CEUR-WS.org/Vol-2282/EXAG_121.pdf

Generating Puzzle Progressions to Study Mental Model Matching

Chris Martens Aaron Williams

Ryan S. Alexander Chinmaya Dabral

Principles of Expressive Machines (POEM) Lab, North Carolina State University
martens @csc.ncsu.edu, {amwill19,rsalexan,csdabral } @ncsu.edu

Abstract

Expert-crafted puzzle games are notable for their ability to
wordlessly teach players deep and interesting consequences
of mechanics. Cognitive science theories suggest that this
learning happens through an iterative process of hypothesiz-
ing, failure, and revision of mental models. In this work, we
pose the question of what it would take to generate puzzle
game levels and progressions that best support player satis-
faction and systematic understanding of mechanics by inte-
grating an understanding of player mental models. We present
a preliminary investigation consisting of a new puzzle game
Laserverse, whose mechanics are designed to interact with
each other in a wide array of combinations, a set of hand-
authored levels that combine these mechanics hierarchically,
and an algorithm for organizing the levels into progressions to
test hypotheses based on a theory of mental model formation.
This work sets the stage for empirical validation of puzzle
game design principles, which in turn inform a new approach
to player modeling based on mental model matching theory.

Introduction

Expert-crafted puzzle games represent, to many fans, the
perfect learning experience. These games use a consistent
set of mechanics with nonobvious interactions, such as the
platformer physics and portals of Portal, the time travel
in Braid, or the geometric constraints in Cosmic Express.
Through experimentation and failure, the player learns the
rules and constraints of the systems underlying these games,
and then is challenged by new scenarios that do not change
the rules but force reconsideration of their interactions and
consequences. By experiencing the revelation necessary to
meet such a challenge, the player gains a skill that can be
pattern-matched and applied to future situations. Because
of puzzle games’ ability to facilitate systems understanding
through curiosity, play, and challenge, they present exciting
opportunities for education, training, and public engagement
on important system-driven issues like climate change, so-
cial justice, and global conflict.

However, puzzle design is a skill that anecdotally takes
years or decades to hone to the point of crafting such
ideal experiences intentionally. Even expert puzzle design-
ers spend a long time crafting and testing their puzzles, and

they still make mistakes, accidentally introducing loopholes
or bugs that make a puzzle easier or harder than intended.
To scale the benefits of puzzle games, we are motivated to
consider what it would take to procedurally generate them.

To answer this question, we first need to understand ex-
actly what ingredients go into a puzzle that facilitates under-
standing and emotional satisfaction. Game design theorist
Mark Brown posits that great puzzles consist of an assump-
tion, a catch, and a revelation: these pieces give the player
an expectation about the puzzle’s solution, show them why
that solution won’t work, and cause them to reconsider the
game’s dynamics to arrive at a new conclusion, respectively.
Many other writers have formulated design principles for
puzzle design, but few have been empirically validated.

The framework of mental model matching theory (Mc-
Gloin, Wasserman, and Boyan 2018)) offers scientific in-
sight: there is empirical evidence that players build men-
tal models, knowledge structures that predict and explain
the outcomes of scenarios, while playing games. The more
quickly the mental model’s predictions and explanations
match the ground truth of the underlying system, the more
easily they can internalize key skills and make progress.

Therefore, the work described in this paper represents a
key first step toward generating puzzle levels and level pro-
gressions in a manner that facilitates both education and
pleasure: determining the link, if any, between designer-
recommended properties of puzzle games and accurate men-
tal model formation in players. We designed and built a new
PuzzleScript game, Laserverse, with a recombinable collec-
tion of mechanics and levels that can be composed and trans-
posed to form different experimental conditions for players
to experience. Then we designed a level progression gener-
ator based on the dependencies between levels and concepts
required or taught by them, tunable on the basis of parame-
ters corresponding to different hypotheses about progression
design. This work sets the stage for studying the effects of
different choices about level and progression design on men-
tal model formation.

