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Abstract

Anomalies in discrete manufacturing processes
(DMPs) can result in reduced product quality, pro-
duction delays, and physical danger to employees.
It is difficult to detect anomalies in DMPs, be-
cause sequencing devices such as programmable
logic controllers (PLCs) usually do not allow a
process engineer to easily determine which se-
quences of operations are observed and checking
against each sequence becomes computationally
difficult. This paper proposes a new anomaly de-
tection approach for discrete manufacturing sys-
tems. The approach models the normal behavior
of the DMP from the PLC output as an event re-
lationship table. This model is then used to de-
termine if new sequences of PLC outputs could
be generated by the system. Outputs that do not
fit the learned model are labeled anomalous. This
method is tested in simulation for DMPs that con-
tain concurrent sub-process with unique or re-
peated events. The results are compared to a base-
line method proposed in prior publications. Ex-
periments show that the proposed algorithms are
capable of achieving a higher F-score with less
than 10% of the data required by the baseline
method. Furthermore, this modeling approach has
a linear space complexity in the length of the ob-
served event sequences, as compared to polyno-
mial complexity of prior work.

1 Introduction

Discrete manufacturing is a type of manufacturing focused
on producing distinct items through a sequence of discrete
operations. A typical example of discrete manufacturing is
vehicle assembly. During vehicle assembly, each part of the
vehicle is added through a series of operations (events) on
the part and the car as a whole. This manufacturing pro-
cess occurs at high speeds, and is in large part performed
through automated actions taken by powerful machines and
robots. Because of the high speed and power of the compo-
nent machines, monitoring the discrete manufacturing pro-
cess (DMP) is critical to ensure high product quality, min-
imize production delays, and ensure the safety of human
workers.

*Work performed during internship at MERL.

Monitoring a DMP for anomalies means checking for in-
correct execution of events, incorrect event ordering, and
incorrect event timing. However, monitoring a DMP is dif-
ficult, because the processes are usually orchestrated by Pro-
grammable Logic Controllers (PLCs) whose instructions are
programmed during design time, and are often not available
later to the process engineer. Still, PLCs, due to their prox-
imity to the actual manufacturing process, are the ideal de-
vice for deployment of anomaly detection algorithms.

This paper focuses on the development of anomaly detec-
tion algorithms for incorrect event execution order in DMPs
using output data from a PLC. Our approach is to develop
models of normal behavior inspired by process mining tech-
niques [1; 2; 3; 4], such that anomalous behavior results in
event sequences not observed previously. Learning models
of normal behavior is an important task when monitoring
DMPs, for three reasons. First, it is difficult to collect (bal-
anced) data sets that contain examples of anomalies when
the expected mean time between failures is long. Second,
even data sets that do contain anomalies are unlikely to con-
tain a sufficiently high sample number of anomalies to de-
scribe the full anomaly space of the problem. Third, data
sets containing anomalies must be labeled accordingly. This
means that a human operator must label all anomalies when
they occur, which introduces additional complexity.

To develop these models, this paper evaluates two types
of processes found in DMPs: manufacturing processes that
are composed of concurrent linear sub-processes containing
unique events, and manufacturing processes that are com-
posed of concurrent processes with some events repeated in
a loop in each sub-process. In both cases, it’s assumed that
the discrete event sequences are extracted from the discrete
event stream of a PLC on a per-product basis through some
existing technology such as RFID tags. Each system that is
modeled is demonstrated visually as a Petri Net, although
the end goal of the algorithms is anomaly detection and not
recovery of the true underlying Petri Net.

There exists prior work in anomaly detection for DMPs
[5; 6], but the approaches presented suffer from two signif-
icant disadvantages. First, prior work assumes that a com-
plete data set exists such that a very precise anomaly detec-
tion algorithm can be trained. Second, the proposed meth-
ods scale non-linearly with the number of steps in the manu-
facturing process. In contrast, the methods proposed in this
paper are designed to be efficient with respect to the size
of the model, and efficient with respect to the size of train-
ing data set. When compared to a baseline method in Sec.
4.4, the approach presented in this paper achieves a better



F-score, while requiring less than 10% of the training set.
Comparing the space complexity of the learned model, the
approach presented in this paper scales linearly in the num-
ber of unique events (V) observed, O(NV), while the base-
line method has space complexity O(M N), where M is the
length of the observed event sequences.

