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Abstract

Recent work in (deep) reinforcement learning has increas-
ingly looked to develop better agents for multi-agent/multi-
task scenarios as many successes have already been seen in
the usual single-task single-agent setting. In this paper, we
propose a solution for a recently released benchmark which
tests agents in such scenarios, namely the MARLÖ competi-
tion. Following the 2018 Jeju Deep Learning Camp, we con-
sider a combined approach based on various ideas generated
during the camp as well as suggestions for building agents
from recent research trends, similar to the methodology taken
in developing Rainbow (Hessel et al. 2017). These choices
include the following: using model-based agents which al-
lows for planning/simulation and reduces computation costs
when learning controllers, applying distributional reinforce-
ment learning to reduce losses incurred from using mean es-
timators, considering curriculum learning for task selection
when tasks differ in difficulty, and graph neural networks as
an approach to communicate between agents. In this paper,
we motivate each of these approaches and discuss a combined
approach that we believe will fare well in the competition.

Introduction
Reinforcement Learning (RL) is a subfield of machine learn-
ing that studies how agents can learn to maximize total re-
ward while acting in environments that provide minimal su-
pervision through reward signals (Sutton, Barto, and oth-
ers 1998). Generally, the formulation of RL assumes that
the environment is modeled as a Markov Decision Process
(MDP), given by the 5-tuple 〈S,A,R, T, γ〉where S denotes
the state space, A the action space, R the reward function,
T the transition function, and γ the discount factor which
controls how much agents favor short-term vs. long term re-
wards. The objective is usually to maximize the expected

return E[G] =
∞∑
t=1

γt−1rt, where rt is the reward obtained

at time t.
Often the MDP and the state space in particular is very large
or complex, and, thus, using traditional table-lookup meth-
ods that store information per state can be very expensive
or lead to poor generalization performance. This problem
is generally tackled with function approximation where the

states are first mapped onto a lower dimensional space and
RL algorithms then work with the extracted features.
Deep Learning is a method to learn general functions using
artificial neural networks and hence is a way towards non-
linear function approximation (LeCun, Bengio, and Hin-
ton 2015; Arulkumaran et al. 2017). Thus, combining Rein-
forcement Learning and Deep Learning (Deep RL) has be-
come popular in recent years for training agents in complex
environments. Minecraft, one such environment with a rich
and highly complex state space, provides a good testbed to
evaluate how various Deep RL agents compare. Moreover,
since Minecraft allows for multiple tasks and agents, multi-
task multi-agent scenarios can be simulated with ease. The
recently proposed MARLÖ competition focuses on such
scenarios, and in this paper we propose certain agents as
good candidates to solve such scenarios.

Preliminaries
In this section, we outline some necessary background infor-
mation that will be useful in explaining our proposed method
and the motivation for various decisions. We first discuss a
particular model-based algorithm that we base our agents
on. Then, we consider the general RL landscape, and the re-
cent interest in distributional RL. After that discussion, we
talk about some important things to note about the MARLÖ
competition in particular. Finally, we discuss NerveNet and
Graph Neural Networks which provide for an approach to
think about when considering multi-agent communication.
When designing reinforcement learning algorithms, there is
a choice between model-free algorithms and model-based
algorithms. Model-free approaches only focus on the prob-
lem of how to act so as to maximize reward. On the other
hand, model based approaches also try to understand how
the “world” works by learning the underlying MDP of
the environment. A recent such approach that has shown
promise and which we propose to use is World Models.

World Models
World Models (Ha and Schmidhuber 2018) looked at learn-
ing a compressed spatial and temporal model of an environ-
ment in an unsupervised manner and using the learned fea-
tures to train a very simple and compact policy to solve the
task at hand. The authors were able to achieve this using a
multi-step training procedure:



1. Collect rollouts from environment (using a random or
other simple policy π), i.e., store episode trajectories
of the form s0, a0, r1, s1, a1, r2, ..., sT−1, aT−1, rT , sT
where at ∼ π(st).