Our eventual goal is to create a formal characterization of
player mental model formation that can be integrated into a
level generation framework (rather than only generating pro-
gressions of hand-authored levels). If successful, this work
lays the foundation for a new framework of learner-centered
procedural generation for systems understanding.

Related Work

Video games often employ game mechanics that are non-
obvious or do not have real-world analogues. A player’s
mental model thus constantly evolves as they learn about
the mechanics and devise new strategies. Prior work has at-
tempted to characterize this evolution. Furlough et al. dis-
cuss a cross-sectional study of League of Legends players to
examine the correlation between their experience levels and
their mental models of the game. The study uses the play-
ers’ relatedness ratings of in-game concepts to indirectly as-
sess their mental models (Furlough and Gillan 2018). Gra-
ham et al. use a similar technique to study the evolution of
mental models of novice real-time strategy players over the
course of repeated gameplay sessions (Graham, Zheng, and
Gonzalez 2006). These studies attempt to track the influence
of changing mental models on some externally-observable
metric, for instance, how similar the users consider two in-
game concepts to be. Our aim is to supplement these studies
by determining how the evolution of mental models changes
with different game progressions using a game (Laserverse)
designed specifically for this purpose.

Butler et al. discuss a method to generate puzzle progres-
sions with a naturally increasing difficulty curve (Butler et
al. 2015). While this is very similar to our eventual goal, the
authors take a very different approach to this problem. They
describe a method to generate level progressions based on a
partial ordering of composite game mechanics (“skill com-
ponents”), and depend on game designers to describe these
components as well as custom weights for them. This essen-
tially offloads some of the burden of understanding player
mental models onto game designers. We use a somewhat
similar partial order-based method to generate progressions
to test our hypotheses derived from the mental model match-
ing theory. However, this merely serves to aid the develop-
ment of a player model, which could then be used in a cog-
nitively based progression generator. We believe that despite
the similar goals, this novel approach is likely to result in
new insights and is worth pursuing.

Background
Puzzle Design Folklore

Despite a lack of empirical studies on puzzle design, much
has been written by game designers and theorists about the
properties of good puzzles. We use these references as po-
tential sources of testable hypotheses.

One of the key design concepts we identified is a puzzle
having three core pieces: an assumption, a catch, and a reve-
lation. Games journalist Mark Brown proposed in his video
essay What Makes a Good Puzzle | that these were three
of the main components of a good puzzle (Brown 2018]).
The assumption is an incorrect solution to the puzzle that
the puzzle’s structure prompts the user to pursue and then
observe its failure. The failed assumption forces the player
to re-evaluate his or her understanding of the puzzle or me-
chanic. The catch is what challenges the player to solve

"Watch the video on YouTube: https://www.youtube.
com/watch?v=zsjC6fa_YBg&t=315s

the puzzle. It is the “logical contradiction where two things
are seemingly in direct conflict with one another” (Brown
2018)). Finally, the revelation is the logical outcome of a
game’s mechanics and concepts that allows the player to
solve the puzzle in a satisfying manner.

Jesse Schell writes about puzzle design in The Art of
Game Design (Schell 2014)), expositing ten principles of
puzzles, including (1) Make the goal easily understood; (2)
Make it easy to get started; (3) Give a sense of progress;
and so on. All of these principles, notably, are grounded in
the experience of the player, not in the syntax of the puz-
zle itself. While that property makes it difficult to imagine
operationalizing these principles in a generator, it speaks to
the need for player modeling as a crucial aspect of genera-
tion. A more computationally practicable collection of puz-
zle principles is Brian Hamrick’s “Qualities of Well-Written
Puzzles,” (Hamrick 2016b)) a 2016 blog post written based
on experiences with the MIT Mystery Hunﬂ but later ap-
plied to the puzzle game Stephen’s Sausage Roll (Hamrick
20164). These include criteria such as Every piece of the puz-
zle serves a purpose and The puzzle breaks a rule. The latter
is analogous to Brown’s “assumption-catch” dynamic; Ham-
rick suggests that truly great puzzles identify standard puz-
zle truisms and carefully break them—without violating the
internal consistency of the puzzle.

