaches that generate 
content for games via machine learning. One of the benefits 
of PCGML is that, unlike search or grammar-based PCG, it 
does not require hand authoring of initial content or rules. 
Instead, PCGML relies on existing content and black box 
models, which can be difficult to tune or tweak without 
expert knowledge. This is especially problematic when a 
human designer needs to understand how to manipulate 
their data or models to achieve desired results. We present 
an approach to Explainable PCGML via Design Patterns in 
which the design patterns act as a vocabulary and mode of 
interaction between user and model. We demonstrate that 
our technique outperforms non-explainable versions of our 
system in interactions with five expert designers, four of 
whom lack any machine learning expertise.

Introduction
Procedural Content Generation (PCG), represents a field 
of research into, and a set of techniques for, generating 
game content algorithmically. PCG historically requires a 
significant amount of human-authored knowledge to gener-
ate content, such as rules, heuristics, and individual compo-
nents, creating a time and design expertise burden. Procedu-
ral Content Generation via Machine Learning (PCGML) at-
tempts to solve these issues by applying machine learning to 
extract this design knowledge from existing corpora of game 
content (Summerville et al. 2017). However, this approach 
has its own weaknesses; Applied naively, these models re-
quire machine learning literacy to understand and debug. 
Machine learning literacy is uncommon, especially among 
those designers who might most benefit from PCGML.

Explainable AI represents a field of research into opening 
up black box Artificial Intelligence and Machine Learning 
models to users (Biran and Cotton 2017). The promise of ex-
plainable AI is not just that it will help users understand such 
models, but also tweak these models to their needs (Olah et 
al. 2018). If we could include some representation of an in-
dividual game designer’s knowledge into a model, we could 
help designers without ML expertise better understand and 
alter these models to their needs.

Design patterns (Bjork and Holopainen 2004) represent
one popular way to represent game design knowledge. A de-
sign pattern is a category of game structure that serves a gen-
eral design purpose across similar games. Researchers tend
to derive design patterns via subjective application of design
expertise (Hullett and Whitehead 2010), which makes it dif-
ficult to broadly apply one set of patterns across different
designers and games. The same subjective limitation also
means that an individual set of design patterns can serve to
clarify what elements of a game matter to an individual de-
signer. Given a set of design patterns specialized to a partic-
ular designer one could leverage these design patterns in an
Explainable PCGML system to help a designer understand
and tweak a model to their needs. We note our usage of the
term pattern differs from the literature. Typically, a design
pattern generalizes across designers, whereas we apply it to
indicate the unique structures across a game important to an
individual designer.

We present an underlying system for a potential co-
creative PCGML tool, intended for designers without ML
expertise. This system takes user-defined design patterns for
a target level, and outputs a PCGML model. The design pat-
terns provided by designers and generated by our system can
be understood as labels on level structure, which allow our
PCGML model to better represent and reflect the design val-
ues of an individual designer. This system has two major
components: (1) a classification system that learns to clas-
sify level structures with the user-specified design pattern
labels. This system ensures a user does not have to label all
existing content to train (2) a level generation system that in-
corporates the user’s level design patterns, and can use these
patterns as a vocabulary with which to interact with the user.
For example, generating labels on level structure to represent
the model’s interpretation of that structure to the user.

The rest of this paper is organized as follows. First, we re-
late our work to prior, related work. Second, we describe our
Explainable PCGML (XPCGML) system in terms of the two
major components. Third, we discuss the three evaluations
we ran with five expert designers. We end with a discussion
of the systems limitations, future work, and conclusions. Our
major contributions are the first application of explainable
AI to PCGML, the use of a random forest classifier to min-
imize user effort, and the results of our evaluations. Our re-
sults demonstrate both the promise of these pattern labels



“intro” … 

input: 8x8x30+n 

conv: 
64x5x5 

dropout 

… 

output: 8x8x30+n 

encoding: 
512 

deconv: 
64x5x5 

deconv: 
64x5x5 

conv: 
64x5x5 

relu relu 

“intro” 

Figure 1: Network architecture for the Autoencoder.

in improving user interaction and a positive impact on the
underlying model’s performance.

