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Abstract

We introduce the problem of generating Let’s Play-style com-
mentary of gameplay video via machine learning. We propose
an analysis of Let’s Play commentary and a framework for
building such a system. To test this framework we build an
initial, naive implementation, which we use to interrogate the
assumptions of the framework. We demonstrate promising re-
sults towards future Let’s Play commentary generation.

Introduction
The rise of video streaming sites such as YouTube and
Twitch has given rise to a new medium of entertainment,
known as the “Let’s Play”. Let’s Plays involve video stream-
ers providing commentary of their own gameplay to an audi-
ence of viewers. The impact of Let’s Plays on todays enter-
tainment culture is evident from revenue numbers. Studies
estimate that Let’s Plays and other streamed game content
will generate $3.5 billion in ad revenue by the year 2021
(Foye 2017). What makes Let’s Plays unique is the combi-
nation of commentary and gameplay, with each part influ-
encing the other.

Let’s Play serve two major purposes. First, to engage and
entertain an audience through humor and interesting com-
mentary. Second, to educate an audience, either explicitly as
when a commentator describes what or why something hap-
pens in a game, or implicitly as viewers experience the game
through the Let’s Play. We contend that for these reasons,
and due to the popularity and raw amount of existing Let’s
Play videos, this medium serves as an excellent training do-
main for automated commentary or explanation systems.

Let’s Plays could serve as a training base for an AI ap-
proach that learns to generate novel, improvisational, and
entertaining content for games and video. Such a model
could easily meet the demand for gameplay commentary
with a steady throughput of new content generation. Beyond
automating the creation of Let’s Play we anticipate such
systems could find success in other domains that require
engagement and explanation, such as eSports commentary,
game tutorial generation, and other domains at the intersec-
tion of education and entertainment in games. However, to

the best of our knowledge, no existing attempt to automati-
cally generate Let’s Play commentary exists.

The remainder of this paper is organized as follows. First,
we discuss Let’s Plays as a genre and an initial qualitative
analysis. Second, we propose a framework for the gener-
ation of Let’s Plays through machine learning. Third, we
cover relevant related work. Finally, we explore a few ex-
perimental, initial results in support of our framework.

Let’s Play Commentary Analysis
For the purposes of this paper, we refer to the set of utter-
ances made by players of Let’s Plays as commentary. How-
ever, despite referring to these utterances as commentary,
they are not strictly commenting or reflecting on the game-
play. This is in large part due to the necessity of a player to
speak near constantly during a Let’s Play video to keep the
audience engaged. At times there is simply nothing occur-
ring in the game to talk about.

We analyzed hours of Let’s Play footage of various Let’s
players and found four major types of Let’s Play commen-
tary. We list these types below in a rough ordering of fre-
quency, and include a citation for a representative Let’s Play
video. However, we note that in most Let’s Play videos, a
player flows naturally between different types of commen-
tary.

1. Reaction: The most common type of comment re-
lates in some way to the gameplay occurring on screen
(McLoughlin 2013). This can be descriptive, educational,
or humorous. For example, reacting on a death by restat-
ing what occurred, explaining why it occurred, or down-
playing the death with a joke.

2. Storytelling: The second most common comment we
found was some form of storytelling that related events
outside of the game. This storytelling could be biographi-
cal or fictional, improvised or pre-authored. For example,
Hanson begins a fictional retelling of his life with “at age
six I was born without a face” in (Hanson and Avidan
2015).

3. Roleplay: Much less frequently than the first two types,
some Let’s players make comments in order to roleplay
a specific character. At times this is the focus of an en-
tire video and the player never breaks character, in others



a player may slip in and out of the character throughout
(Dugdale 2014).