Mental Model Matching Theory

The evidence-backed framework we apply to test these hy-
potheses is what McGloin et al. call model matching the-
ory (McGloin, Wasserman, and Boyan 2018)). Mental mod-
els can be identified by their ability to simulate the outcomes
of scenarios through the imagination, and to predict and ex-
plain cause-and-effect phenomena in a system. Matching
refers to “the extent and accuracy of alignment of a player’s
mental models with a game’s constellation of mechanics.”
Surveying a number of empirical studies, they proffer tenets
of model matching theory including three of particular rele-
vance to us: (1) Players create and apply mental models as a
means of making in-game decisions; (2) players refine men-
tal models of game models through repeated engagements
with a game; (3) The degree of alignment of mental models
to game models impacts performance, enjoyment, and flow.

Experimental Hypotheses

Given the aforementioned puzzle design folklore, we can
reframe some player-centered design principles in terms of
mental model matching: in particular, the assumption-catch-
revelation pattern maps onto a cycle of mental model revi-
sion. The assumption is a prediction made by a mental model
developed over some prefix of play experience, the catch is
a mismatch between prediction and actual outcome, and the
revelation is a revision of the mental model. Thus we have
designed several of our game levels to test the correlation
between these ideas by deliberately including deceptive non-
solutions (assumptions), and we have designed our evalua-
tive survey to ask for players’ predictions and explanations

Tnttp://www.mit.edu/~puzzle/

https://www.youtube.com/watch?v=zsjC6fa_YBg&t=315s
https://www.youtube.com/watch?v=zsjC6fa_YBg&t=315s
http://www.mit.edu/~puzzle/

Figure 1: The first level of Laserverse. The game is a top-
down view, with four-way directional movement. The player
character can walk over most of the tiles and can rotate the
yellow-cornered tiles (here, a laser and a mirror) by standing
on them and pressing the action key (X or space).

of these levels. We arrived at the following hypotheses for
puzzle progression design:

e Introducing more mechanics at once will lead to a less
accurate mental model. Teaching one new mechanic at a
time makes the player most likley to develop an accurate
understanding.

e Players are less likely to experience fatigue or frustration
if the increase in difficulty is not monotonic.

e Puzzles that introduce an assumption and catch by design
are likely to trigger a revision of the player’s mental model
after they successfully solve it.

e Difficulty in the form of minimalist puzzles that ask play-
ers to re-evaluate their mental models is less frustrat-
ing than difficulty in the form of more longer or more
mechanically-complex levels.

In the remainder of the paper, we describe our new puzzle
game and level generation algorithm designed to test these
hypotheses.

Laserverse: a modular puzzle game

We decided to create a new game for this project, rather than
simply use an existing game, because we wanted players to
have no prior knowledge of the game’s mechanics. As the
point of this phase of the project is to understand how play-
ers create mental models of unfamiliar virtual environments,
such familiarity would interfere with our results.

Enter Laserverse: a new puzzle game created with the on-
line engine PuzzleScriptE] The player’s goal is to navigate
to the exit of the level by moving and rotating tiles such as
lasers and mirrors, which redirect laser beams into sensors
controlling successive obstacles to the exit. Different levels
introduce different mechanics (i.e. tile types) and combine
them in different ways. Following in the footsteps of many
classic puzzle games, Laserverse has quite simple graphics
(a consequence of the PuzzleScript engine) but very com-
plex mechanics. It occupies over 1600 lines of source code,
of which about a third is level definitions.

