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Abstract—We present a Machine Learning methodology 

using a Convolutional Neural Network to perform a specific case 

of an ontology Quality Assurance, namely discovery of missing 

IS-A relationships for Neoplasm concepts in the National Cancer 

Institute Thesaurus (NCIt). The training step checking all 

“uncles” of a concept is computationally intensive. To shorten the 

time and to improve the accuracy, we define a restricted 

methodology to check only uncles that are similar to each current 

concept. The restricted technique yields higher classification 

recall (compared to the unrestricted one) when testing against 

known errors found by domain experts who manually reviewed 

Neoplasm concepts in a prior study. The results are encouraging 

and provide impetus for further improvements to our technique.  

Keywords—CNN; Deep Learning; Neoplasm Hierarchy; 
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I. INTRODUCTION 

Ontologies play a major role in enabling precise 

communications and in support of healthcare applications, e.g. 

EHR systems. Many ontologies are large and complex. For 

example, the National Cancer Institute Thesaurus (NCIt) [1], 

serving cancer researchers inside and outside NIH, contains 

135,243 concepts interrelated by 480,141 links in the April 

2018 release. Due to their size and complexity, errors in 

ontologies are unavoidable. Users of ontologies such as the 

SNOMED ontology are concerned about errors [2]. Thus, 

quality assurance (QA) is essential in the lifecycle of 

ontologies [3]. For a summary of auditing (QA) techniques for 

ontologies and in particular for SNOMED and NCIt, see [4, 5].   

However, QA resources for ontologies are typically scarce, 

while QA tasks are labor-intensive and time-consuming. 

Therefore, automated or semi-automated techniques that can 

either help in auditing an ontology or narrow down the places 

where to look for errors, are highly desired. Missing 

parent/child errors are particularly interesting to ontology 

curators, as the IS-A links are the backbone structure of an 

ontology, facilitating the inheritance of lateral relationships 

(called roles in NCIt). 

Machine Learning (ML) has been proven successful in 

many fields, e.g., knowledge mining. ML was previously used 

in knowledge enrichment for ontologies [6-8]. However, can 

ML be used for quality assurance of ontologies in spite the 

major difference between knowledge enrichment and quality 

assurance? Knowledge enrichment mines external sources for 

new knowledge that does not exist in the ontology. However, 

QA discovers incorrect or missing knowledge. Consider 

missing IS-A relationships from an existing concept A to a 

concept B. If the concept B is already in the ontology, then 

adding an IS-A link between A and B is considered correcting 

an omission error. If concept B is not in the ontology and is 

added together with adding an IS-A from concept A to it, then 

this is knowledge enrichment. We note that curators of some 

ontologies, e.g., NCIt, are less interested in knowledge 

enrichment, unless required by users, than in quality assurance. 

In this paper, we attempt to use ML to address the task of 

detecting missing IS-A links between two existing concepts. 

This task is more challenging than knowledge enrichment, 

since it requires a judgement that concept A is a specification 

of concept B. For knowledge enrichment we only recognize 

that a concept is missing in the ontology and then insert it into 

the proper place.  

In an unpublished study, we trained a Convolutional Neural 

Network (CNN) deep learning model to insert new concepts 

into the SNOMED CT ontology, i.e., an enrichment problem. 

In the present work, we train a CNN deep learning model to 

find missing parent/child errors in the Neoplasm subhierarchy 

of NCIt. The vector representations of concepts are obtained 

from an unsupervised neural network language model.  The 

model is evaluated by its classification recall on an unseen 

dataset. We check the model’s classification recall by testing 

against 18 missing parent/child errors found by domain experts 

in a prior study [9]. Due to the size of the Neoplasm 

subhierarchy, the application of the training methodology is 

computation-intensive and time consuming. 

In previous research we have introduced Abstraction 

Networks (AbNs) [10, 11]. An AbN provides a compact 

summarization and visual simplification of an ontology. The 

SABOC (Structural Analysis of Biomedical Ontologies Center) 

team at NJIT has demonstrated that Abstraction Networks are 

an effective tool to support quality assurance of ontologies [9, 

12]. An area taxonomy [3], a type of Abstraction Network, is 

composed of meta-concepts called areas, connected by child-

of links. An area (see Background section) represents a group 

of concepts with the same structure.  