4. ASMR: ASMR stands for Autonomous Sensory Merid-
ian Response (Barratt and Davis 2015), and there exists
a genre of YouTube video dedicated to causing this re-
sponse in viewers, typically for the purposes of relaxation.
Let’s players have taken notice, with some full Let’s Plays
in the genre of ASMR, and some Let’s players slipping in
and out of this type of commentary. These utterances tend
to resemble whispering nonsense or making other non-
word mouth noises (Fischbach 2016).
These high level types of commentary are roughly de-
fined, and do not fully represent the variance of player
utterances. These utterances also differ based on the num-
ber of Let’s players in a single video, the potential for live
interactions with an audience if a game is streamed, and
variations among the games being played. We highlight
these types as a means of demonstrating the breadth of
distinct categories in Let’s Play commentary. Any artifi-
cial commentary generation system must be able to iden-
tify and generate within these distinct categories.

Proposed Framework
In the prior section we list some high-level types of com-
mentary we identified from Let’s Play videos. This vari-
ance, in conjunction with the challenges present in all natu-
ral language generation tasks (Reiter and Dale 2000), makes
this problem an open challenge for machine learning ap-
proaches.

We propose the following two stage, high-level frame-
work for machine learning approaches that generate Let’s
Play commentary. First, to handle the variance we anticipate
the need for a pre-processing clustering step. This cluster-
ing step may require human action, for example, separating
Let’s Plays of a specific type, by Let’s player, or by game.
In addition or as an alternative, automated clustering may
be applied to derive categories of utterances and associated
gameplay footage. This may reflect the analysis we present
in Section 2 or may find groupings specific to a particular
dataset.

In the second stage of our framework a machine learn-
ing approach is used to approximate a commentary gener-
ation function. The most naive interpretation of this would
be to learn a mapping between gameplay footage and com-
mentary based on the clustered dataset from the first step.
However, we anticipate the need to include prior commen-
tary and its relevant gameplay footage as input to generate
coherent commentary. We expect a full-fledged implemen-
tation of this approach would make use of state of the art
natural language generation methods.

Related Work
There exists prior work on automatically generating textual
descriptions of gameplay. Bardic (2017) creates narrative re-
ports from Defense of the Ancients 2 (DOTA 2) game logs
for improved and automated player insights. This has some
similarity to common approaches for automated journalism

of physical sports (Graefe 2016) or automated highlight gen-
eration for physical sports (Kolekar and Sengupta 2006).
These approaches require a log of game events. Our proposal
is for live commentary of an ongoing video game stream.
Harrison et al. (2017) create explanations of an AI player’s
actions for the game Frogger. All of these approaches de-
pend on access to a game’s engine or the existence of a pub-
licly accessible logging system.

To the best of our knowledge, there have been no AI sys-
tems that attempt to directly generate streaming commen-
tary of live gameplay footage. Nonetheless, work exists that
maps visual elements (such as videos and photos) to story-
like natural language. For example, The Sports Commen-
tary Recommendation System or SCoReS (2014) and Plot-
Shot (2016) seek to create stories centered around visual
elements measured/recorded by the system. While SCoReS
learns a mapping from specific game states to an appropriate
story (Lee, Bulitko, and Ludvig 2014), PlotShot is a narra-
tive planning system that measures the distance between a
photo and the action it portrays (R. Cardona-Rivera 2016).
Our domain is different as we are not illustrating stories but
rather trying to construct live commentary on the fly as the
system receives a continuous stream of events as input.

Significant prior work has explored Let’s Play as cultural
artifact and as a medium. For example, prior studies of the
audience of Let’s Plays (Sjöblom and Hamari 2017), content
of Let’s Plays (Sjöblom et al. 2017), and building commu-
nities around Let’s Play (Hamilton, Garretson, and Kerne
2014). The work described in this paper is preliminary as
a means of exploring the possibility for automated genera-
tion of Let’s Play commentary. We anticipate future develop-
ments in this work to more closely engage with scholarship
in these areas.