3 A version of Laserverse containing every level we created can
be played here: https://www.puzzlescript.net/play.
html?p=535el1c93b49b50c03c7892601dc96426

Player ‘Wire Button
Laser Wire with Power D Closed Door
‘Wire Under Wall

Rotatable Laser Open Door

m Glass Pane

Mirror Splitter

Rotatable Mirror Rotatable Splitter Sensor

Movable Mirror Movable Splitter

Wall AND Gate

Crate Deactivated Laser

Figure 2: The tiles in Laserverse

We designed the game with many different mechanics
that, for the most part, interact with each other in very ex-
plicit ways, rather than a game with fewer mechanics and
many subtle interactions, for several reasons. First, it allows
for many different pairs of mechanic interactions, and thus
many different experimental conditions that we may be able
to test. Second, different mechanics can be introduced at dif-
ferent points in a level progression, allowing us to attempt to
recreate Portal’s sawtooth-like difficulty curve and compare
it to progressions with other types of difficulty curves. Third,
and perhaps most importantly, the discrete mechanics and
explicit interactions make it easier to design interesting puz-
zles, both for our human team members and for an eventual
procedural generation system. A system with explicit and
discrete mechanics is a good match for a system running on
a discrete set of explicit rules. Figure [I| shows a screenshot
of the first level that we created.

Elemental Mechanics

We use the term “elemental mechanics” to refer to the be-
haviors of individual tiles in isolation, and how their interac-
tions with other tiles are explicitly defined in the game code.

The core mechanic of Laserverse is the laser beam. Al-
most all of the puzzles we created revolve around manipu-
lating laser beams in various different ways. Beams travel
outward from laser tiles in straight lines in one of the four
cardinal directions until they strike a tile that they interact
with. Mirrors reflect beams, walls absorb beams, sensors de-
tect beams, and so on. How exactly each tile interacts with
laser beams will be detailed later.

Wires are another elemental mechanic. They connect vari-
ous tiles to each other and are laid across the floor or through
the walls of every level in the game. Certain tiles, such as
sensors and buttons, can, when triggered, activate all wire
tiles connected to them, changing them from blue to or-
ange. Other tiles, such as doors, detect when a wire or power
source adjacent to them becomes active, and will open or
otherwise activate in response.

The remaining elemental mechanics are described in Fig-
ure 3] where Figure [2] provides the mapping from the name
used in that table to the corresponding visual sprite.

https://www.puzzlescript.net/play.html?p=535e1c93b49b50c03c7892601dc96426
https://www.puzzlescript.net/play.html?p=535e1c93b49b50c03c7892601dc96426

Player Controlled by arrow keys. Can interact with rotatable and movable tiles by pressing spacebar.

Laser The basic laser tile. Constantly projects a beam in one direction.

Rotatable Laser Like the basic laser, but the player can change where it fires its beam by rotating it.
Mirror Reflects beams at 90° angles, in accordance with the Law of Reflection.

Rotatable Mirror A mirror that the player can rotate to choose where incident beams are reflected.
Wall A wall that neither the player nor laser beams can pass through.

Wire A wire in its default state. Wires do not block the player’s movement.

Wire with Power

A wire activated by a power source, causing it to turn orange.

Wire Under Wall

A wall with a wire running through it. Functions like a wire, but is as impassible as a wall.

Deactivated Laser

A laser that is inactive by default, but projects a beam when given a wire signal.

Button A power source that turns on when the player, a crate, or another movable tile is placed on it.
Closed Door The normal type of door. Opens when given a wire signal; found blocking the exits of most levels.
Sensor A power source that turns on when struck by a laser beam.

Figure 3: Elemental mechanics in Laserverse, in the same order as Figure 2]

Beamlock

Tripwire

Figure 4: How the compound mechanics discussed relate to
each other and to the elemental mechanics.

Compound Mechanics

Just as chemical elements combine to create more interest-
ing chemical compounds, we found many different ways to
arrange our elemental mechanics to create emergent com-
pound mechanics. First, our core mechanics, lasers and
wires, interact in many different ways: sensors are power
sources that activate when struck by a laser beam; con-
versely, some lasers only project a beam when activated by
wires; and doors (which may be controlled by wires) block
laser beams when closed and let them pass through when
open. A few other compound mechanics were interesting
enough for us to name:

Feedback: See Figure 5] for an example of this mechanic
in action. The left panel shows the initial state of the level,
before the player steps on the button. The middle panel
shows the player on the button. The laser has turned on,
activating the sensor and opening the door. The right panel
shows that when the player steps off the button, the sensor
keeps the laser turned on, which keeps the sensor active.