Related Work
There exist many prior approaches to co-creative or mixed-
initiative design agents and editors (Yannakakis, Liapis, and
Alexopoulos 2014; Deterding et al. 2017). However, the
majority of existing approaches have relied upon search
or grammar-based approaches instead of machine learning,
making it difficult to adapt to the needs of a particular de-
signer over time (Liapis, Yannakakis, and Togelius 2013;
Shaker, Shaker, and Togelius 2013; Baldwin et al. 2017). A
final version of our system would focus on machine learn-
ing, adapting to the user, and explaining and visualizing its
inner model/process.

Procedural content generation via Machine Learning
(Summerville et al. 2017) is a relatively new field, focused
on generating content through machine learning methods.
The majority of PCGML approaches represent black box
methods, without any prior approach focused on explainabil-
ity or co-creativity. We note some discussion in the Sum-
merville et al. survey paper on potential collaborative ap-
proaches. Summerville (2016a) explored adapting levels to
players, but no work to our knowledge looks at adapting
models to individual designers.

Super Mario Bros. (SMB) represents a common area
of research into PCGML (Dahlskog and Togelius 2012;
Summerville and Mateas 2016; Jain et al. 2016; Snodgrass
and Ontanón 2017). Beyond explainability, our approach
differs from prior SMB PCGML approaches in terms of rep-
resentation quality and the size of generated content. We
focus on the generation of individual level sections instead
of entire levels in order to better afford collaborative level
building (Smith, Whitehead, and Mateas 2011). Second,
prior approaches have abstracted away the possible level
components into higher order groups. For example, treating
all enemy types as equivalent and ignoring decorative ele-
ments. We make use of a rich representation of all possible
level components and an ordering that allows our approach
to place decorative elements appropriately.

Explainable AI represents an emerging field of research
(Biran and Cotton 2017), focused on translating or rational-
izing the behavior of black box models. To the best of our
knowledge, this has not been previously applied to PCGML.
Codella et al. (2018) demonstrated how explanations could
improve model accuracy on three tasks, but required that ev-

ery sample be hand-labeled with an explanation and treated
explanations from different authors as equivalent. Ehsan et
al. (2017) made use of explainable AI for explainable agent
behavior for automated game playing. Their approach relies
on rationalization, which relies on a second machine learn-
ing interpretation of the original behavior, rather than visual-
izing or explaining the original model as our approach does.

Design patterns represent a well-researched approach to
game design (Bjork and Holopainen 2004). In theory, game
design patterns describe general solutions to game design
problems that occur across many different games. Game De-
sign patterns have been used as heuristics in evolutionary
PCG systems including in the domain of Super Mario Bros.
(Dahlskog and Togelius 2012). Researchers tend to derive
game design patterns through either rigorous, cross-domain
analysis (Milam and El Nasr 2010) or based upon their sub-
jective interpretation of game structure. We embrace this
subjectivity in our work by having designers create a lan-
guage of game design patterns unique to themselves with
which to interact with a PCGML system.

System Overview
The approach presented in this paper builds an Explainable
PCGML model based on existing level structure and an ex-
pert labeling design patterns upon that structure. We chose
Super Mario Bros. as a domain given its familiarity to the
game designers who took part in our evaluation. The gen-
eral process for building a final model is as follows: First,
users label existing game levels with the game design pat-
terns they want to use for communicating with the system.
For example, one might label both areas with large amounts
of enemies and areas that require precise jumps as “chal-
lenges”. The exact label can be anything as long as it is used
consistently. Given this initial user labeling of level struc-
ture, we train a random forest classifier to classify additional
level structure according to the labeled level chunks (Liaw,
Wiener, and others 2002), which we then use to label all
available levels with the user design pattern labels. Given
this now larger training set of both level structure and labels,
we train a convolutional neural network-based autoencoder
on both levels structure and its associated labels (Lang 1988;
LeCun et al. 1989), which can then be used to generate new
level structure and label its generated content with these de-
sign pattern labels (Jain et al. 2016).