2 Background and Related Work
2.1 Petri Nets

In its classical form, a Petri Net [7] is a directed bipartite
graph with two node types called places and transitions.
These nodes are connected via directed arcs. Each arc has
a defined weight, and can only connect nodes that are of
different types. For example, an arc may connect a place
and a transition, but may not connect two transitions or two
places. A simple Petri Net consisting of two places, one
transition, and two arcs is shown in Fig. 1. Here places
are represented by circles and transitions by squares. When
describing discrete manufacturing processes, places corre-
spond to conditions and transitions correspond to events that
could signal the start and end of a manufacturing task. A
condition is said to be satisfied when a token is placed in the
corresponding place. Events may only take place when the
preceding condition has been satisfied. Lastly, when the arc
weights are set to 1, they are typically not shown in graphi-
cal depictions of the Petri Net.

Figure 1: A Petri Net with places pi, po, one transition ¢,
and two connecting arcs each with a weight of 1.

Definition: Formally a Petri net is a triple (P, T, F)
where:

e P is afinite set of places
e T'is afinite set of transitions
o Fisasetofarcs (F C (P xT)U (T x P))

The number of tokens in a place at any given time is at
least zero. The state or marking of a Petri Net refers to the
distribution of tokens in the places. For example, for a Petri
Net with four places, < pi1,p2,p3,ps >, a state represen-
tation such as 3ps + 1ps + 4p,4 indicates there are 3 tokens
in place po, 1 token in place p3, and 4 tokens in place p4.
The inclusion of place p; is optional. Its absence explicitly
indicates it contains no token.

The transitions (or events) can be fired (take place) if all
of the input places (conditions) have at least one token (are
satisfied). A transition that is fired is said to consume one
token from each of it’s input places and produce one to-
ken for each of it’s output places. Thus when a condition
is satisfied, an activity is executed, and a new condition is
achieved. Of course since multiple activities and conditions
occur throughout the Petri Net, each time instant may see
multiple changes to the token distribution in the Petri Net.

Each transition has the property of execution time. Or-
dinary Petri Nets have instantaneous transition time, while
timed Petri Nets have a specific duration for each transition.
When a timed Petri Net has variable (possibly stochastic)
transition times, it is referred to as a stochastic Petri Net.

Here the time is usually described by an exponential distri-
bution with parameter A. From a modeling perspective, this
parameter can be used to induce anomalies. For example,
increasing A leads to a tighter distribution of transition du-
rations which could result in a new ordering of events in the
final discrete event sequence. Thus anomalies in DMPs can
be described by timing anomalies in Petri Nets.

2.2 Anomaly detection for discrete sequences

For a sufficiently finely sampled time step, the changes in
the Petri Net token distribution can be observed as a se-
quence of discrete events that have taken place. This se-
quence can be analyzed for anomalies using anomaly de-
tection methods for discrete sequences. A comprehensive
survey of anomaly detection methods in discrete sequences
can be found in Chandola et. al. [8]. The authors dis-
cuss three formulations of an anomaly: whole sequence
anomalies where the entire sequence is anomalous; long
subsequence anomalies within a long discrete sequence; and
subsequence anomalies where the subsequence frequency
within the larger discrete sequence is different than nor-
mal. Sequence-based anomaly detection, which addresses
all three formulations, is the most relevant approach to
this paper. Sequence-based anomaly detection is addressed
through three main approaches. The first approach is kernel-
based methods, which compute a similarity matrix for a
given training sequence set and evaluate newly acquired se-
quences against this similarity matrix. The second approach
is window-based methods which combine anomaly scores
of subsequences of the test sequence for a total test sequence
anomaly score. The third approach is to learn a Markovian
model from the training sequence, where the goal is to learn
the normal distribution of the data and thus assign a proba-
bility of being normal to a given test sequence.

A key drawback of similarity-based techniques with re-
spect to the work in this paper is that most require a fixed
training and test sequence size to facilitate distance calcula-
tions for anomaly scoring. Window-based techniques can be
used to overcome this limitation, but they suffer from a high
sensitivity to the window length parameter. Both types of
techniques suffer from an unacceptably large search space
as the number of unique symbols in the discrete sequence
Srows.