2. Train a variational autoencoder, V , to learn a latent vec-
tor representation z ∈ Rm given the higher dimensional
states collected during step 1.

3. Train a Mixture Density Network-Recurrent Neural Net-
work,M , to model P (zt+1|zt, ht, at) where ht is the hid-
den state of the LSTM used in the MDN-RNN.

4. Train a controller C which learns what action at to take
using zt and ht, like so: at =Wc[zt, ht] + bc.

While V and M can simply be trained through supervised
learning, C can be trained in various ways. However, since
the controller portion of the setup is very small (on the order
of a few hundred parameters in the experiments used by the
authors), training using an evolutionary technique, CMA-ES
(Covariance Matrix Adaptation Evolution Strategy (Hansen
and Ostermeier 2001)) is possible.

RL Algorithms
When designing RL agents, another common choice to be
made is whether the agents should directly learn in pol-
icy space (how to act in different states) or learn value
functions that define the “goodness” of states or state-
action pairs in terms of expected return. In the value-
based paradigm, Q-Learning (Watkins and Dayan 1992)
and Deep Q-Networks (Mnih et al. 2015) have been pop-
ular where, following the Bellman equations, state action
pairs, Q(st, at), are updated towards a target that is gener-
ally more accurate, rt + γmaxaQ(st+1, a). In the policy-
based paradigm, policy gradients have been commonly used
with some changes to reduce variance. A usual starting point
is the Monte-Carlo policy gradient update, REINFORCE
(Williams 1992), which performs gradient ascent on the pa-
rameters of the policy using sampled returns: θ ← θ +
∇θ log θπ(st, at)Gt. Finally, actor-critic methods lie in be-
tween the two, where an actor learns and looks to improve
a policy and a critic evaluates the policy and, by replacing
sampled returns for example, can reduce variance.

Recently, there have been questions about the general ap-
proach taken in RL. Namely, the observation is that most
prior RL algorithms estimate the average expected return
and use these estimates when choosing actions. Distribu-
tional RL (Morimura et al. 2010; Bellemare, Dabney, and
Munos 2017), has posed an alternative whereby Z(st, at),
the return distribution for state-action pair (st, at), is up-
dated towards rt+γmaxaZ(st+1, at). Action selection can
then be done in an expectation sense or using, for example,
risk sensitive approaches where actions with lower variance
may be favored.

MARLÖ Competition
One major aspect of the competition is that multiple agents
will be involved. With teams, cooperative tasks and com-
petitive tasks become important subsets of tasks to consider.

With regard to terminology in fact, the competition speci-
fication makes an important distinction between tasks and
games by defining a game as a collection of tasks of vary-
ing difficulty and level layouts. The competition is structured
such that we have access to some publicly available tasks for
every game, but some tasks are private and to be used later
for evaluation.

Graph neural networks
NerveNet (Wang et al. 2018) is a recently proposed ar-
chitecture for continuous control where the agent was as-
sumed to have multiple physical parts which can be repre-
sented as a graph. Graph Neural Networks (GNNs) were
used as they posses relational inductive biases and are
invariant to node and edge permutations as entities and
their relations are represented as sets (Battaglia et al. 2018;
Mitchell 1980).
The updates of GNNs begin with propagation of messages to
neighboring nodes. The feature vector of the current state for
each node u at propagation step 0 is denoted h0u. After each
node passes messages to neighboring nodes, it aggregates
messages it receives from its neighborhood, then updates its
feature vector and outputs a vector combining the informa-
tion from the current and the aggregated messages. A policy
network parameterized by the graph can learn what actions
to take for each part. This process can be described using the
equations below:

mt
(u,v) =Mv

P (h
t
u) where v ∈ Nout(u) (1)

Atv =Mv
A({mt

(u,v)|u ∈ Nin(v)}) (2)

ht+1
v = Uv(htv, A

t
v) (3)

ŷ = O({hTv | v ∈ G}) (4)

where Nin(·) and Nout(·) represent the in- and out-
neighborhoods respectively, ŷ represents the output of the
GNN and Mv

P , MA, Uv and Ov may be neural networks
and parameter sharing can be applied as necessary. For ex-
ample, a node u can use the same network MP for message
passing to all nodes on its out-neighborhood v ∈ Nout(u) or
use separate ones for messages to each of these nodes Mv

P
and hence the additional superscript v.