To accelerate the processing and improve recall, we modify 

the CNN methodology to limit its consideration, for each 



concept, to the similar concepts of its area (in our formal sense 

of area). The modified, restricted methodology achieves 0.81 

recall on the unseen testing data. It performs 50% better than 

the unrestricted methodology on the 18 known errors in terms 

of recall. The results for detecting missing IS-A links are not 

yet strong enough. However, the performance in recognition of 

known errors is encouraging and supports further improvement 

of our methodology in respect to CNNs and the use of AbNs. 

II. BACKGROUND 

A. Doc2vec 

Numeric representation of variable-length texts, ranging 

from sentences to documents is a challenging task. Doc2vec, or 

Paragraph Vectors [13], an extension of word2vec (word 

embedding)  [14], maps variable-length texts to fixed-length 

vectors. It is an unsupervised framework that learns continuous 

distributed vector representations from unlabeled text data of a 

paragraph/document, while preserving the inter-relationships 

of the text in the numeric format. In such vector 

representations, similar pieces of text are close to each other in 

Euclidean or cosine distance in lower dimensional vector 

spaces. The Doc2vec inherits the semantics of the words in the 

context, and takes the word order into consideration when 

constructing the representation. The latter advantage is 

important to our problem, as word order in our setup carries the 

concepts’ topological/hierarchical order in the ontology. This is 

useful information for feature learning. To the best of our 

knowledge, this is the first study to derive vector 

representations for biomedical ontology classes via Doc2vec. 

B. CNN 

Convolutional Neural Networks (CNN), initially invented 

for image recognition, have been widely used for various 

applications, including vision, speech recognition, and 

language translation. CNN models  have also been successfully 

applied to solve various Natural Language Processing (NLP) 

problems such as search query retrieval [15], semantic parsing 

[16] and sentence modeling [17]. CNN utilizes convolving 

filters to automatically learn and extract local features from 

various layers, regardless of the input size. This makes CNN a 

very powerful tool for classification or prediction tasks, e.g. 

text classification [18] and relation extraction [19], even if the 

data or features have not been manually labeled for learning 

purposes. To the best of our knowledge, this is the first effort to 

adopt the CNN model for ontology quality assurance. 

C. Neoplasms of NCIt 

NCIt is published monthly by the National Cancer Institute 

(NCI) in OWL and flat file formats. It is a cancer reference 

terminology that is widely used. It covers cancer-related 

terminology in various fields, e.g., clinical care and 

translational and basic research. Concepts are linked to other 

concepts (parent concepts) in the same hierarchy by IS-A 

relationships. A concept may have multiple parent concepts. 

The semantics of concepts are defined by lateral relationships 

(called “roles”), e.g. Disease Has Associated Anatomic Site.  

Due to the NCI’s cancer focus, the Neoplasm subhierarchy 

of NCIt is composed of 9,955 concepts. It is a core component 

of the Disease, Disorder or Finding, the largest hierarchy with 

35,081 concepts, and is modeled with more detail, compared to 

non-neoplasm concepts in the hierarchy. 

D. Areas and Area Taxonomy 

An area taxonomy [3, 20, 21]  is a compact Abstraction 

Network summarizing the structure (roles) of an ontology. It is 

composed of areas and child-of relationships connecting areas. 

An area is a group of concepts having the same set of role 

types. A concept can be in only one area, i.e., areas are disjoint. 

A concept that has no parent in its area, is called a root of the 

area. An area may have multiple roots. If a root concept of area 

B has a parent concept in area A, then there is a child-of 

relationship from area B to area A. 

Fig. 1(a) is an excerpt of 12 Neoplasm concepts from NCIt. 

Concepts are represented as rounded-corner boxes and the 

arrows denote IS-A relationships. Concepts with the same set 

of role types are enclosed within a colored dashed rectangle. 

For example, both Benign Neoplasm and Tumorlet have the 

two role types Disease Excludes Abnormal Cell and Disease 

Has Abnormal Cell, they reside in the left green dashed 

rectangle. Fig. 1(b) shows the area taxonomy for Fig. 1(a). 