Markovian techniques are advantageous because they in-
corporate context information into analyzing future events.
However, each discrete event in the sequence is not the state
of a given system and therefore Markovian methods can-
not be used directly. In such cases it is typical to use Hid-
den Markov Model (HMM)-based techniques to address the
problem. The HMM-based techniques consist of two main
approaches. The first involves learning an HMM model
that best describes the normal training sequence, and then
computing the probability of each test sequence given the
learned model. The second approach computes the optimal
hidden state sequence from each observation sequence in
the train and test set. Using the optimal hidden state model
and a threshold, each state transition is evaluated as normal
or abnormal. The sum of all anomalous state transitions in
a test sequence is its anomaly score. This approach suf-
fers from sensitivity to initialization conditions and compu-
tational complexity.



2.3 Process mining

An alternative approach to anomaly detection in discrete
event sequences is to first learn a generative model and then
evaluate each test sequence for adherence to the learned
model. Learning of Petri Net models from discrete event
sequences has been previously investigated in the field of
process mining. Here researchers focused on identifying an
underlying process from event log data to learn the typical
behavior. Critically, unlike the work in this paper, this re-
search did not focus on anomaly detection, but instead on
identifying event log conditions (and methods) under which
a process can be recovered. The resulting algorithms are
sensitive to uncertainty in the logs. In discrete event se-
quences, this variability is high due to the variability of du-
ration of activities, and the repetition of some activities.

A comprehensive overview of process discovery tech-
niques is provided in De Weerdt et. al. [9]. In this paper
the authors note that learning Petri Nets is only tractable
for specialized kinds of Petri nets such as Sound Workflow
Nets (SWN). SWNss are a class of Petri nets with a dedicated
start and end nodes. Algorithms to learn SWN from process
event logs were first introduced by W.M. van der Aalst [10;
11]. The first proposed algorithm was termed by the -
algorithm [12]. This algorithm was shown to be sensitive to
noise, incompleteness of event logs, and repeated events. To
solve the robustness problem of the a-algorithm, Heuristic-
sMiner algorithm was developed in [4]. HeuristicMiner ad-
dresses: noise in event logs by adding weights to the graph
arcs, and event path uncertainty by using a Causal Matrix in-
stead of a Petri Net. The authors also argue that the F-score
is the best metric to evaluate algorithm performance.

A successor to the a-algorithm, the ot algorithm, fo-
cuses on detecting repeated events in short loops [2]. Here
the authors first identify which elements are in a loop of
length 1 and then proceed with the original c-algorithm. A
third algorithm, the o™ algorithm is designed to identify
more complex event flows such as AND/XOR splits and
joins [3]. Lastly, the § algorithm specifically focuses on
identifying concurrent processes based on their start and end
events [13].

3 Learning Models of Normal Operation
using Event Relationships Table

This section introduces model learning of normal behavior
of two types of processes found in DMPs: manufacturing
processes that are composed of concurrent sub-processes,
and manufacturing processes that are composed of concur-
rent processes with some events repeated in a loop in each
sub-process. In the first case, all events that occur in the
manufacturing sequence are unique, while in the second
case, some events are repeated in a loop. Here we restate our
assumption that the discrete event sequences are extracted
from the discrete event stream of a PLC on a per widget
basis through some existing technology such as RFID tags.

3.1 Algorithm I: Anomaly Detection without
Event Repetition

Concurrent Processes in a Petri Net

The first discrete manufacturing process under considera-
tion is one that is composed of concurrent sub-processes
with unique events that occur only once during the DMP
for each product. When modeling this DMP as a Petri Net,

Figure 2: A Petri Net representing three concurrent pro-
cesses in a DMP.

the multiple concurrent processes are modeled as simulta-
neously executing branches. To execute these branches, the
first condition in each branch is triggered by a single event
whose input is one or more origin conditions. The execu-
tion of events within each branch is independent of other
branches. It is assumed that the concurrent processes oper-
ate on a single product, which means that a single final event
(or series of events) denotes the end of the DMP. An exam-
ple of such a Petri Net that describes a DMP with concurrent
processes is given in [14]. This model is depicted in Fig. 2,
and is used to demonstrate the proposed algorithm.

The Petri Net in Fig. 2 has 2 initial places PO and P1
(either of which can start the process) and a final place, P18.
The initial places are the input to transitions A and B, which
both share an output place, P2. The token at place P2 is
consumed by transition C (t2), which in turn triggers four
concurrent processes. The first process is represented by
events D and E; the second process is represented by events
F and G; the third process is represented by events H and
I; and the forth process is represented by events J and K.
All four processes must complete in order to trigger event L
(t11), which is followed by a sequence of events M, N, and
O. This is a real-world example of concurrency in a DMP,
and it’s easy to see that the complexity of this system can be
scaled while preserving the underlying concept.