Methods
We now consider a few different agents as a combination of
some of the ideas explained previously. The motivation for
these agents and design choices therein will be described in
the following section.
The simplest agent we propose is a multi-agent variation
of World Models. Firstly, we note that we assume V and
M are shared. Alternatively, they can be trained separately
for each agent. Regardless, in the explanations that follow,
we will only discuss training the controllers. Owing to the
small number of parameters in the controllers of world mod-
els, we can view them as being “policy embeddings” which
dictate how each agent acts in the environment. Assuming
that each agent’s controller is trained separately, let the pa-
rameters of the controllers learned be denoted by Ciθ for



agent i where Ciθ corresponds to the controller parame-
ters [Wc, bc] for agent i’s controller Ci. If each agent were
to act independently, then it would just forward the latent
vector embedding of its current state and hidden state of
the LSTM from the MDN-RNN, say [zit, h

i
t], through its

controller Ci to get the action it should take. However, in
a multi-agent setting, we are often interested in maximiz-
ing total reward for a team of agents (particularly so in
co-operative settings.) So, we define a meta-controller as
a controller which takes in [z1t , h

1
t , ..., z

n
t , h

n
t ] and outputs

[π1
a0 , ..., π

1
am , ..., π

n
a0 , ..., π

n
am ] assuming n agents are “un-

der” the teams control, there are m actions and where πiaj is
the probability of agent i taking action aj .
The next agent we consider is one where the controllers are
trained separately, but a Graph Neural Network style ap-
proach is used, reducing the number of parameters and en-
couraging communication of shared knowledge. To do this,
we first concatenate the hidden state vectors hit for each
agent i, say H = [h1t , ..., h

n
t ]. We then use this matrix to

construct a graph Gt. At the next timestep, we can do the
same to get a graph Gt+1. Now, the graph is to represent
the beliefs of how the world works and how the agents re-
late to each other (which it can do so given the information
from the memory module from each agent). So, we can ex-
pect that if graphs are learned appropriately, we can infer
the graph at time t+1, given the graph and the actions taken
by each agent [a1t , ..., a

n
t ] at time t. Thus, we can use su-

pervised learning to train the graph construction. The actual
construction process can be done in many ways, but we pro-
pose using cosine-distance row- and column-wise to get how
entities in the environment and agents relate to each other.
With these graphs serving as a proxy for useful information
about the environment and agents, these graphs can serve as
useful input to each agent’s controller.
Past work has looked at action-conditional next state pre-
diction, but has often made the implicit assumption that the
environment is deterministic. Since many environments are
stochastic and world models itself consists of a parameter τ
which controls the environments stochasticity, we can look
to previous work in distributional RL to consider a better
approach to generating and using next state predictions. No-
tably, when there are many possible next states, we can inte-
grate over them by the probability to get an “averaged” next
state vector. The probability distribution over next states,
P (zt+1|at, zt, ht), is modeled by M in the world models
approach. So, instead of sampling from the mixture density
model and using a single sample, we can easily sample re-
peatedly or even in some uniform interval of τ to get multi-
ple possible next states with various probabilities of occur-
ring. Averaging them could give us a more useful z and this
is an approach we wish to study. Using all of the sampled
z’s separately, as in (Buesing et al. 2018) is also possible.
While the evolutionary approach allows us to be free from
the problem of needing to define how to use the rewards,
we can consider RL approaches as well. Value based ap-
proaches help in long term planning and hence we propose
using actor-critic methods where the critic can use distribu-
tional RL. Given multiple possible next states for the current