Each colored, dashed rectangle in Fig. 1(a) becomes an area 

with the same color in Fig. 1(b). An area is labeled by its role 

type set and the number of concepts it summarizes. Areas with 

the same number of role types have the same color. For 

example, there are two areas colored in green, since both have 

two role types. Skin Neoplasm is the root concept of the red 

area and its parent Neoplasm by Site is in the grey area. Hence, 

there is a child-of relationship from the red area to the grey 

area, denoted as a bold arrow in Fig. 1(b). 

 

Fig. 1. (a) Excerpt of 12 concepts from the Neoplasm subhierarchy. (b) The 

area taxonomy for (a) with 4 areas. 

III. METHOD 

We describe two methodologies, the unrestricted 

methodology and the refined restricted methodology. The ML 

training problem is viewed as a binary classification task: given 

a concept pair, we classify it into a positive category (there is 

an IS-A link) or a negative category (there is no IS-A link). We 

train a Convolutional Neural Network (CNN) model to solve 

this classification problem. 



Unrestricted Methodology: To train a CNN model to yield 

high precision, we must carefully choose the training data for 

both categories. The source of training samples for the positive 

category is in the IS-A hierarchy of the ontology. The challenge 

is in the choice for the negative samples as we cannot use the 

full set of unconnected pairs. For the Neoplasm subhierarchy 

of NCIt with 9955 concepts, the size of this set is 99,075,537 

(= 9955*9954 – 16533). We subtract 16533 existing IS-A link 

pairs from the potential missing parent/child errors. Training 

pairs should not be chosen randomly. We need to choose pairs 

where there is a reasonable likelihood for an IS-A link, not 

pairs that obviously have no taxonomic relation. For example, 

a body part concept and a drug concept are not related by an 

IS-A relationship and would be a bad training pair. Negative 

training samples should be near misses, close to the 

“hyperplane of separation” in SVM terms. 

To address these two problems of magnitude and recall in 

the ML training, we limit the negative samples for the 

unrestricted methodology to only “uncle - nephew” pairs for 

only near misses. That is, connections between a concept and a 

sibling of its parent. By only choosing “uncle - nephew” 

pairs, we guide the model to learn the underlying features used 

to distinguish IS-A-connected concept pairs and similarly 

positioned concept pairs that have a high potential to have 

secondary IS-A links but are not connected by IS-A links. There 

are total 37,147 such “uncle - nephew” pairs in the Neoplasm 

subhierarchy of NCIt. 

The unrestricted model must consider all uncles of a 

concept (that are not connected to that concepts by an IS-A 

link). Due to the size of the Neoplasm subhierarchy, the 

number of uncles is large. For example, there are 24, 15 and 15 

concepts with 10, 11 and 12 children, respectively and the 

maximum number of children of a concept is 60. Each 

grandchild of a concept with 15 children has 14 uncles. If the 

average number of children of each sibling is 5, then there are 

70 concepts with 14 uncles each. Applying the proposed 

technique to select negative samples from the whole hierarchy 

results in a large number of “uncle - nephew” pairs. This is 

computationally expensive for training the model and leads to 

low accuracy by distracting the model from learning subtle 

features that distinguish between IS-A and “uncle - nephew” 

links within similar groups of concepts. In other words, not all 

“uncle – nephew” pairs are equally useful for training 

purposes. We need pairs that are similar to existing IS-A-

connected pairs, yet are not themselves IS-A-connected.  

Additionally, many machine learning models work best 
with balanced training sets. The number of positive and 
negative samples should be approximately equal. The number 
of positive training instances in our problem domain is given 
and fixed. The number of potential negative training samples is 
much larger. Thus a cogent way has to be used to select a 
number of negative training samples that is closer to the 
number of positive training samples.  

The Restricted Methodology: To cope with these problems, 

we introduced the restricted approach. The restricted approach 

limits the number of negative samples by only choosing a 

subset of a concept’s uncles, which are structurally similar to 

the investigated concept. To provide such a “closely related” 

subset we partition the Neoplasm subhierarchy into sets of 

concepts of similar structure. In doing this we are availing 

ourselves of a powerful mechanism that derives an area 

taxonomy from an ontology [3]. An area taxonomy is an 

Abstraction Network that clusters together groups of concepts 

according to their roles. All concepts in one area have exactly 

the same roles. Concepts in different areas differ in at least one 

role from each other. 