In Fig. 2, A is the parameter of the exponential distribu-
tion describing the execution time of each transition. For
example, in the figure, transition C has a A value of 1. This
means that any single duration of this transition is a realiza-
tion of a random variable with an exponential distribution
with mean A = 1.

Finding the Discrete Event Sequence in PLC Data

We now describe the design of an anomaly detection algo-
rithm that is capable of finding anomalies in discrete event
sequences. The algorithm presented herein is inspired by
previous work in process mining algorithms presented in
Sec. 2. Note here that the previously published algorithms
focused on first identifying event successions in the form of
event pairs and then applying sets of rules to the discovered
events such that a valid Petri Net could be recovered. In the
case of anomaly detection, it is not necessary to recover the
final Petri Net, instead it is sufficient to focus on the succes-
sion of events as evidenced by the discrete event sequences
in the training data set. By removing the need to find a valid
Petri Net, this approach reduces the sensitivity to noise in
modeling. We begin by briefly describing how to recover
discrete event sequences from PLC output. For this purpose
we use the following procedure.



First, the data is loaded into a table or matrix. The num-
ber of columns in this table is N and the number of rows
is M. Here N denotes the number of number digital outputs
of the PLC. The rows correspond to the number of samples
observed from the DMP. For sufficiently short processes (a
small number of events, N) with reasonable sample rates
and sufficiently short time duration (small M), it is possible
to load the data entirely into memory. In such cases, it is
simpler to remove missing or corrupted data values. PLC
digital outputs are particularly straight forward to clean, be-
cause the digital signal consists of only two levels: 0 or 1.
If the data is too large to fit into memory, then cleaning the
data must be interwoven with the second step, change de-
tection.

The second step in this procedure is to detect changes in
the digital outputs, or simply change detection. Specifically,
for each of the N signal traces observed in the PLC out-
put, we find the instances at which the trace changes from
0 to 1 or from 1 to 0. For large files, change detection can
be performed iteratively, scanning a single line of the data
file, and finding the columns whose state has changed. This
means that instead of iterating through a large table, here, a
state change table is created whose rows correspond to time
stamps of at least 1 sensor state change, and whose columns
correspond to sensors in the PLC output.

An important question is whether only activation state
changes or activation and deactivation state changes should
be recorded. That is, should sensor A switching from O to 1
be an event Al, and sensor A switching from 1 to 0 also be
an event, AQ. For the Petri Net model proposed in this pa-
per, we argue that it is possible to only extract the sequence
of activations, ex. Al. However, it is easy to imagine other
cases where the deactivation events are equally important.
In this case both activation and deactivation events can be
incorporated into the discrete event sequence.

The third step, having isolated the changes in state for
each sensor in the PLC data file, is to determine the se-
quence of changes. To find the sequence of changes, the
sensor columns are first ordered with respect to time. The
table is rebuilt by sequentially appending columns in order
of occurrence. For example, if sensor A has been triggered
at time 0, this is placed as the first column in the rebuilt ta-
ble. If the next sensor to observe a change is sensor C, this
column is placed as the next column in the table.

Having processed the data, the discrete event sequence
observed from the PLC is simply the ordered sequence of
column headers from the event change table. If the PLC data
files include data that is specific to a particular product, then
repeating this procedure across data files will results in a set
of discrete event sequences observed across the manufacture
of a set of products.

Building an Event Relationship Table

Having extracted the discrete event sequence from PLC
data, this section proposes a simple model for the normal op-
eration of a DMP: the Event Relationship Table (ERT). The
ERT is square and has rows and columns corresponding to
all unique events in the observed discrete event sequences.
Its entries represent the temporal relationship between any
pair of events. An example of a relationship table with three
unique events: A, B, and C is shown in Table 1.

The relationship table is populated using the algorithm
shown in Alg. 1. Here the discrete sequence of events (;) is
denoted by o. The succession of events is described by the

A —
B | + I
C I

Table 1: A simple event table describing the relationship
among three events: A, B, and C.

following: a A — B denotes that event B follows event A; a
A < B denotes that event A follows event B; and Il denotes
that events A and B follow one another but can happen in
any order.