We make use of Super Mario Bros. as our domain, and, in
particular, we utilize those Super Mario Bros levels present



in the Video Game Level Corpus (Summerville et al. 2016b).
We do not include underwater or boss/castle Super Mario
Bros. levels. We made this choice as we perceived these two
level types to be significantly different from all other level
types. Further, while we make use of the VGLC levels, we
do not make use of any of the VGLC Super Mario Bros.
representations, which abstract away level components into
higher order groups. Instead, we draw on the image pars-
ing approach introduced in (Guzdial and Riedl 2016), using
a spritesheet and OpenCV (Bradski and Kaehler 2000) to
parse images of each level for a richer representation.

In total we identified thirty unique classes of level compo-
nents, and make use of a matrix representation for each level
section of size 8 × 8 × 30. The first two dimensions deter-
mine the tiles in the x and y axes, while the last dimension
represents a one-hot vector of length 30 expressing compo-
nent class. This vector is all 0’s for any empty tile of a Super
Mario Bros. level, and otherwise has 1’s at the index asso-
ciated with that particular level component. Thus, we can
represent all level components, including background deco-
ration. We note that we treat palette swaps of the same com-
ponent as equivalent in class.

We make use of the SciPy random forest classifier (Jones,
Oliphant, and Peterson 2014) and tensorflow for the autoen-
coder (Abadi et al. 2016).

Design Pattern Label Classifier
Our goal for the design pattern label classifier is to minimize
the amount of work and time costs for a potential user of the
system. Users have to label level structure with the design
patterns they would like to use, but the label classifier en-
sures they do not have to hand-label all available levels. The
classifier for this task must be able to perform given access
to whatever small amount of training data a designer is will-
ing to label for it, along with being able to easily update its
model given potential feedback from a user. We anticipate
the exact amount of training data the system has access to
will differ widely between users, but we do not wish to over-
burden authors with long data labeling tasks. Random forest
classifiers are known to perform reasonably under these con-
straints (Michalski, Carbonell, and Mitchell 2013).

The random forest model takes in an eight by eight level
section and returns a level design pattern (either a user-
defined design pattern or none). We train the random forest
model based on the design pattern labels submitted by the
user. We use a forest of size 100 with a maximum depth of
100 in order to encourage generality.

In the case of an interactive, iterative system the random
forest can be easily retrained. In the case where the random
forest classifier correctly classifies any new design pattern
there is no need for retraining. Otherwise, we can delete a
subset of the trees of the random forest that incorrectly clas-
sified the design pattern, and retrain an appropriate number
of trees to return to the maximum forest size on the existing
labels and any additional new information.

Even with the design pattern level classifier this system re-
quires the somewhat unusual step of labeling existing level
structure with design patterns a user finds important. How-
ever, this is a necessary step for the benefit of a shared vo-

cabulary, and labeling content is much easier than designing
new content. Further, we note that when two humans collab-
orate they must negotiate a shared vocabulary.

Generator
The existing level generation system is based on an autoen-
coder, and we visualize its architecture in Figure 1. The input
comes in the form of a chunk of level content and the associ-
ated design patterns label, such as “intro” in the figure. This
chunk is represented as an eight by eight by thirty input ten-
sor plus a tensor of size n where n indicates the total number
of design pattern labels given by the user. This last vector of
size n is a one-hot encoded vector of level design pattern
labels.

After input, the level structure and design pattern label
vector are separated. The level structure passes through a
two layer convolutional neural network (CNN). We note that
we placed a dropout layer in between the two CNN layers to
allow better generalization. After the CNN layers the output
of this section and the design patterns vector recombine and
pass through a fully connected layer with relu activation to
an embedded vector of size 512. We note that, while large,
this is much smaller than the 1920+n features of the input
layer. The decoder section is an inverse of the encoder sec-
tion of the architecture, starting with a relu fully connected
layer, then deconvolutional neural network layers with up-
sampling handling the level structure. We implemented this
model with an adam optimizer and mean square loss. Note
that for the purposes of evaluation this is a standard autoen-
coder. We intend to make use of a variational autoencoder in
future work (Kingma and Welling 2013).