 In the area taxonomy each cluster of concepts constitutes 

an area. Due to the high average number of roles per concept in 

the Neoplasm subhierarchy, the number of areas is large, and 

the average size of an area is small. Note that AbNs are 

automatically derived from the ontology so the limitation 

process is automatic [22].  By selecting pairs only within areas, 

we narrow down 37,147 negative samples to 10,574 more 

closely related “uncle – nephew” pairs, of the same magnitude 

as the 16,533 positive samples.  

Since all uncles in an area will have exactly the same roles 

as the current concept, they will be similar to it. Thus the recall 

of the CNN training model is expected to be higher than for the 

unrestricted model trained with all uncles of a concept, many 

of which are not similar to the current concept. 

The following description is related to both methodologies. 

Overall, our methodology comprises following four steps: 

A. Document Embedding 

The CNN model requires its input in the format of fixed-

length feature vectors. Thus, before sending concept pairs for 

training, we need to transform each concept into its 

corresponding vector representation with fixed length.  

The Paragraph Vector (Doc2vec) framework introduced by 

[13] generates fixed-length feature vectors from variable-

length pieces of text, as it was designed for text corpus 

processing. Thus, the problem to overcome in applying 

Doc2vec to ontologies is to find the vector representation of 

single concepts. However, an IS-A link is defined by a pair of 

concepts, thus a joint representation of pairs is needed that is 

also compatible with the input required by CNN. 

To derive the vector representation of a single concept, we 

need text “descriptions” of the concept. We recast a concept 

into a document such that it preserves hierarchical and partial 

semantic information of the concept: 

The document of a concept contains the concept ID, the 

name(s) of its ancestor(s), the name(s) of the concept itself, the 

name(s) of its child(ren) and the names of its grandchild(ren), 

if they exist. In this way, the document implicitly maintains the 

hierarchical relationships of the ontology.  

For example, the document representation of the concept 

Malignant Nipple Neoplasm (Fig. 2) is “c5213: Neoplasm → 

Neoplasm by site → Breast neoplasm → Malignant Breast 

Neoplasm → Nipple Neoplasm→ Malignant Nipple Neoplasm 

→ Female Malignant Nipple Neoplasm → Male Malignant 



Nipple Neoplasm →Nipple Carcinoma.” Thus, the generated 

distributed vector representation maintains the most important 

hierarchical relationship semantics. 

The document vectors are derived using the Distributed 

Memory version of Paragraph Vector (PV-DM) [13] via the 

Gensim [23] Doc2Vec implementation. Each vector has the 

dimensionality of 128. Pairs of concepts connected by an IS-A 

link are represented by the concatenation of the document 

vectors of the two concepts, with the child concept first. 

 

Fig. 2. Concept document derivation for Malignant Nipple Neoplasm 

B. Training and Testing Data  

The positive samples are directly extracted from the 

hierarchy as all the concept pairs connected via an IS-A link. 

For example, (Malignant Nipple Neoplasm, Nipple Neoplasm) 

is a positive sample, because Malignant Nipple Neoplasm is a 

Nipple Neoplasm (Fig. 2). As mentioned above, there are 

16,533 positive samples in the Neoplasm subhierarchy. We 

randomly picked 2,000 positive samples for testing. The 

remaining 14,533 (=16,533-2,000) samples are used in a ratio 

of 80% for training and 20% validation. The positive samples 

are treated equally for both models. 

For the restricted model, there are 10,574 potential pairs 

where both concepts of each pair are from the same area. We 

randomly picked 2,000 for testing. As noted above, there are 

37,147 “uncle – nephew” negative sample pairs in the 

hierarchy. However, for the unrestricted model, we use the 

same 2000 negative pairs, used for the restricted model. This is 

done to enable performance comparison between the two 

models. Similar to the way we handle the positive samples, the 

remaining 8,574 (=10,574-2,000) samples for the restricted 

model and the remaining 35,147 (=37,147-2,000) for the 

unrestricted model are divided to 80% vs. 20% ratio for 

training and validation, respectively.  