Algorithm 1 Create Event Relationship Table

Input: a sequence of unique events, o = t1,ta, ..., t,
Output: an event relationship table
1: create an N+1 x N+1 dimensional table
LOOP Process:

2: for forn € [0,len(c) — 2] do
3:  place — in row ¢, and column %,
4:  place < in column ¢,, and row t,, 1
5. if «— and — in cell then
replace with ||
6: endif
7: end for
8: return event relationship table

Table 1, built using Alg. 1, shows the following event
relations: event A always precedes event B, and events B
and C always occur after one another but the order is not
defined. Example sequences that can be generated by this
table are ABCB, AB or BCBC. A sequence that cannot be
generated according to this table is BAC.

To obtain a relationship table that fully describes a given
DMP, the learning of the relationship table must be iterated
through a training data set of discrete event sequences. Im-
portantly, this data set must contain a sufficient sampling of
the possible pairwise event sequences exhibited by the DMP
to learn a complete event relationship table. This is not the
same as observing all possible discrete event sequence gen-
erated by the DMP. Section 4.4 shows that relatively few
sequences need to be observed to generate a full event rela-
tionship table.

Anomaly Detection Using the Event Relationship Table
Performing anomaly detection using a relationship table
such as the table shown in Table 1 is straightforward. All
that must be determined is if the the observed sequence can
be the result of the pairwise event sequences as shown in
the event relationship table. To see if this is the case, simply
read the discrete event sequence from the first event to the
last event, checking at each pairwise event sequence if it is
an allowed transition in the table. If any transition is not al-
lowed, then an anomaly is declared and the specific process
in the DMP can be investigated.

The Weakness of the Proposed Algorithm

The algorithm presented in this section is attractive because
of its simplicity and interpretability. However, the devel-
oped algorithm has been strictly limited to sequences that
contain only unique discrete events that appear only once
during a sequence. The reason for this is that anomaly de-
tection using this approach may fail when events in the se-



Figure 3: A Petri Net representing three concurrent pro-
cesses in a DMP with events repeated in a loop.

quence are not unique, and specifically, when some events
are repeated in a loop.

To see why this might be the case, consider the follow-
ing. Suppose that event A always precedes event B, and
both occur only once. Then, the presented algorithm would
learn the relationship A — B. Now, suppose event A oc-
curs first, then event B takes place but this time event A is
repeated after event B. Then, the learned relationships are
both A — B, and B — A which means that the learned re-
lationship will be A||B. This relationship has low diagnostic
value. This is because the relationship applies regardless of
the event order, which means that both AB or BA are valid
event sequences. Importantly, this relationship cannot help
to specifically identify the sequence ABA as normal. Thus,
the algorithm will fail to detect AB and BA as abnormal se-
quences (a miss and a false negative in detection, respec-
tively). Such failures will result in an increased missed de-
tection rate. To address this issue the section to follow ex-
tends the developed algorithm to improve its performance
for the case of repeated events in a discrete event sequence.

3.2 Algorithm II: Anomaly Detection with Event
Repetition

Real-life DMPs are often much more complicated than the
concurrent process DMP presented in the last section. This
is because events may be repeated within any of the DMP
processes. Consider the example DMP for phone manufac-
turing in [13]. This DMP executes multiple concurrent pro-
cesses, and is completed with an event loop that checks the
quality of the final product. Such repetition of events re-
sults in entries of the event relationship table that have low
diagnostic value.

In this section, we improve the previously proposed algo-
rithm so that it is capable of identifying event loops within
each of the concurrent processes. To develop this algorithm,
this section proposes a more complex Petri Net model,
shown in Fig. 3, that contains both concurrent processes
and events repeated in a loop within each process. In con-
trast to the model in Sec. 3.1, this Petri Net is not published.
To the best of the authors’ knowledge, this model is more
complex than published DMP models with event loops.

Here, a new transition (D, G, or J) is inserted into each
process such that some events are repeated in a loop. The

addition of these transitions has the effect of adding repeated
events to the observed discrete event sequences. This re-
sults in a possibly infinite set of event sequences that can
be generated by this Petri Net, or equivalently the DMP.
With respect to the event relationship tables discussed in the
last section, this leads to the following observation. The di-
mensions of the event relation table (NxN) will be smaller
than the number of observations of the PLC output signal
(M). This is the case because the event relationship table
contains only unique events in the discrete event sequence.
Thus we observe that the size of the event relationship table
is bounded by the number of unique events in the DMP and
not the length of the observed discrete event sequences.