Evaluation
Our system has two major parts: (1) a random forest clas-
sifier that attempts to label additional content with user-
provided design patterns to learn the designer’s vocabulary
and (2) an autoencoder over level structure and associated
patterns for generation. In this section we present three eval-
uations of our system. The first addresses the random forest
classifier of labels, the second the entirety of the system, and
the third addresses the limiting factor of time in human com-
puter interactions. For all three evaluations we make use of
a dataset of levels from Super Mario Bros. labeled by five
expert designers.

Dataset Collection
We reached out to ten design experts to label three or more
Super Mario Bros. levels of their choice to serve as a dataset
for this evaluation. We do not include prior, published aca-
demic patterns of Super Mario Bros. levels (e.g. (Dahlskog
and Togelius 2012)) as these patterns were designed for gen-
eral automated design instead of explainable co-creation.
Our goals for choosing these ten designers were to get as
diverse a pool of labels as possible. Of these ten, five re-
sponded and took part in this study.

• Adam Le Doux: Le Doux is a game developer and de-
signer best known for his Bitsy game engine. He is cur-
rently a Narrative Tool Developer at Bungie.



set labels total top three
Le
Doux

47 259 platform (29), jump (22),
pipe-flower (22)

Del
Rosario

26 38 concept introduction (3), ob-
jective (3), completionist re-
ward (2)

Smith 21 95 enemy pair (17), staircase
(11), ditch (9)

Smith-
Naive

25 118 multi level (18), enemy pair
(17), staircase (13)

Kini 23 28 hazard introduction (3), hid-
den powerup (2), pipe trap (2)

Snyder 34 155 walking enemy (18), power
up block (17), coins (13)

Table 1: A table comparing the characteristics of our six sets
of design pattern labels.

• Dee Del Rosario: Del Rosario is an events and commu-
nity organizer in games with organizations such as Differ-
ent Games Collective and Seattle Indies, along with being
a gamedev hobbyist. They currently work as a web devel-
oper and educator.

• Kartik Kini: Kini is an indie game developer through his
studio Finite Reflection, and an associate producer at Car-
toon Network Games.

• Gillian Smith: Smith is an Assistant Professor at WPI.
She focuses on game design, AI, craft, and generative de-
sign.

• Kelly Snyder: Snyder is an Art Producer at Bethesda and
previously a Technical Producer at Bungie.

All five of these experts were asked to label their choice
of three levels with labels that established “a common lan-
guage/vocabulary that you’d use if you were designing lev-
els like this with another human”. Of these experts only
Smith had any knowledge of the underlying system. She
produced two sets of design patterns for the levels she la-
beled, one including only those patterns she felt the sys-
tem could understand and the second including all patterns
that matched the above criteria. We refer to these labels as
Smith and Smith-Naive through the rest of this section, re-
spectively.

These experts labeled static images of non-boss and non-
underwater Super Mario Bros. levels present in the Video
Game Level Corpus (VGLC) (Summerville et al. 2016b).
The experts labeled these images by drawing a rectangle
over the level structure in which the design pattern occurred
with some string to define the pattern. These rectangles
could be of arbitrary size, but we translated each into ei-
ther a single training example centered on the eight by eight
chunk our system requires, or multiple training examples if
it was larger than eight by eight.

We include some summarizing information about these
six sets of design pattern labels in Table 1. Specifically, we
include the total number of labels and the top three labels,
sorted by frequency and alphabetically, of each set. Each ex-

Figure 2: The first example of the the top label in each set of
design pattern labels.

set approach train test
Le
Doux

RF 84.06±0.76 28.73±1.89

Le
Doux

CNN 49.06±4.43 26.73±3.70

Del
Rosario

RF 86.71±0.78 0.77±1.07

Del
Rosario

CNN 36.08±19.01 1.04±0.82

Smith RF 92.11±0.89 33.28±3.48
Smith CNN 59.76±8.16 26.19±5.02
Smith-
Naive

RF 88.49±0.92 42.31±2.96

Smith-
Naive

CNN 65.50±19.68 36.82±11.84

Kini RF 90.19±0.69 41.93±2.29
Kini CNN 44.32±2.89 29.07±2.13
Snyder RF 86.72±1.62 1.85±5.56
Snyder CNN 49.40±0.77 0.00±0.00