state (as explained in the previous paragraph), we can even
train a more accurate value estimation network for the dis-
tribution of expected returns Z(s, a).
Lastly, in a multi-task setting, there may be tasks of varying
types and difficulties. Curriculum learning is a common ap-
proach as the agent can slowly learn tasks of increasing dif-
ficulty without which some tasks may be very hard to solve.
We propose having a teacher suggesting tasks using a bandit
algorithm, EXP3 (Exponential-weight algorithm for Explo-
ration and Exploitation) that keeps track of how each arm
(or task in this case) fares. The general pattern we wish to
see here is that as agents show signs of improving in one
task (say, in an average reward sense), we select that task
more until it is essentially solved and then we move on to
another task that is next up in the hierarchy of tasks based
on difficulty. Since MARLÖ has the concept of games and
tasks, we can use a hierarchical approach whereby we first
choose the game and then the task to train on. Alternatively,
the teacher can select from all the available tasks directly.

Motivation
In this section, we explain the reasoning behind some of our
design decisions and choices.

While model-free approaches such as Deep Q-Networks
(Mnih et al. 2015) and A3C (Mnih et al. 2016) and their
later variants have been popular and shown promising re-
sults in the past, a primary reason for their success has been
that they are easier to train. Model-based approaches on the
other hand are generally more computationally intensive as
there are additional steps to model the MDP. However, there
are many benefits to learning models. Importantly, running
experiments on even simulated environments can be very ex-
pensive as we move towards more complex environments.
Minecraft is a modern game, built many years past Atari
2600 games, and hence, as one would expect, is a much more
computationally intensive environment. Learning models al-
lows for agents to learn without needing to interact with the
environment at hand. We can even combine learning from
the environment and learning the model with planning us-
ing the model following the Dyna architecture, i.e., learning
from “dreams.”
Now, while using models as a proxy for complex environ-
ments is an obvious advantage to using models. There are
still many other interesting things to note about using mod-
els and model-based learning in general. One primary ar-
gument against model-based learning is that getting good
models is very difficult and poor models can hinder learn-
ing. However, in both World Models and I2A, the authors
note that poor models can still in fact help learning. While
no solid reason for this is known, we hypothesize that this
may be due to some state-aggregation like effects or where
the MDP approximated has some strong correlation to the
true underlying MDP. In other words, the model is at least
able to learn some useful clustering of the states or learn
reward and transition functions that are similar to the true
reward and transition functions but differ in small ways.
Opponent modeling is another aspect that past research has
considered. However, with limited access to opponent states
and policies as well partial observability, it can be a very