Learning Sequences of Events

To improve anomaly detection in the presence of repeated
events, we expand the concept of an event from a single
atomic event to a complex event that consist of short se-
quences of atomic events that repeat with a high frequency
within the discrete event sequences. For example, suppose
that three distinct discrete events occur in a sequence: A, B,
and C. Suppose further that events B and C repeat in a loop
as BCBCBC such that the observed sequence is ABCBCBC.
Then instead of using three single events, a better approach
is to learn that the basic repeated loop is BC, and that there
are two events in this sequence: A and BC, the latter of
which is a complex event.

Learning the smallest set of event subsequences that de-
scribe a discrete event sequence is generally an NP-hard
problem [15]. For this reason, this paper focuses on find-
ing short event subsequences that occur more than once, and
uses the remaining single events to complete the set of pat-
terns that describe the discrete event sequences. Obtaining
a computationally feasible solution to the problem is aided
by two assumptions:

e If events are repeated in a loop, the events may appear
more than once, and may appear contiguously in a se-
quence.

e Events that are not repeated in a loop appear as unique
events in the sequence.

The first assumption is important, and it follows from the
stated goal of separating the discrete event sequences by
product (manufactured item). If events are allowed to repeat
in a non-contiguous fashion, this would imply that multi-
ple products are entering the discrete manufacturing process
during the given event sequence.

Finding Repeated Event Sequences

Build on the previously introduced notation, the set of all
contiguous subsequences within o is W. The set of subse-
quences that occur with a frequency of at least 2 are part of
the set W), ;. The set of unique events that are not part of a
subsequence and occur only once is W,. The union of sets
W, s and W, is the set P which contains the set of all unique
events and high frequency subsequences that describe a dis-
crete event sequence. Given this notation and assumptions,
event subsequences repeated with high frequency can be
found as shown in Alg. 2.

This algorithm begins with a sequence of events 0 =
t1,t2,ts,...,t, which has K unique events, where K is
smaller than the sequence length (X' < n). In step 1
the algorithm generates all subsequences w’ with length
len(w') € [2, K] and places these subsequences in a set



W.Whasasizeof(n—1)+(n—2)+...+(n— K) =
Kn—K(K+1)/2 subsequences. Step 2 finds a subset W, ¢
whose component subsequences have a frequency of occur-
rence in o > 2. Steps 3 through 5 are a loop which is used
to remove subsequences of high occurrence from the origi-
nal event sequence ¢. This loop returns 6 which contains all
single events that do not belong to high frequency patterns.
Step 6 places all events in & in W,. Lastly, step 7 returns the
intersection of W, and Wy, ¢, P.

Algorithm 2 Find the set of high frequency patterns/single
events, P, that covers a sequence of events

Input: Sequence of K unique characters, o
Output: P =W.NWyy

I: W « Find w' = t,, where n; < ng < ... st

len(w') € [2, K]

2: Why <= w' € W with freq > 2
LOOP Process:
for each w; € Wp,; do

& < remove w’ from o

end for return &
place all events in 6 in W,
return P =W, N W,y

AN A

Build a Pattern Relationship Table

Using the set P, it is now possible to build a relationship
table as shown in Section 3.1. Because the events here may
be subsequences of events, the new table is referred to as
a pattern relationship table. The word pattern specifically
denotes the fact that both unique events and high frequency
subsequences occur in P. Patterns that occur with high fre-
quencies are denoted by a new event relationship type, *.
The procedure to build the relationship table is shown in
Alg. 3. An example of a relationship table that encodes
events A, B, C, and DE is shown in Table 2.

Algorithm 3 Create Pattern Relationship Table
Input: o, P
Output: a pattern relationship table
1: create an len(P)+1 x len(P)+1 dimensional table
LOOP Process:
2: while o do
3:  find patterns p; and py € P s.t. pl, p2 are consecu-
tive and are at the beginning of o

4:  place — in row p; and column po

5:  place < in column p; and row ps

6:  if < and — in cell then

7: replace with ||

8: endif

9:  ifp, fori € [1, 2] repeats in a loop then
10: place * in row p; and column p;
11:  endif

12:  remove p; from o
13: end while
14: return pattern relationship table

Note here that this event relationship table contains four
base elements: A, B, C, and DE, while the number of unique
elements in the sequence is five. Furthermore, the length
of the discrete event sequences generated by this table can
be arbitrary. Thus, this table illustrates that the approach

A | B | C | DE
A —
B — I —
C Il —
DE — |+ *

Table 2: A simple relationship table that includes event pat-
terns repeated in a loop.

presented in this paper creates compact representations of
the discrete event sequences.