More recent work explores the automated generation of
content from Let’s Plays, but not automated commentary.
Both Guzdial and Riedl (2016) and Summerville et al.
(2016) look to use Longplay’s, a variation of Let’s Play gen-
erally without commentary, as part of a process to gener-
ate video game levels through procedural content generation
via machine learning (Summerville et al. 2017). Other work
has looked at eSport commentators in a similar manner, as
a means of determining what approaches the commentators
use that may apply to explainable AI systems (Dodge et al.
2018). However, this work only presented an analysis of this
commentary, not of the video, and without any suggested
approach to generate new commentary.

Experimental Implementation
In this section we discuss an experimental implementation
of our framework in the domain of Super Mario Bros. Let’s
Plays. The purpose of this experimental implementation is
to allow us to interrogate the assumptions implicit in our
framework, in particular that clustering is a necessary and
helpful means of handling the variance of Let’s Play com-
mentary.

We visualize a high-level overview of our implementation
in Figure 1. As a preprocessing step we take video and an
associated automated transcript from YouTube, to which we
apply ffmpeg to break the video into individual frames and



Figure 1: Visual representation of our experimental implementation.

associated commentary lines or utterances. We make use of
1 FPS when extracting frames from video, given most com-
ments took at least a few seconds. Therefore most comments
are paired with two or more frames in a sequence, represent-
ing the video footage while the player makes that comment.

A dataset of paired frames and an associated utterance
serves as input into our training process. We represent each
frame as a “bag of sprites”, based on the bag of words rep-
resentation used in natural language processing. We pull
the values of individual sprites from each frame using a
spritesheet of Super Mario Bros. with the approach de-
scribed in (Guzdial and Riedl 2016). We combine multiple
bags of sprites when a comment is associated with multiple
frames. We also represent the utterance as a bag of words
as well. In this representation we cluster the bag of sprites
and words according to a given distance function with K-
Medoids. We determine a value of k for our medoids clus-
tering method according to the distortion ratio (Pham, Di-
mov, and Nguyen 2005). This represents the first step of our
framework.

For the second step of our framework in this implementa-
tion, we approximate a frame-to-commentary function using
one of three variations. These variations are as follows:
• Random: Random takes the test input, and simply re-

turned a random training element’s comment data.
• Forest: We constructed a 10 tree random forest, using

the default SciPy random forest implementation (Jones,
Oliphant, and Peterson 2014). We used all default param-
eters except that we limited the tree depth to 200 to in-

centive generality. This random forest predicted from the
bag of sprites frames representation to a bag of words
comment representation. This means it produced a bag of
words instead of the ordered words necessary for a com-
ment, but it was sufficient for comparison with true com-
ments in the same representation.

• KNN: We constructed two different K-Nearest Neighbor
(KNN) approaches, based on a value of k of 5 or 10. In
this approach we grabbed the k closest training elements
to a test element according to frame distance. Given these
k training examples, we took the set of their words as the
output. As with the Forest baseline, this does not repre-
sent a final comment. We note further that there are far
too many words for a single comment using this method,
which makes it difficult to compare across the other base-
lines, but we can compare between variations of this base-
line.
For testing we then take as input some frames without

or with withheld commentary, determine which cluster it
would be clustered into, and use a learned frame-to-text
function to predict an output utterance. This can then be
compared to the true utterance if there is one. We note this
is the most naive possible implementation, and true attempts
at this problem will want to include as input to this func-
tion prior frames and prior generated comments, in order to
determine an appropriate next comment.

Clustering approaches require a distance function to de-
termine the distance between any two arbitrary elements you
might wish to cluster. Our distance function is made up of



Figure 2: An example test commentary prediction. The true
frame on the left is associated with the utterance “if you
get to Bowser” and our method returns ”parts like these on
Bowser”.

two component distance functions; one part measures the
distance between the frame data (represented as a bag of
sprites) and one part measures the distance between the ut-
terances (represented as a bag of words). For both parts we
make use of cosine similarity. Cosine similarity, a simple
technique used popularly in statistical natural language pro-
cessing, measures how similar two vectors are by measuring
the angle between them. The smaller the angle, the more
similar the two vectors are (and vice versa). An underlying
assumption that we make is that the similarity between a
pair of comments is more indicative of closeness than sim-
ilar frame data, simply because it is very common for two
instances to share similar sprites (especially when they’re
adjacent in the video). Thus, when calculating distance, the
utterance cosine similarity is weighted more heavily (75%)
than the frame cosine similarity (25%).