Table 2: A table comparing the accuracy of our random for-
est label classifier compared to a CNN baseline.

pert produced very distinct labels, with less than one percent
of labels shared between different experts. We include the
first example for the top label for each set of design patterns
in Figure 2. Even in the case of Kini and Del Rosario, where
there is a similar area and design pattern label, the focus dif-
fers. We train six separate models, one for each set of design
pattern labels (Smith has two).

Label Classifier Evaluation
In this section we seek to understand how well our random
forest classifier is able to identify design patterns in level
structure. For the purposes of this evaluation we made use
of AlexNet as a baseline (Szegedy et al. 2016), given that
a convolutional neural network would be the naive way one
might anticipate solving this problem. We chose AlexNet
given its popularity and success at similar image recognition
tasks. In all instances we trained the AlexNet until its error
converged. We make use of a three-fold cross validation on



set No labels No Auto Tag Full
Le
Doux

12.3±6.3 152.8±4.8 10.6±5.6

Del
Rosario

10.4±5.0 135.7±3.8 9.0±4.4

Smith 11.5±6.1 157.2±3.5 10.4±5.6
Smith-
Naive

12.7±4.8 167.6±4.0 11.5±4.4

Kini 9.4±4.4 129.6±3.6 10.6±3.3
Snyder 28.6±9.9 144.2±5.0 15.0±9.4

Table 3: A table comparing the error in terms of incorrect
sprites for our three generators. Smaller values represent
fewer mistakes.

the labels for this and the remaining evaluations. We make
use of a three-fold validation to address the variance across
even a single expert’s labels and due to the small set of labels
available for some experts.

Our major focus is training and test accuracy across the
folds. We summarize the results of this evaluation in Ta-
ble 2, giving the average training and test accuracies across
all folds along with the standard deviation. We note that in
all instances our random forest (RF) approach outperformed
AlexNet CNN in terms of training accuracy, and nearly al-
ways in terms of test accuracy. We note that given more
training time AlexNet’s training accuracy might improve,
but at the cost of test accuracy. We further note that AlexNet
was on average one and a half times slower than the random
forest in terms of training time. These results indicate that
our random forest produces a more general classifier com-
pared to AlexNet.

We note that our random forest performed fairly consis-
tently in terms of training accuracy, at around 85%, but that
the test accuracy varied significantly. Notably, the test ac-
curacy did not vary according to the the number of train-
ing samples or number of labels per expert. This indicates
that individual experts identify patterns that are more or less
easy to classify automatically. Further we note that Snyder
and Del Rosario had very low testing error across the board,
which indicates a large amount of variance between tagged
examples. Despite this, we demonstrate the utility of this ap-
proach in the next section.

Autoencoder Structure Evaluation
We hypothesize that the inclusion of design pattern labels
into our autoencoder network will improve its overall repre-
sentative quality. Further, that the use of an automatic label
classifier will allow us to gather sufficient training data to
train the autoencoder. This evaluation addresses both these
hypotheses. We draw upon the same dataset and the same
three folds from the prior evaluation and create three varia-
tions of our system. The first autoencoder variation has no
design pattern labels and is trained on all 8 × 8 chunks of
level instead of only those chunks labeled or autolabeled
with a design pattern. Given that this means fewer features
and smaller input and output tensors, this model should out-
perform our full model unless the design pattern labels im-

prove overall representative quality. The second autoencoder
variation does not make use of the automatic design pattern
label classifier, thus greatly reducing the training data. The
last variation is simply our full system. For all approaches
we trained till training error converged. We note that we
trained a single ’no labels’ variation and tested it on each
expert, but trained models for the no automatic classifier and
full versions of our approach for each expert.