4 Experimental Results

This section describes an empirical verification for the pro-
posed algorithms in simulation. In addition, we discuss a
suitable evaluation error metric to be used, the minimum
number of experiments performed, and the cross-validation
method used to ensure generalizability of the results.

4.1 Choosing the Performance Metric

Anomaly detection is a classification problem with binary
classes: normal (negative) or abnormal (positive). Anomaly
detection algorithms are typically described by their sensi-
tivity and precision. Sensitivity is the number of times that
the positive class was correctly identified divided by the
number of all positive class instances (true positive rate).
Precision is the number of truly anomalous cases identified
relative to the number of all cases identified as anomalous
(positive) by the algorithm.

Precision and sensitivity can be combined in a single
statistic called the F-score, defined as the harmonic mean
of precision and sensitivity. The F-score allows a simple 1-
dimensional comparison to be made between algorithms. In
this paper, the F-score is used to compare the presented al-
gorithms with a known anomaly detection algorithm based
on a prefix tree, which is a baseline method [6].

4.2 Choosing the Number of Experiments

Typically, algorithm evaluations assume that the training
data set is complete, which means that it contains a thorough
enumeration of all possible normal and abnormal cases.
Given this assumption, an algorithm’s error rates are rep-
resentative of the shortcomings of an algorithm’s ability
to capture the problem domain. However, in the case of
anomaly detection algorithms for DMPs, this assumption
may not hold, for several reasons. First, events in a DMP
can be stochastic in duration. Second, DMPs are designed
to be highly reliable, providing few opportunities to observe
anomalies. Third, deployment cost of DMPs is tightly cou-
pled to deployment time which means that training data set
collection must be as short as possible. We should also note
that some DMPs with loops in their execution logic would
produce an infinite number of valid sequences, so exhaus-
tive enumeration of all of them would be impossible.

The high reliability of DMPs, coupled with desired short
deployment times, means that anomaly detection algorithms
that are designed for DMPs would have typically have to
work with less than sufficiently well sampled training data
set. The stochastic duration of events in the DMP means
that there is a much larger number of possible discrete event
sequences that can be generated than one would expect from
the number of events in the DMP.



Prior work has modeled the stochasticity in event dura-
tion of Petri Nets using exponential, Gaussian, or triangular
distributions [16]. In this paper, an exponential distribution
is used to describe the event duration, and the parameter of
the exponential distribution is described by A. Given the
stochasticity in a process, it is instructive to calculate the
number of possible discrete event sequences that could be
generated.

Here we use the real DMP shown in Fig. 2. In this DMP
the variation in discrete event sequences is produced by the
four concurrent processes. These processes start with tran-
sition C and end with transition L. Then, the number of pos-
sible generated sequences is equal to the number of feasi-
ble permutations of DEFGHIJK. The total number of the
permutations of these 8 events is 8! Among all the permu-
tations, D must come before E, F must come before G, H
must come before /, and J must come before K. The proba-
bility of this ordering is 0.5 % 0.5 * 0.5 % 0.5 = 0.0625, and
the number of possible sequence is 8! * 0.0625 = 2, 520.

This means that any indexing method, for example prefix
trees (the baseline method of this paper), must be trained on
all 2,520 unique event sequences to achieve the best pos-
sible performance (F-score). In practice, when evaluating
the performance of algorithms, many more data sequences
(simulated experiments) must be collected. This is because
each new sequence is not necessarily unique. For this rea-
son, the experimental results in Sec 4.4 show a succession
of training data set sizes ranging up to 10, 000 training se-
quences. This succession shows the F-score improvement
as a function of training data set size.

4.3 Cross-Validation/Experiment Method

Lastly, it is important to ensure that the algorithm evalua-
tion is not biased to any single training data set. That is,
the experimental method should ensure that the algorithm
performance statistics do not depend on a single data set,
but rather represent generalized statistics that might be ob-
served on a new test data set.

In machine learning, such generalized statistics are
customarily determined using a technique called cross-
validation (CV). In CV, models are trained iteratively on
partitions of the available data, and tested on a held out data
set. Both the training and testing data sets are changed for
each iteration, and the performance statistics are averaged
over all iterations. This paper uses CV, and therefore the re-
ported rates in Sec. 4.4 are averaged across the number of
tested partitions.