At present, we use Super Mario Bros. (SMB), a well-
known and studied game for the NES, as the domain for our
work. We chose Super Mario Bros because prior work in
this domain has demonstrated the ability to apply machine
learning techniques to scene understanding of SMB game-
play (Guzdial and Riedl 2016).

For our initial experiments we collected a dataset of two
fifteen minute segments of a popular Let’s Player playing
through Super Mario Bros. along with the associated text
transcripts generated by Youtube. We use one of these videos
as a training set and one as a test set. This means roughly
three-hundred frame and text comment pairs in both the
training and testing sets, with 333 for the training set and 306
for the testing set. This may seem small given that each seg-
ment was comprised of fifteen minutes of gameplay footage,
however it was due to the length and infrequency of the com-
ments.

We applied the training dataset to our model. In clustering
we found k = 6 for our K-medoids clustering approach ac-
cording to the distortion ratio. This lead to six final clusters.
These clusters had a reasonable spread, with a minimum of
31 elements, a maximum of 90 elements, and a median size
of 50. From this point we ran our two evaluations.

Table 1: Comparison of different ML approaches to the
frame-to-comment function approximation, trained across
all available training data or only within individual clusters.
Values are average cosine distance, thus lower is better.

Standard Per-Cluster
Random 0.940±0.102 0.937±0.099
Forest 0.993±0.042 0.970±0.090
KNN 5 0.886±0.091 0.885±0.100
KNN 10 0.854±0.091 0.852±0.101

Standard vs. Per-Cluster Experiment
For this first experiment we wished to interrogate our
assumption that automated clustering represented a cost-
effective means of handling the variance of Let’s Play com-
mentary. To accomplish this, we trained each of our three
variations (Random, Forest, KNN) according to two differ-
ent processes. In what we call the standard approach each
variation is trained on the entirety of the dataset. In the per-
cluster approach a model of each variation is trained for
each cluster. This means that we had one random forest in
the standard approach, and six random forests (one for each
cluster) in the per-cluster approach.

We tested all 306 test elements for each approach. For the
per-cluster approaches we first clustered each test element
only in terms of its frame data, and then used the associated
model trained only on that cluster to predict output. In the
standard variation we simply ran the test element’s frame
data through the trained function. For both approaches we
compare the cosine distance of the true withheld comment
and the predicted comment. This can be understood as the
test error of each approach, meaning a lower value is bet-
ter. If the per-cluster approach of each variation outperforms
the standard approach, then that would be evidence that the
smaller training dataset size of the per-cluster approach was
more than made up for by the reduction in variance.

We compile the results of this first experiment in Table 1.
In particular, we give the average cosine distance between
the predicted and true comment and the standard deviation.
In all cases the per-cluster variation outperforms the stan-
dard variation. The largest improvement came from the Ran-
dom Forest baseline, while the KNN baseline with k = 5
had the smallest improvement. This makes sense as even in
the standard approach, KNN would largely find the same
training examples as the per-cluster approach. However, the
actual numbers do not matter here. Given the size of the as-
sociated datasets, seeing any trend indicates support for our
assumption, which we would anticipate to scale with larger
datasets and more complex methods.

Cluster Choice Experiment
The prior experiment suggests that our clusters have suc-
cessfully cut down on the variance of the problem. However,
this does not necessarily mean that our clusters represent any
meaningful categories of or relationships between frames
and comments. Instead, the performance from the prior ex-
periment may be due to the clusters reducing the dimension-



Table 2: Comparison of different ML approaches to the
frame-to-comment function approximation, trained with the
true cluster or a random cluster. Values are average cosine
distance, thus lower is better.

