
Development of an Access Method to Menu
Ontology Data through Converting Natural

Language into SPARQL Queries

Yuri Murayama1, Ichiro Kobayashi1, Takeshi Morita2, Yukiko Nakano3, and
Takahira Yamaguchi2

1 Ochanomizu University 2-1-1 Otsuka Bunkyo-ku, Tokyo 112-8610 Japan
{murayama.yuri,koba}@is.ocha.ac.jp

2 Keio University 3-14-1 Hiyoshi Kohoku-ku,Yokohama-shi,223-8522 Japan
t morita@keio.jp, yamaguti@ae.keio.ac.jp

3 Seikei University 3-3-1 Kichijoji-kitamachi, Musashino-shi, Tokyo 180-8633 Japan
y.nakano@st.seikei.ac.jp

Abstract. In recent years, vast amount of knowledge in various fields
is open to the public on the Web. This knowledge will be helpful for
understanding natural language if it is used in a natural language pro-
cessing system. With this background, we propose a method to generate
SPARQL queries by reference to the knowledge iteratively. Besides, as
an experiment to evaluate our proposed method, we plan to introduce
our work to a service interaction at a robot cafeteria.

Keywords: Natural language · Semantic parsing · SPARQL query gen-
eration.

1 Introduction

In recent years, vast amount of knowledge in various fields is open as Linked Open
Data to the public on the Web. This knowledge will be helpful for understanding
natural language if it is used as the background knowledge in natural language
processing systems and thus various approaches to connect natural language
with such knowledge have been studied [1, 3–5]. As a common problem for their
studies, they aim to convert natural language into query language which is enable
to access data repositories in order to access from natural language expression to
the knowledge represented in the formal form such as Linked Open Data. Based
on the approaches of prior studies, in this study, we propose a method that
generates SPARQL queries by iteratively referencing to the knowledge compiled
as Linked Open Data. As a concrete experiment for the method, we suppose a
situation where a robot answers customers’ questions at a cafeteria and attempt
to automatically convert customers’ questions into SPARQL queries to answer
the questions through accessing knowledge.

2 F. Author et al.

2 Related Studies

To connect natural language to knowledge bases such as the ones represented
with the form of Linked Open Data, e.g., DBpedia, etc., many studies have
so far done. In Wang et al. [1], they proposed a method to convert natural
language inquiry to an RDF triple for the result of the dependency structure
parsing on natural language inquiry by applying the vocabularies, which are
used to describe knowledge, defined in machine readable dictionaries such as
WordNet [2], and defined by users. Zou et al. [3] developed knowledge graph
called ‘semantic query graph’ by connecting multiple RDF triples, and raised
the accuracy of understanding natural language inquiry by converting knowledge
fragments into semantic query graph and using it to understand natural language
input. Suzuki et al. [4] proposed a method to convert the result of parsing natural
language inquiry into logical formula, and then generate a SPARQL query. Cui
et al. [11] designed a kind of question representation by learning templates over
a billion scale knowledge base and a million scale QA corpora.

There are many cases where vocabulary mismatch happens between the ex-
pressions in natural language inquiry and the entities of knowledge bases. As
a solution for this problem, Shekarpour et al. [5] proposed a method for au-
tomatic rewriting input queries on graph-structured RDF knowledge bases by
employing a Hidden Markov Model to determine the most suitable derived words
from linguistic resources. As the approaches using deep neural network to trans-
form natural language inquiry into a query to access large-scale knowledge bases,
Soru et al. [6] proposed Neural SPARQLMachines, end-to-end deep architectures
to translate any natural language expression into sentences encoding SPARQL
queries, using sequence-to-sequence architecture [7]. In the method of Ferreira
Luz et al. [8], their proposal is based in two learning steps: The first step gener-
ates a vector representation for the sentence in natural language and SPARQL
query, and the second step uses this vector representation as input to a neural
network (LSTM with attention mechanism) to generate a model able to encode
natural language and decode SPARQL.

Unger et al. [9] presented an approach that relies on a parse of the question
to produce a SPARQL template that directly mirrors the internal structure of
the question. Abujabal et al. [10] presented a system that automatically learns
utterance-query templates solely from user questions paired with their answers.
Arenas et al. [12] considered the relation between well-designed queries and the
semantic notion of weak monotonicity. Ferre et al. [13] introduced SQUALL,
a controlled natural language for querying and updating RDF graphs. Ebisu
et al. [14] proposed a method to extract knowledge from texts by extending
the analogy task to use more positive example. Zhang et al. [15] presented a
novel joint model uniting two procedures, alignment construction and query
construction into a uniform framework.

