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ABSTRACT

We present our methods for the MediaEval 2018 Emotional
Impact of Movies Task to predict the expected valence and
arousal continuously in movies. Our approach leverages image,
audio, and face based features computed using pre-trained
neural networks. These features were computed over time
and modeled using a gated recurrent unit (GRU) based
network followed by a mixture of experts model to compute
multiclass predictions. We smoothed these predictions using
a Butterworth filter for our final result.

1 INTRODUCTION

The Emotional Impact of Movies Task [7], part of the Media-
Eval 2018 benchmark, provides participants with a common
dataset for predicting the expected emotional impact from
videos. We focused on the first subtask in the challenge:
predicting the expected valence and arousal continuously
(every second) in movies. The dataset provided by the task is
the LIRIS-ACCEDE dataset [3, 4], which is annotated with
self-reported valence and arousal every second from multiple
annotators. Since deep neural networks, such as Inception
[19], have millions of trainable parameters, the competition
data may be too limited to train these networks from ran-
dom initializations. Therefore, we used networks that were
pre-trained on larger datasets, such as ImageNet, to extract
features from the LIRIS-ACCEDE dataset. The extracted
features were used to train our temporal and regression mod-
els.

This task is recurring with multiple submissions every
year [11, 14]. Our method’s novelty lies in the unique set
of features we extracted including image, audio, and face
features (capitalizing on transfer learning) along with our
model setup, which comprises of a GRU combined with a
mixture of experts.

2 APPROACH

We approached the valence and arousal prediction as a multi-
variate regression problem. Our objective is to minimize the
multi-label sigmoid cross-entropy loss and this could allow
the model to use potential relationships between the two
dimensions for regression. We first used pre-trained networks
to extract features. To model the temporal aspects of the
data, the methods we evaluated included long short-term
memory (LSTM), gated recurrent unit (GRU) and temporal
convolutional network (TCN). Multiple modalities were fused
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with late fusion, and valence along with arousal was predicted
jointly. Our method is implemented using TensorFlow and
we used the Adam optimizer [12] in all our experiments.

2.1 Feature Extraction

We extracted image, audio and face features from each frame
of the movies. Our image features (Inception-Image) were
from the Inception network [19] pre-trained on ImageNet [16].
We extracted audio features using AudioSet [9], which is a
VGG-inspired model pre-trained on YouTube-8M [1]. For the
face features (Inception-Face), we focused on the two largest
faces in each frame and used an Inception based architecture
trained on faces [17]. Since the movies were human-focused,
faces were found in most of the scenes. We compared these
features with those used in last years competition that in-
cluded image features computed using VGG16 [18] and audio
features computed using openSMILE [8]. All our features
were extracted at one frame per second.

2.2 Temporal Models

To model the temporal dynamics of the emotion in the videos,
we used recurrent neural networks. In particular, we used
LSTMs [10] and GRUs [6] as part of our modeling pipeline
in a sequence-to-one setup with sequence length of 10, 30
or 60 seconds. The self-reported emotions likely depend on
past scenes in movies, so temporal modeling is important
for this task. In addition, we evaluated TCNs because of
their promising performance in sequence modeling [2] and
action segmentation [13]. Specifically, we trained an encoder-
decoder TCN using sequences of extracted features to obtain
a sequence of valence and arousal predictions.

2.3 Regression Models

The input from each modality (image, audio, or face) is fed
into separate recurrent models. The output we use from each
recurrent model is its hidden state which contains information
on previous data seen by the model. We use the hidden state
corresponding to the final timestamp in the input sequence.
The state vectors for each modality are concatenated into a
single vector and fed into a context gate [15]. Multimodal
fusion occurs at this stage as we use the learned model to
fuse the representation of each modality from the RNN. The
output of the context gate is then fed into a mixture-of-
experts model with another context gate to obtain the final
emotion predictions. We use logistic regression experts with
a softmax gating network.

To prevent overfitting, we regularized our models using L2
regularization, dropout and batch normalization. Finally, a
low pass filter is applied on the predictions to smooth the
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prediction outputs. In LIRIS-ACCEDE, the measured emo-
tion data vary smoothly in time but our regression outputs
contain high frequency signals. To smooth our outputs, we
tested weighted moving average filters and low-pass filters
(Butterworth filter [5]) as implemented in SciPy.