Tripwire: This mechanic builds on the Feedback me-
chanic by adding a way for the Feedback memory cell to be
reset, usually by the player accidentally carrying an opaque
crate through the path of the beam.

Splittermerge: Beamsplitters split one beam into two

parts, but they can also be merge two beams together. In the
setup at the bottom right of Figure 4 for instance, whenever
either laser is active, beams will emanate from the splitter
upward and to the left. A sensor in the path of either of these
beams can thus be activated by either laser.

Beamlock: This mechanic combines the Feedback and
Splittermerge mechanics. A splitter is used to direct a laser
beam into a sensor, which turns on a second laser. This
laser’s beam is then directed into the same splitter, and thus
the same sensor, keeping it active while the first laser’s beam
is used for something else.

Generating Level Progressions

There are a great many factors at play in generating a level
progression, and authoring all combinations by hand would
be a tedious and error-prone process. Therefore, we wrote a
Python script to generate progressions that ensure the satis-
faction of dependencies and other heuristic information that
we wish to evaluate empirically. The program takes a hard-
coded data structure with nodes representing levels, mechan-
ics, and abstract learning objectives, then traverses this data
structure to generate a level progression, and finally renders
this progression in several different formats. The algorithms
are highly configurable.

Learning Objectives and Level Dependencies

A graphical rendering of a small piece of the key data struc-
ture is shown in Figure [f] The red nodes represent individ-
ual levels, and the arrows represent the dependency rela-
tionships between the nodes. The intermediate blue nodes
represent learning objectives, or abstract concepts which we
presume to be taught or required by certain levels (analo-
gous to the concepts that may form a prerequisite structure
in a school curriculum). The arrows leading downward from
these nodes point to levels that a progression could use to
introduce the concept, usually a relatively simple level that a
player could solve without already understanding it. We ex-
pect the player to gain an understanding of the concept while
playing that level.

As an example, the leftmost blue node, labeled “Buttons,”
represents the button tile, and the level below it, “Crate Ex-

Figure 5: The Feedback mechanic in action. Left: Before stepping on the button. Middle: On the button. Right: After stepping
off the button. Note that the laser, sensor, and wires on the right remain active, keeping the door open.

pectations,” is the first level players will encounter that has a
button. The level is quite minimal: all the player needs to do
is pick up a crate and place it on the only button that appears
in the level, which will open the door to the next stage. In our
early playtesting, we found that players tended to take a sur-
prisingly long time to actually touch the button in this level,
because they didn’t know what it was. Thus, we wanted to
make sure to have this simple level appear in the progression
before players need buttons in more complex contexts.

Functional Wires
(1)
[12]

Buttons

Figure 6: An example data structure used in progression gen-
eration.

The two blue nodes at the bottom, labeled “Move Tiles”
and “Spin Tiles,” represent the player’s most basic ways of
interacting with the puzzles of Laserverse: moving and ro-
tating tiles. Players will need to fully comprehend these me-
chanics before they have any hope of solving the more diffi-
cult puzzles. Thus these learning objectives appear near the
bottom of the graph, and their dependencies will always ap-

pear at the beginning of any progression that the script gen-
erates. Also note that the “Move Tiles” node has two de-
pendencies. The script interprets the dependencies of blue
nodes in a disjunctive manner, meaning that either “Crate
Expectations” or “Have Mirror, Will Travel” could be used
to introduce the concept of moving tiles. The script will only
choose one such dependency for the progression.

The arrows in Figure [6] represent dependency relation-
ships between levels and learning objectives. Arrows lead-
ing downward from orange level nodes connect to the con-
cepts the player must understand before playing the level,
and arrows leading downward from the blue learning ob-
jective nodes point to levels that could be used to teach the
player that concept. These relationships enforce a partial or-
dering over how the levels can be arranged in the generated
progression, as concepts must be introduced before they can
be used.