Compared to the above prior studies, our study particularly focuses on find-
ing a relation between entities in generating a SPARQL query by iteratively
referencing to the knowledge compiled as Linked Open Data.

Title Suppressed Due to Excessive Length 3

3 Proposed Method

The overview of our proposed method is illustrated in Fig. 1.

!"#$%&'"(%&%#$"()%*(#%(+#%,,-&.+#/""01

!"#"$%&'(!%()$%&!""

!"#$#%&
!"#$%&'()*+'('%%,,,,%%,-."

!

!"#$%&'$()!"#$%&"#"!"!""#$%&'())*!

!"#$%&'()*+#+,-)#.)/0102*

!!!!!"#$

!"#$%&"#"
!"#

!"#"$%&'(!%()$%&!"#$

!"#$#%&
!"#$%&'()*+'('%%,,,,%%,-."

!

!"#"$%"$&'(!"#!"#$%&'()*&+,- !"#!"#$%!"##$%&'!

!!!!!"#$%

!"#$%&"#"
!"#

!"#"$%&'(!%()$%&&*&&

!"#$#%&
!"#$!!!!$$!"%&

!

!!"#$%&#!"#$%&'($%$!"$))*%+,"-''./

!"#$%&'()*+#(,-&#.)'()+/()*+#0,#-1&.)/2(&'

!!!!

!"# !"#

!"#$$%&'()

!""#$%#&!"#$%

!"#$%&"#"
!"#

!"#"$%&'(!%()$%&*+,&-."/"&0
!"#$%&'()*+'('%%!",--#$.'/0112(32+%45,"
!

!"#"$%&'(!%()$%&!!"#

!"#$#%&
!"#$%&'()*+'('%%!!"# !"#$

!

!!"#
!"#$%

!"#$%&"#"
!"#

!"#$%&'(&)*+,&

!"#$%&'

!"#$%&'

!"#$%"&'()

!"#$%&

!"#$%"&'()

!"#$%&!"#$%&

!"#!!"!!"#!!!"!!"!!"#$%&!"#!!"!!"#$%&'!"

!"#$%&'('%)*#)+(,-*.#*/)+%0)(1+13#,%+.*#12#&%)4+%-#-%&54%5*#64*+(*.

!"#"$%"$&'(!"#$%&!"#$%&'#$#(!"#!"!"#$%&'$(
!"#!"#$%&'()*&+,- !"#!"#$%!"##$%&'(
!"#$%!"##$%&'(!"#!"!"#$%&'$(

!"#$%&'()*+#+),&-'.(/*,)#*0'()"1/*)")0')%%&"23'4//+5

!"#$%&"#" !""#$%&!"#$%&'#$
!"##$%&

!"#$%&!%"'

!"#$%"&

!"#$%&'

!"#$%&'()#*+%,-,+.(#-,(%.-/-*+.-0%#12#30*+145+)2#)(6)(&(%.+.-0%&

!"#$%&'()*+#,'+-)-'(%#-%(%./)+'()*+#01#)+23).)+4#(*#5+*6&%-4%
!"#$%&'()#*+,-.#/0123,4506

!"#"$%&%'"&()%*+,+&

!"#$%&'(

!"#$%&$'()*')(%+&*,-'#.-/*#(0,-#(#/#11%(23&4,,56

Fig. 1.Overview of our method to convert a natural language utterance into a SPARQL
query

The procedure of automatically generating a SPARQL query from a natural
language utterance is as follows:

1. Triple candidates extraction from parse of natural language queries
We analyze natural language queries and extract their dependency and
predicate-argument structures using a Japanese dependency and case struc-
ture analyzer, KNP4 developed by Kurohashi-Kawahara Laboratory in Ky-
oto University. In the analysis of predicate-argument structures, we extract
three pieces of information, i.e., predicate and its two arguments, from natu-
ral language as a candidate for representing the natural language expression
in the form of RDF triples. Furthermore, for each word in the triples, we get
its synsets by WordNet. This idea is based on the idea in Wang et al. [1] – a
surface expressions and synsets in natural language queries may correspond
to the vocabularies of the data repository, hence using taxonomy allows us
access flexibly to such knowledge.