3 RESULTS AND ANALYSIS

We optimized the hyperparameters of our models to have
the best performance on the validation set, which consists
of 13 movies from the development set. We then trained our
models on the entire development set to run inference on the
test set. Our setup used a batch size of 512.

Through evaluating our recurrent models, we found that
Inception-Image+AudioSet features had better performance
in terms of MSE and PCC compared to VGG16+openSMILE
features. In some cases, the recurrent model would predict
near the mean for both valence and arousal while using
VGG16+openSMILE. This may be because the features did
not have enough information for the models to discriminate
between different values of valence and arousal. We also
found a significant increase in performance when we added
the Inception-Face features, which may point to salient infor-
mation captured in connection with the expected emotions
in the videos.

The sequence-to-one recurrent models worked best with
longer input sequences of 60 seconds versus those of 10 or
30 seconds. This may be because the invoked emotion is
affected by longer lasting scenes. Our recurrent models also
performed better on the validation set than the TCN and
the GRU models had similar performance to the LSTMs.
We used GRUs for our implementation because GRUs are
computationally simpler than LSTMs. Since we have a small
dataset, we wanted to reduce model complexity to prevent
underfitting. Our temporal model architecture ranged from
32 to 256 units and 1 to 2 layers, optimized for each of the
modalities. For post processing, the low-pass Butterworth
filter worked better than the moving average filter. This is
likely because the Butterworth filter is designed to have a
frequency response as flat as possible (with no ripples) in the
pass-band. Fluctuations of the magnitude response within
the passband may decrease the accuracy of our regression
output.

In Table 1 we list the performance of our best models that
were submitted to the task. Each of the 5 runs is defined
as follows where we used Inception-Image, AudioSet, and
Inception-Face as the features and a GRU with mixture-of-
experts for regression.

(1) No dropout or batch normalization.
(2) Regularized with dropout and batch normalization.

Trained on approximately 70% of the data.
(3) Regularized with dropout and batch normalization.
(4) Regularized with dropout and batch normalization,

different initialization and epoch.
(5) Average over all runs.

We see that creating an ensemble from our models by
averaging over the runs has the lowest MSE (Run 5). This

Table 1: Performance of our five models.

Valence Arousal
MSE PCC MSE PCC

Run 1 0.1193 0.1175 0.1384 0.2911
Run 2 0.0945 0.1376 0.1479 0.1957
Run 3 0.1133 0.1883 0.1778 0.2773
Run 4 0.1073 0.2779 0.1396 0.3513
Run 5 0.0837 0.1786 0.1334 0.3358

is likely because by averaging, we decrease the variance of
predictions and thus overall, the mean is closer to the ground
truth labels. While averaging improves MSE, it does not
improve correlation. Our model with the best correlation is
from Run 4.

We note that using batch normalization during inference
increases the variance of our predictions. This is because
we are using the batch statistics instead of the population
statistics from the train set to normalize the batches. Our
validation results (with repeated runs) as well as test results
show that using batch normalization in this way improves
predictions for valence, but not as much for arousal. This is
most likely because the statistics of the test set for valence is
different from train set while the test set statistics for arousal
may be closer to the train set statistics. One explanation
could be the small size of the dataset so that the statistics of
the train set does not generalize well to the test set.

4 CONCLUSIONS

We found that precomputed features modeling image, audio,
and face in concert with GRUs provided the optimal per-
formance in predicting the expected valence and arousal in
movies for this task. Based on our test set metrics, ensemble
methods such as bagging could be useful for this task.

We found some evidence that recurrent models performed
better than TCN. However since we only evaluated the
encoder-decoder TCN more investigation will be necessary
for a broader conclusion.

The pre-computed features we used to model image, au-
dio, and face information showed better performance when
compared with the VGG16+openSMILE baseline. A future
direction could be to train the network in an end-to-end man-
ner to better capture the frame level data, with the caveat
that we may need a much larger training dataset.
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