Levels interpret their dependencies in a conjunctive man-
ner. For example, “Locks and Keys” depends on both
the “Buttons” and “Functional Wires” learning objectives,
meaning that levels representing each of these objectives
should appear in the progression before “Locks and Keys.”

Selection and Ordering Heuristics

The numbers shown in the nodes in Figure[6]are used by the
progression-generating algorithm to help determine which
levels will appear in the progression, and how those levels
will be ordered beyond the partial ordering given by the de-
pendency relationships.

The selection heuristic is computed first, shown in Fig-
ure[@las the italicized number at the center of each node. This
number can be interpreted in a number of different ways.
Most literally, it is the number of paths up the graph to a
specified root level, which, in the case of Figure@ is Locks
and Keys. Also, this number approximates how many dif-
ferent levels and learning objectives use the concept repre-
sented by the node. A higher number can thus indicate that a
level could be used to introduce more than one concept at a
time, as is the case for Crate Expectations, which can fulfill
both the Buttons and Move Tiles learning objectives. Third,
this heuristic is our first attempt at formalizing the “basic”
nature of a concept. The higher the number, the more levels
use the concept, and so the more basic that concept must be.

def progression(self, level_sorter=takeall, obj_selector
=takefirst):
Start with a list containing only this level
prog = [self]
Look at this level’s dependencies (which are
typically learning objectives), call obj_selector
on each one to select a level from its
dependencies, and compile those levels into a new
list
flattened_deps = self.flat_deps (obj_selector)
Sort the levels according to level_sorter
sorted_deps = level_sorter (flattened_deps)
For each level in this list,
for dep in reversed(sorted_deps)
recursively generate its progression (without
changing the heuristics)
depprog = dep.progression(level_sorter,
obj_selector)
For each level in this progression in reverse
order (starting with dep itself),
for level in reversed (depprog) > 0:
remove it from the main progression, 1if it’s
already there
if level in prog:
prog.remove (level)
and attach it to the front of the main
progression
prog.appendleft (level)
return prog

Figure 7: The progression generation algorithm

Of the three nodes at the bottom of Figure[6] First Steps has
the highest number, and its concept, rotating tiles, is indeed
integral to almost every level in the game.

This number is used by the algorithm to determine which
levels will appear in the generated progression (hence “se-
lection heuristic”). As the learning objectives need only one
of their dependencies to appear in the progression, only the
one with the highest number is chosen. Levels with a higher
selection heuristic are more likely to be able to fulfill multi-
ple learning objectives at once, so this makes for shorter, less
redundant progressions. The levels selected by this method
are shown in Figure[6]as the nodes with thicker borders.

The ordering heuristic is computed second, shown in Fig-
ure[6 as the boldfaced numbers at the bottom of each node.
This number is the number of paths downward from a node
to one of the nodes at the bottom of the graph, multiplied by
that node’s italic selection heuristic, plus the same computa-
tion for each of the other bottom nodes.

The Algorithm

Figure [/| shows most of the Python code used to generate
the progressions. Prior to calling this method, the selection
and ordering heuristics are computed based on a specified
root level, as described above. Then, this recursive method is
called on that level. The parameters of this method are seir,
the node currently under consideration, 1evel_sorter, Which
determines the order of the levels beyond the partial ordering
given by the dependency relations, and obj_selector, which

is used to select which dependency of each learning objec-
tive will appear in the progression. The obj_selector func-
tion that we ultimately used looks at the dependencies of the
given learning objective and returns the one with the high-
est selection heuristic. However, in some cases, such as with
the dependencies of “Functional Wires” in Figure[d] there is
a tie. In these cases, we marked one of the relevant levels
with a special flag, which causes our obj_selector to choose
it unconditionally when applicable. This is shown in Figure
[6]as the heptagonal shape of “Clear as Mud.”