In addition, we down-sampled the negative samples for the 

unrestricted model and up-sampled for the restricted model to 

14,533 samples, in order to balance the number of samples for 

both categories, as customary in Machine Learning. 

C. CNN Model 

We trained a CNN model with 4 convolution layers on top 

of vectors derived from the Neoplasm subhierarchy of NCIt via 

Doc2vec. The CNN model architecture is shown in Fig. 3. The 

input to the CNN model is two 128x1 dimension vectors and 

the output is a 2x1 dimension vector.  

 
Fig. 3. CNN model architecture 

Some structural details of this model are summarized as 

follows:  

• There are four convolution layers, each followed by a 

max pooling layer. This choice was informed by 

previous research. The first convolution layer has 18 

filters with kernel size =1. The filter number doubles 

with the increase of convolution layers. We use stride 

=1, meaning we slide the filters one number (position) 

at a time over the input. The pooling size is 2 for all 

max pooling layers. 

• The Adam [24] optimization algorithm for stochastic 

gradient descent is used for training with the learning 

rate set to 0.001. 

• The ReLU (Rectified Linear Unit) activation function is 

used in every convolution layer, because it has proven 

successful in recent research projects. This corresponds 

to a “rectifier function” from electrical engineering, 

blocking the negative half-wave and letting the positive 

half-wave pass through one-to-one. 

D. Test against Reviewed Data 

Traditionally, machine learning models are tested with k-

fold cross validation. Thus, all known data is partitioned into k 

folds, the model is trained with k-1 folds and tested with the 

remaining fold. This process is repeated k times, with resulting 

precision, recall and F1 values averaged. We have augmented 

this testing by human expert quality assurance results. 

In a previous study [9], domain experts reviewed 190 

concepts from the Neoplasm subhierarchy and reported 18 

missing parent errors. This data was used as ground truth in 

this study to check the sensitivity/recall of our model’s 

performance. 

IV. RESULTS 

We report our CNN model’s performance in the following 

three aspects: 



 
Fig. 4. ROC curve of the two models 

A. Testing recall and AUC 

The testing recall is 0.75 and 0.81 for the unrestricted and 

restricted models, respectively. Fig. 4 (a) and (b) show the 

Receiver Operating Characteristic (ROC) curves of the testing 

performance for the unrestricted and restricted models, 

respectively. The AUC (area under the curve) scores, as the 

measure of test accuracy, are 0.84 and 0.90, respectively.  

B. Confirmed errors found by domain experts 

The restricted model detected 10 out of the 18 errors that 

domain experts found [9], while the unrestricted model 

detected only five errors, all contained in the above 10 errors. 

Table I shows two missing parent examples confirmed by both 

models, and two examples confirmed only by the restricted 

model.  

C. Training time efficiency 

 Each model is trained with 2000 epochs, with batch size = 

2000. We recorded the duration of the training. With the same 

computer hardware configuration, training the unrestricted and 

restricted models took 1116 and 1110 seconds, respectively. 

TABLE I.  MISSING PARENT ERRORS CONFIRMED BY THE TWO MODELS 

Child Model Missing Parent 

Reproductive Endocrine 

Neoplasm 
Both Endocrine Neoplasm 

Basophilic Adenocarcinoma  Both 
Anterior Pituitary Gland 

Neoplasm 

Breast Tubular Adenoma Restricted Tubular Adenoma 

Cutaneous Glomangioma Restricted Benign Skin Neoplasm 

V. DISCUSSION 

To the best of our knowledge, this is the first published 
attempt to use Machine Learning (ML) for QA of ontologies. 
Such technique can prepare a subset of pairs of concepts as 
candidates for missing IS-A link omission errors, optimizing 
the use of scarce QA resources.  