For example, suppose that 1,100 normal discrete event
sequences are generated in simulation, and 100 abnormal
discrete event sequences are also generated in simulation.
Anomalies are generated from normal sequences by: intro-
ducing an erroneous event transition (ex. normal: A — B,
abnormal: B — A), removing an element of the discrete
event sequence, and introducing a repeated event. These
types of anomalies are placed in 33, 33, and 34 discrete
event sequences, respectively.

During CV, 100 normal sequences are set aside for test-
ing, and the remaining 1, 000 normal sequences are split into
10 partitions. For each of the 10 partitions, each algorithm
is trained, and it’s performance is tested using the 100 nor-
mal and 100 abnormal held out discrete event sequences.
For each partition, the F-score of all algorithms under test-
ing is calculated. After the 10th iteration, the F-scores are
averaged and the average score is returned.

Fl-score
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Figure 4: Experimental results for a DMP composed of con-
current sub-processes each with unique events.

4.4 Experimental Results

This section presents the performance of the proposed al-
gorithms as compared to the performance of a baseline
method. Here the baseline method is the prefix tree method,
which was chosen because of its relation to prior published
work.

Algorithm performance with unique events in
concurrent processes

The first set of experiments demonstrate the performance
of the developed algorithms, when the simulated DMP has
concurrent processes, but no repeated events (Fig. 2).
The experiments are performed on training sets of up to
10, 000 discrete event sequences using the method of cross-
validation with 10 partitions. The results of this experiment
are shown in Fig. 4. In this figure, the pattern relationship
table algorithm is represented by an orange line, the event
relationship algorithm is represented by a blue line, and the
prefix method is represented by a green line. Each point
on the plot represents an averaged F-score for the given
method, and given the number of discrete event sequences in
the total training data set. About each line, the shaded region
represents two standard deviations in the F-score within the
cross-validation rate set.

This plot shows that the baseline method’s F-score even-
tually approaches that of the pattern relationship table al-
gorithm, but only as the training data set size approaches
10,000 sequences. In contrast, the algorithms presented
in this paper achieve their maximal F-score with only 110
(1.1%) of the training discrete event sequences required by
the baseline method. The reason for this is that the meth-
ods presented here are able to learn event transitions even in
partially unique sequences, while the prefix method requires
all possible event sequences to be observed and stored in a
prefix tree.

Lastly, note that the pattern relationship table has the
higher F-score even after all 10, 000 training sequences are
observed. The reason for this is that pattern relationship ta-
ble has learned subsequences of events that occur with high
frequency, and therefore has learned event transitions that
are of more importance than single events.

Algorithm performance with repeated events in
concurrent processes

The second set of experiments showcases the performance
of the developed algorithms, when the simulated DMP has
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Figure 5: Experimental results for a DMP composed of con-
current sub-processes with events repeated in a loop in each
process.

concurrent processes each with one repeated event (Fig. 3).
Here, we use the same experimental parameters as in the
previous section. The results of the experiment are shown
in Fig. 5.

Once again, the pattern algorithm and the event relation-
ship table algorithm both achieve their respective maximal
F-scores with less than 1,000 (10%) sequences in the train-
ing data set. In contrast, the prefix tree method, even after
10, 000 training data sequences, still has an F-score that is
lower than the F-score of the event relationship table algo-
rithm. These experiments show that when events are re-
peated in a loop, the variable length of the resulting discrete
event sequence is a limitation for indexing methods like the
prefix tree, most likely because of the size of the required
training data set.

5 Conclusions

In this paper, we propose a novel approach for anomaly de-
tection in discrete manufacturing processes (DMPs). The
approach is to learn models of normal operation of a DMP
in the form of relationship tables between pairs of events.
These tables describe compactly the sequences of discrete
events that can be observed in a DMP. The relationship ta-
bles can then be used to determine if a new sequence of
events occurring in the DMP is anomalous or not.

The algorithms proposed herein are tested in simulation
on two types of DMPs: DMPs with concurrent processes
that have only unique events per process, and DMPs with
concurrent processes and repeated events within each pro-
cess. The performance of our algorithms is compared to a
baseline method similar to that proposed in previously pub-
lished work. The results show that the presented algorithms
are capable of achieving a high F-score even for relatively
small training data sets. Furthermore, the presented mod-
els are compact, reducing the space complexity of the DMP
model from polynomial complexity to linear complexity.
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