Given these three variations, we chose to measure the dif-
ference in structure when the autoencoder was fed the test
portions of each of the three folds. Specifically we capture
the number of incorrect structure features predicted. This
can be understood as a stand in for representation quality,
given that the output of the autoencoder for the test sample
will be the closest thing the autoencoder can represent to the
test sample.

We give the average number and standard deviation of in-
correct structural features/tiles over all three folds in Table
2. We note that the minimum value here would be 0 errors
and the maximum value would be 8 × 8 × 30 or 1920 in-
correct structural feature values. For every expert except for
Kini, who authored the smallest number of labels, our full
system outperformed both variations. While some of these
numbers are fairly close between the full and no labels vari-
ation, the values in bold were significantly lower according
to the paired Wilcoxon Mann Whitney U test (p < 0.001).

Given the results in Table 3. We argue that both our hy-
potheses were shown to be correct, granted that the expert
gives sufficient labels, with the cut-off appearing to be be-
tween Kini’s 28 and Del Rosario’s 38. Specifically the rep-
resentation quality is improved when labels are used, and the
label classifier improves performance over not applying the
label classifier.

Transfer Evaluation
A major concern for any co-creative tool based on Machine
Learning is training time. In the prior autoencoder evalua-
tion, both the no labels and full versions of our system took
hours to train to convergence. This represents a major weak-
ness, given that in some co-creative contexts designers may
not want to wait for an offline training process, especially
when we anticipate authors wanting to rapidly update their
set of labels. Given these concerns, we evaluate a variation
of our approach utilizing transfer learning. This drastically
speeds up training time by adapting the weights of a pre-
trained network on one task to a new task.

We make use of student-teacher or born again neural net-
works, a transfer learning approach in which the weights of
a pre-trained neural network are copied into another network
of a different size. In this case we take the weights from our
no labels autoencoder from the prior evaluation, copy them
into our full architecture, and train from there. We construct
two variations of this approach, once again depending on the
use of the random forest label classifier or not. We compare
both variations to the full and no labels system from the prior
evaluation, using the same metric.

We present the results of this evaluation in Table 4. We
note that, while the best performing variation did not change
from the prior variation, in all cases except for the Kini



Le Doux Del Rosario Smith Smith-Naive Kini Snyder
No labels 12.3±16.3 10.4±5.0 11.5±6.1 12.7±4.8 9.3±4.4 28.6±9.9
Transfer No Auto Tag 11.1±5.8 10.1±5.0 11.2±6.1 12.6±4.8 9.3±4.4 16.7±9.8
Transfer w/ Auto 10.8±5.8 9.8±5.0 11.0±6.0 11.8±6.3 10.3±4.2 16.1±9.6
Full 10.6±5.6 9.0±4.4 10.4±5.6 11.5±4.4 10.6±3.3 15.0±9.4

Table 4: A table comparing the transfer learning approach structure errors to the full system structure errors.

Figure 3: Above: the two examples of the pattern “comple-
tionist reward” labeled by the expert Dee Del Rosario. Be-
low: example of the system given the input on the left and
that label and its output.

models, the transfer approaches got closer to the full vari-
ation approach, sometimes off by as little as a fraction of
one structure feature. Further, these approaches were signif-
icantly faster to train, with the no automatic labeling trans-
fer approach training in an average of 4.48 seconds and the
automatic labeler transfer approach training in an average
of 144.92 seconds, compared to the average of roughly five
hours of the full approach on the same computer. This points
to a clear breakdown in when it makes sense to apply what
variation of our approach, depending on time requirements
and processing power. In addition, it continues to support
our hypotheses concerning the use of automatic labeler and
personal level design pattern labels.

Qualitative Example
We do not present a front-end or interaction paradigm for
the use of this Explainable PCGML system, as we feel such
implementation details will depend upon the intended audi-
ence. However, it is illustrative to give an example of how
the system could be used. In Figure 3 we present an ex-
ample of the two training examples of the pattern “comple-
tionist reward” labeled by the expert Dee Del Rosario. The

full system, including the random forest classifier, trains on
these examples (and the other labels from Del Rosario), and
is then given as input the eight by eight chunk with only the
floating bar within it on the left of the image along with the
desired label “completionist reward”. One can imagine that
Del Rosario as a user wants to add a reward to this section,
but doesn’t have any strong ideas. Given this input the sys-
tem outputs the image on the right.