In this paper, we discussed two ML approaches. The 

unrestricted model utilizes all uncle concepts of the processed 

concept. The restricted model is further taking advantage of the 

area taxonomy of the ontology to utilize only uncles in the area 

of the processed concept. Both ideas save processing time 

while improving the accuracy, by training unconnected pairs of 

concepts similar to the original IS-A links of the processed 

concept. The uncles are similarly positioned as siblings of the 

parent of the processed concept. The uncles within the area 

share the same roles as the processed concept.  

Table II compares the performance of the two models. As 

can be expected, the restricted model utilizing training with 

similar concepts achieves higher performance. We evaluated 

the results of the two ML models based on a list of errors that 

domain experts found in a previous study [9]. Such an 

evaluation is usually not available for ML studies. An 

interesting observation is that the set of five errors confirmed 

by the unrestricted model is a subset of the 10 errors found by 

the restricted model. The reason for this may be that the two 

models use the same negative test pairs where the uncles are 

from the same area as the nephew. This choice was made in 

order to be able to compare performance of the two models, 

but tends to unnecessarily limit the unrestricted model to find 

error pairs of similar concepts. In the future, we will perform 

experiments where the unrestricted and restricted models will 

use disjoint negative training data in an effort to optimize the 

results of each model rather than to compare them. 

TABLE II.  TWO MODELS PERFORMANCE COMPARISON 

 
Unrestricted 

Model 

Restricted 

Model 
Difference 

Confirmed Errors 5 10 5 

Corresponding 

Recall (out of 18) 
0.28 0.56 0.28 

Testing Recall 0.75 0.81 0.06 

Testing AUC 0.84 0.90 0.06 

Training Time (sec) 1116 1110 6  

From Table II we can see that the restricted model performs 

6% better than the unrestricted model in recall. The area under 

the curve in Fig. 4(b) is 6% larger than in Fig. 4(a), reflecting a 

better classification of the restricted model than the unrestricted 

model. The document vectors used in this study were derived 

using the Distributed Memory version of Paragraph Vector 

(PV-DM) that works well for most tasks, as stated in the 

original paper [13]. However, it is also recommended in the 

paper to combine Paragraph Vector with Distributed Bag of 



Words (PV-DBOW) to obtain consistency. The more accurate 

the vector representations of concepts are, the better recall 

should be expected. This is left for future work.  

The recall obtained is not high enough for reliable QA for 

missing IS-A links. For example, out of a random subset of 20 

suggested errors, a domain expert (GE) confirmed only one 

error pair, Hair Follicle Neoplasm missing the parent Dermal 

Neoplasm, since hair follicles reside in the dermal layer of the 

skin. In the NCIt, Dermal Neoplasm has 13 children, 

representing a mix, based on cell origin as well as malignancy 

status. Currently, Hair Follicle Neoplasm has Skin Appendage 

Neoplasm as a parent. Dermal Neoplasm and Skin Appendage 

Neoplasm are siblings. However, Hair Follicle Neoplasm has 

only a very indirect relationship to the dermis through the 

Disease Has Primary Anatomic Site role with Hair Follicle as 

the target value and the Anatomic Structure Is Physical Part Of 

role of Hair Follicle with the target value of Dermis. Adding 

Dermal Neoplasm as a parent, or even possibly replacing Skin 

Appendage Neoplasm with it, might be better.  

A higher recall will imply fewer suggested errors with a 

higher percentage of confirmed errors by domain experts. In 

future research, we will further explore the properties of the 

two models as well as properties of ML processing in an effort 

to best fine-tune and utilize both models, to increase the recall. 

VI. LIMITATIONS 

We presented a supervised training technique, therefore 

“annotated corpora” are required for its applicability beyond 

finding missing IS-A relationships in the NCI neoplasm 

taxonomy.  The results are also limited, because the models are 

not trained on more general data for more general problems. 

VII. CONCLUSION 

We explored whether ML methods can be applied to the 

task of ontological QA, in particular whether ML can help in 

detecting missing IS-A links in an ontology. Two models are 

presented. Our application of ML to the Neoplasm 

subhierarchy of NCIt demonstrated that the restricted model 

performs better than the unrestricted one. However, the 

performance of the restricted model is not yet sufficient for 

QA. In future research, we will explore improvements in ML 

processing and more accurate restrictions for concepts in the 

training stage to improve performance of QA of ontologies.  
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