hard problem. Models allow opponents to just be modeled as
part of the environment and thus sidestep the need to incor-
porate opponent modeling in agents. However, there is still
a question of how to setup opponent policies while learn-
ing the model. If setting opponent policies randomly does
not work, we can use self-play with some noisy version of
learned policies.
World models in particular is appealing for a few concrete
reasons. Firstly, Minecraft is partially-observable, the hid-
den state of the LSTM h in the MDN-RNN module could
be very useful in making the POMDP more like an MDP.
The hidden state encodes information about past observa-
tions and actions taken. Hence, h combined with the current
state encoding z represents a new state that encodes the his-
tory as well.
Secondly, as the tasks in the MARLÖ competition involve
multi-agent multi-task scenarios, we need to think about
how to train the agents. With world models, we can share
the V , the state feature-extraction module, across the agents
and games. The memory module M can also be shared with
some consideration for how to train it given that agents may
have differing roles. The main point however is that world
models is structured in such a way that we can share many
modules between agents, reducing computational costs and
introducing some useful priors. While such sharing of state
representations might be possible in model-free algorithms,
the learned representations can be quite different given how
the architectures are trained (supervised learning vs. RL and
hence with different loss functions.)
As a related note, even the structure of the controller, C, is
amenable to the multi-agent setting. Since most of the com-
plexity in terms of number of parameters is in the V and M
models,C is very small. With multiple agents, we can train a
meta-controller with a lot fewer parameters than if we were
using separate model-free architectures for each.
Finally, we discuss some motivations behind taking a certain
approach to training the controller, C, using RL. Naively us-
ing CMA-ES in a multi-task cooperative task setting with
each controller being trained separately would lead to an
exponential blow-up whereby we need to perform a com-
binatorial search to find good parameters for each agent in
order to maximize “global” reward. Also, notably, while
evolutionary algorithms and the controller architecture is
suited to policy search, complex tasks often require long
term planning and hence value functions are useful. This is
the same dichotomy seen in continuous control tasks where
policy based methods generally perform much better while
in games with some amount of planning necessary, like Atari
2600 games or Go, value based methods have generally
done much better. Hence, we believe we should use param-
eter sharing or metacontrollers (to deal with the exponen-
tial blow-up) and Actor-Critic methods given how Minecraft
combines the need for impulsive quick-actions and long
term planning.
Recently, we have also seen that deep RL seems to benefit
from learning distributions even when acting in an expected
sense. While it is still unclear why, one reasonable argu-
ment for this is that there seems to be some bias induced
in the deep RL setting when collapsing distributions to their

means. And, indeed, recent work has shown that distribu-
tional RL doesn’t seem to be of much help in the linear func-
tion approximation case (Lyle and Bellemare 2018). Given
that we pushed for using actor-critic above, a natural choice
for the critic is then to see how predicting return distribu-
tions could affect performance, as done in Rainbow (Hessel
et al. 2017). Additionally, given the Actor-Critic approach
and that we have access to a simulator as well, counterfac-
tual policy gradients (Foerster et al. 2017) can also be used.

Related work
There have been multiple approaches recently in the area
of multi-task multi-agent scenarios and, particularly in the
Minecraft platform, Malmö, such as (Xiong et al. 2018).
They propose the novel model HogRider to solve the Pig
Chase task. The objective of the task is to chase randomly
spawned pigs in a 9 × 9 grid with collaboration. Since the
pigs are moving after the task is initialized, the environment
is non-stationary, and hence can be viewed as a multi-agent
team-based scenario.

The multi-agent problem of learning from a single scalar
reward signal has generally been quite difficult to approach
but has recently been looked at. Value Decomposition Net-
works (Sunehag et al. 2017) look to decompose the team
value function into agent value functions based and see that
the method fares better when weight sharing and informa-
tion channels are used. Again, this is in fact a strong argu-
ment for using a model-based approach whereby many of
the feature representations are shared across agents.
A recent retro game contest held by OpenAI has tackled
various scenarios similar to the MARLÖ contest (Gray and
Brown 2018) and has further brought attention to the need
for adaptive exploration and meta-learning in RL.

Discussion and Future Work
We believe this study is particularly useful and well-
motivated because most of the challenges faced by agents
evaluated in a multi-task/multi-agent settings are with under-
standing of the interactions between agents and their respec-
tive policies. Our approach attempts to alleviate these diffi-
culties with a Graph Neural Network and Policy Embedding
approach. We further can address issues of uncertainty and
model interpretability using distributional RL. Finally, we
utilize curriculum learning to address agents’ need to bal-
ance performance on multiple tasks of varying difficulties,
intelligently deciding which tasks to train on and alleviating
issues with catastrophic forgetting .

The immediate next steps are to continue implementa-
tions of the above ideas into an agent and evaluate its perfor-
mance in the MARLÖ competition compared to other com-
mon benchmark agents. We also wish to look into how to
construct simulated environments with various types of op-
ponents and do ablation tests to see which of the ideas de-
tailed above lead to the most improvement. We will keep
up-to-date our progress and thoughts here at this webpage:
https://sites.google.com/view/rainbowmarlo/.
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