We asked Del Rosario what they thought of the perfor-
mance of the system and whether they considered this out-
put matched their definition of completionist reward. They
replied “Yes – I think? I would because I’m focusing on
the position of the coins.” We note that Del Rosario did not
see the most decisive patch when making this statement,
which we extracted as in (Olah et al. 2018). This clearly
demonstrates some harmony between the learned model and
the design intent. However, Del Rosario went on to say “I
think if I were to go... more strict with the definition/phrase,
I’d think of some other configuration that would make you
think, ‘oooooh, what a tricky design!!’ ”. This indicates a
desire to further clarify the model. Thus, we imagine an iter-
ative model is necessary for a tool utilizing this system and
a user to reach a state of harmonious interaction.

Conclusions
In this paper, we present an approach to explainable PCGML
(XPCGML) through user-authored design pattern labels
over existing level structure. We evaluate our autoencoder
and random forest labeler components on levels labeled by
game design experts. These labels serve as a shared language
between the user and level design agent, which allows for
the possibility of explainability and meaningful collabora-
tive interaction. We intend to take our system and incorpo-
rate it into a co-creative tool for novice and expert level de-
signers. To the best of our knowledge this represents the first
approach to explainable PCGML.

Acknowledgements
We want to thank our five expert volunteers. This mate-
rial is based upon work supported by the National Science
Foundation under Grant No. IIS-1525967. We would also
like to thank the organizers and attendees of Dagstuhl Sem-
inar 17471 on Artificial and Computational Intelligence in
Games: AI-Driven Game Design, where the discussion that
lead to this research began.

References
Abadi, M.; Barham, P.; Chen, J.; Chen, Z.; Davis, A.; Dean,
J.; Devin, M.; Ghemawat, S.; Irving, G.; Isard, M.; et al.



2016. Tensorflow: A system for large-scale machine learn-
ing. In OSDI, volume 16, 265–283.
Baldwin, A.; Dahlskog, S.; Font, J. M.; and Holmberg, J.
2017. Mixed-initiative procedural generation of dungeons
using game design patterns. In Computational Intelligence
and Games (CIG), 2017 IEEE Conference on, 25–32. IEEE.
Biran, O., and Cotton, C. 2017. Explanation and justification
in machine learning: A survey. In IJCAI 2017 Workshop on
Explainable AI (XAI).
Bjork, S., and Holopainen, J. 2004. Patterns in game design.
ISBN:1584503548.
Bradski, G., and Kaehler, A. 2000. Opencv. Dr. Dobbs
journal of software tools 3.
Codella, N. C.; Hind, M.; Ramamurthy, K. N.; Campbell,
M.; Dhurandhar, A.; Varshney, K. R.; Wei, D.; and Mo-
jsilovic, A. 2018. Teaching meaningful explanations.
arXiv:1805.11648.
Dahlskog, S., and Togelius, J. 2012. Patterns and procedu-
ral content generation: revisiting mario in world 1 level 1.
In Proceedings of the First Workshop on Design Patterns in
Games, 1. ACM.
Deterding, C. S.; Hook, J. D.; Fiebrink, R.; Gow, J.; Akten,
M.; Smith, G.; Liapis, A.; and Compton, K. 2017. Mixed-
initiative creative interfaces. In CHI EA’17: Proceedings
of the 2016 CHI Conference Extended Abstracts on Human
Factors in Computing Systems. ACM.
Ehsan, U.; Harrison, B.; Chan, L.; and Riedl, M. O.
2017. Rationalization: A neural machine translation
approach to generating natural language explanations.
arXiv:1702.07826.
Guzdial, M., and Riedl, M. 2016. Game level generation
from gameplay videos. In Twelfth Artificial Intelligence and
Interactive Digital Entertainment Conference.
Hullett, K., and Whitehead, J. 2010. Design patterns in fps
levels. In FDG’10 Proceedings of the Fifth International
Conference on the Foundations of Digital Games. ACM.
Jain, R.; Isaksen, A.; Holmgård, C.; and Togelius, J. 2016.
Autoencoders for level generation, repair, and recognition.
In Proceedings of the ICCC Workshop on Computational
Creativity and Games.
Jones, E.; Oliphant, T.; and Peterson, P. 2014. {SciPy}:
open source scientific tools for {Python}.
Kingma, D. P., and Welling, M. 2013. Auto-encoding varia-
tional bayes. In The 2nd International Conference on Learn-
ing Representations (ICLR).
Lang, K. J. 1988. A time-delay neural network architecture
for speech recognition. Technical Report CMU-CS-88-152.
LeCun, Y.; Boser, B.; Denker, J. S.; Henderson, D.; Howard,
R. E.; Hubbard, W.; and Jackel, L. D. 1989. Backpropaga-
tion applied to handwritten zip code recognition. Neural
computation 1(4):541–551.
Liapis, A.; Yannakakis, G. N.; and Togelius, J. 2013. Sen-
tient sketchbook: Computer-aided game level authoring. In
Proceedings of ACM Conference on Foundations of Digital
Games, 213–220. FDG.