We created two different 1evel_sorter functions for our
survey: one that simply sorts a list of levels by the ordering
heuristic in ascending order, and one that sorts in descend-
ing order. The latter “frontloads” the levels that represent
the most basic concepts at the beginning of the progression,
where players may forget about the introduced mechanics
before they reappear later on. It also tends to create progres-
sions that increase monotonically in difficulty. The former
“backloads” the introductory levels, putting them as late in
the progression as possible. Due to the dependency partial
ordering, this results in mechanics being introduced imme-
diately before the more complex levels that use them, and a
more “sawtooth-like” (non-monotonic) difficulty curve.

Conclusion

We have presented Laserverse, a new modular PuzzleScript
game, and a level progression generation algorithm, as first
steps towards a learner-centered procedural puzzle gener-
ation framework. The puzzle game was designed with a
composable set of mechanics and level design guidelines in
mind. A system was created to automatically generate level
progressions for the game based on learning objective de-
pendencies and selected metrics which might affect the evo-
lution of the player’s mental model.

Future Work

Most immediately, we plan to test our aforementioned hy-
potheses about mental models. We have already designed a
survey to elicit details about changes in the player’s men-
tal model as they play each level of a generated Laserverse
progression. This survey should also let us find correlations
between the evolution of mental models and the properties
of puzzle progressions. An Al player model could then be
constructed based on these correlations, and tested against
responses from human players.

The logical conclusion to this project would be the cre-
ation of a robust player model for puzzle games, based on
the mental model matching theory. Such a model would be
able to enhance many of the existing algorithms for puz-
zle generation. For instance, Khalifa et al. describe a puzzle
level generator which uses a fitness function to weed out un-
playable and uninteresting levels (Khalifa and Fayek 2015).
The heuristics used to ensure interesting level design could
be replaced by a more robust player model, giving feedback
to the generator based on predicted player enjoyment, in-
stead of simple rules like repetitiveness of the solution. Such
single-level generation algorithms could then also be used
to generate a series of levels with natural game progression
characteristics.

References
[Brown 2018] Brown, M. 2018. What makes a good puzzle?

[Butler et al. 2015] Butler, E.; Andersen, E.; Smith, A. M.; Gul-
wani, S.; and Popovi¢, Z. 2015. Automatic game progression
design through analysis of solution features. In Proceedings of
the 33rd Annual ACM Conference on Human Factors in Com-
puting Systems, 2407-2416. ACM.

[Furlough and Gillan 2018] Furlough, C. S., and Gillan, D. J.
2018. Mental models: Structural differences and the role of ex-
perience. Journal of Cognitive Engineering and Decision Mak-
ing 1555343418773236.

[Graham, Zheng, and Gonzalez 2006] Graham, J.; Zheng, L.;
and Gonzalez, C. 2006. A cognitive approach to game usabil-
ity and design: Mental model development in novice real-time
strategy gamers. CyberPsychology & Behavior 9:361-6.

[Hamrick 2016a] Hamrick, B. 2016a. My experience with
stephen’s sausage roll.

[Hamrick 2016b] Hamrick, B. 2016b. Qualities of well-written
puzzles.

[Khalifa and Fayek 2015] Khalifa, A., and Fayek, M. 2015. Au-
tomatic puzzle level generation: A general approach using a de-
scription language. In Computational Creativity and Games
Workshop.

[McGloin, Wasserman, and Boyan 2018] McGloin, R.; Wasser-
man, J. A.; and Boyan, A. 2018. Model matching the-
ory: A framework for examining the alignment between game
mechanics and mental models. Media and Communication
6(2):126-136.

[Schell 2014] Schell, J. 2014. The Art of Game Design: A book
of lenses. AK Peters/CRC Press.

	Introduction
	Related Work
	Background
	Puzzle Design Folklore
	Mental Model Matching Theory

	Experimental Hypotheses
	Laserverse: a modular puzzle game
	Elemental Mechanics
	Compound Mechanics

	Generating Level Progressions
	Learning Objectives and Level Dependencies
	Selection and Ordering Heuristics
	The Algorithm

	Conclusion
	Future Work