True Cluster Random Cluster
Random 0.937±0.099 0.936±0.101
Forest 0.970±0.090 0.986±0.058
KNN 5 0.885±0.100 0.901±0.077
KNN 10 0.852±0.101 0.885±0.066

ality of the problem. It is well-recognized that even arbi-
trary reductions in the dimensionality of a problem can lead
to improved performance for machine learning approaches
(Bingham and Mannila 2001). This interpretation would ex-
plain the improvement seen in our random forest baseline,
given that this method can be understood as including a fea-
ture selection step. Therefore we ran a secondary experiment
in which we compared the per-cluster variations using ei-
ther the assigned cluster or a random cluster. If it is the case
that the major benefit to the approaches came from the di-
mensionality reduction from the cluster, we would anticipate
equivalent performance no matter which cluster is chosen.

We summarize the results of this experiment in Table 2.
Outside of the random variation, the true cluster faired bet-
ter than a random cluster. In the case of the random baseline
the performance was marginally better with a random clus-
ter, but nearly equivalent. This makes sense given that the
random variation only involves uniformly sampling across
the cluster distribution as opposed to learning some mapping
from frame representation to comment representation.

These results indicate that the clusters do actually rep-
resent meaningful types of relationships between frame
and text. This is further evidenced looking at the av-
erage comment cosine distance between the test exam-
ples and the closest medoid according to the test exam-
ple’s frame (0.910±0.115) and a randomly selected medoid
(0.915±0.108).

Qualitative Example
We include an example of output in Figure 2 using a KNN
with k = 1 in order to get a text comment output as opposed
to a bag of words. Despite the text having almost nothing
to do with the frame in question the text is fairly similar
from our perspective. It is worth noting again that all our
data comes from the same Let’s Player, and therefore may
represent some style of that commentator.

Limitations and Future Work
In this paper we introduce the problem of creating a ma-
chine learning approach for Let’s Play commentary gener-
ation. Towards this purpose we present an abstract frame-
work for solving this problem and present a limited, experi-
mental implementation which we interrogate. We find some
results that present initial evidence towards assumptions in
our framework. However, due to the scale of this experiment

(two Let’s Play videos for one game), we cannot state with
certainty that these results will generalize.

Future implementations of this framework will incorpo-
rate more sophisticated methods for natural language pro-
cessing to generate novel commentary. As stated above, for
the purposes of this initial experiment we went with the
naive approach of predicting output commentary solely from
an associated sequence of gameplay video frames. We an-
ticipate a more final system will require a history of prior
comments and associated frames.

In this initial work we drew upon random forest, and KNN
as a means of generating output commentary, represented as
a bag of words. We note that as our training data increased,
we would anticipate a runtime increase for both these ap-
proaches (though we can limit this in the random forest by
limiting depth). If we want to have commentary generated
in real-time, we might instead want to make use of a deep
neural network or similar model of fixed size.

Besides generating entertaining commentary for Let’s
Plays, a final working system could be useful in a variety of
settings. One obvious approach would be to attempt to ex-
tend such a system to color commentary for eSports games
(Dodge et al. 2018). More generally, such a system might
help increase user engagement with AI agents by aiding in
Explainable AI approaches to rationalize decision-making
(B. Harrison 2017).

Conclusions
In this paper, we define the problem of automatic commen-
tary of Let’s Play videos via machine learning. Our frame-
work requires an initialize clustering stage to cut back on
the implicit variance of Let’s Play commentary, followed by
a function approximation for commentary generation. We
present an experimental implementation and multiple exper-
imental results. Our results lend support to our framework.
Although there is much to improve upon, the work is an ex-
citing first step towards solving the difficult problem of au-
tomated, real-time commentary generation.
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