Liaw, A.; Wiener, M.; et al. 2002. Classification and regres-
sion by randomforest. R news 2(3):18–22.
Michalski, R. S.; Carbonell, J. G.; and Mitchell, T. M.
2013. Machine learning: An artificial intelligence approach.
Springer Science & Business Media.
Milam, D., and El Nasr, M. S. 2010. Design patterns to
guide player movement in 3d games. In Proceedings of the
5th ACM SIGGRAPH Symposium on Video Games, 37–42.
ACM.
Olah, C.; Satyanarayan, A.; Johnson, I.; Carter, S.; Schubert,
L.; Ye, K.; and Mordvintsev, A. 2018. The building blocks
of interpretability. Distill 3(3):e10.
Shaker, N.; Shaker, M.; and Togelius, J. 2013. Ropossum:
An authoring tool for designing, optimizing and solving cut
the rope levels. In Proceedings of the Ninth AAAI Confer-
ence on Artificial Intelligence and Interactive Digital Enter-
tainment.
Smith, G.; Whitehead, J.; and Mateas, M. 2011. Tanagra:
Reactive planning and constraint solving for mixed-initiative
level design. IEEE Transactions on Computational Intelli-
gence and AI in Games 3(3):201–215.
Snodgrass, S., and Ontanón, S. 2017. Learning to generate
video game maps using markov models. IEEE Transactions
on Computational Intelligence and AI in Games 9(4):410–
422.
Summerville, A., and Mateas, M. 2016. Super mario as
a string: Platformer level generation via lstms. In The 1st
International Conference of DiGRA and FDG.
Summerville, A.; Guzdial, M.; Mateas, M.; and Riedl, M. O.
2016a. Learning player tailored content from observation:
Platformer level generation from video traces using lstms.
In Twelfth Artificial Intelligence and Interactive Digital En-
tertainment Conference.
Summerville, A. J.; Snodgrass, S.; Mateas, M.; and On-
tanón, S. 2016b. The vglc: The video game level corpus. In
Procedural Content Generation Workshop at DiGRA/FDG.
Summerville, A.; Snodgrass, S.; Guzdial, M.; Holmgård, C.;
Hoover, A. K.; Isaksen, A.; Nealen, A.; and Togelius, J.
2017. Procedural content generation via machine learning
(pcgml). arXiv preprint arXiv:1702.00539.
Szegedy, C.; Vanhoucke, V.; Ioffe, S.; Shlens, J.; and Wojna,
Z. 2016. Rethinking the inception architecture for computer
vision. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2818–2826.
Yannakakis, G. N.; Liapis, A.; and Alexopoulos, C. 2014.
Mixed-initiative co-creativity. In Proceedings of the 9th
Con- ference on the Foundations of Digital Games. FDG.