2. Question type definition for predicates
We classify the question type for the predicates in RDF triple candidates.
In this work, we considered some user’s utterances prospected in a cafete-
ria and classified them by their predicate. Table 1 shows the question type
classification of each kind of predicate.
For predicates like “contain”, we give a template {?x0 ???? ?x1.} as Basic
type. For predicates inquiring degree like “low”, we give a template {?x0

4 http://nlp.ist.i.kyoto-u.ac.jp/index.php?KNP

4 F. Author et al.

Table 1. Question type classification

!"#$ %&$'()*+$,-*.#/$0*1'0+&(#/$0)*1'('*+$ 2%3456078$&"0+$.#/*+$ 49:0;&*#<0+$.#/*+$

=*>()0
+"#$

)?1+*(1
@(+<

9?0)*&A?1*&*0)?1+*(10*1"0*//$&;"0B??'C
D)?1+*(1E0)*&A?1*&*E0*//$&;"0B??'F

9?0"?80<*G$0#*>+*0@(+<0+?.*+?C

D@(+<E0#*>+*E0+?.*+?F

2,6,H!09I2!IJH!00K00LM,4,0N
C-O0CCCC00C-PQ

R

9$;&$$0
+"#$

/?@
<(;<

L<*+0*&$0+<$0/?@S<(;<T>*/+0#*>+*C
D/?@S<(;<E0#*>+*E0>*/+F

2,6,H!009I2!IJH!0K00LM,4,0N
C-O0CCCC00C-PQ

C-P0UQPVVWX*.?81+0C*.?81+Q

R0Y49,40=Z0

32HS92,HDC*.?81+F06I[I!0\

H?81+0
+"#$

TTTT M?@0.*1"0](1'>0?B0<*.A8&; >+$*]0'?0"?80
<*G$C

D<*G$E0<*.A8&; >+$*]E0<?@0.*1"0](1'>0?BF

2,6,H!09I2!IJH!0DHY^J!DC-OF0
*> C)?81+F0LM,4,0N

C-O00&'BX+"#$ XH/*>>J*.$Q

R

6(>+0
+"#$

TTTT L<*+0](1'0?B0<*.A8&; >+$*]0'?0"?80<*G$C
D<*G$E0<*.A8&; >+$*]E0TTTTF

!J?0+&(#/$

2,6,H!09I2!IJH!0C-O0LM,4,0N
C-O00&'BX+"#$ XH/*>>J*.$Q

R

CCCC
C-O C-P

CCCC

C-O

C-P
UQPVVWX
*.?81+

C*.?81+

&'BX+"#$

C-O XH/*>>J*.$

???? ?x1. ?x1 j.1552:amount ?amount.} as Degree type. In our work,
we regard an inquiring to degree as that to amount because we confine
domain of knowledge to food menu. By ORDER BY ASC(?amount) LIMIT 3,
we set to return top 3 answers arranged in ascending order by its amount. In
the case that the triple candidate has “何種類 (How many kinds of)”, we give
a template {?x0 rdf:type :ClassName.} and COUNT function as Count
type. In the case of “What kind of hamburg steak do you have?”, we cannot
get any triple using KNP, so generate SPARQL query except for step 2, 3,
and 5 of our method. When a word is sandwiched between two vocabulary
representations “どんな (What kind of)” and “がありますか (Do you have)”,
we classify it as List type that answers all corresponding items.

At this stage, we regard arg1 and arg2 as ?x0 and ?x1 respectively because
they are unsettled. For example, if predicate is “含む (contain)”, it is iden-
tified as Basic type and then {?x0 ???? ?x1.} is given to it as template.

3. Argument type identification
By arguments of triple candidates, we decide the type is either class or
instance or literal. We identify whether it is class or instance by using a
dictionary which has been previously created based on menu ontology, and
identify it as literal when the word does not exist in the dictionary. If it
is a class entity, we add a triple pattern {?x rdf:type :ClassName} in a
generated SPARQL query. If it is an instance entity, we interpret ‘?x ’as
‘:InstanceName ’. If it is a literal type entity, we leave it as a variable.

4. Answer candidate identification for vocabulary expressions
We identify the answer candidates based on vocabulary expressions in the
query. We take “どんな (What kind of)”, “はありますか (Do you have)”, and
“は何ですか (What)” as vocabulary expressions to identify the candidates.
In the case that the query has “どんな”, we decide the word just behind
that as the answer candidate. In the case of “はありますか” or “は何です
か”, we determine the word just before that as the candidate. Then we add
the corresponding variable to a variable list next to SELECT DISTINCT.

Title Suppressed Due to Excessive Length 5

5. Relation candidate determination by inquiring to knowledge
We change ???? into ?rel, and a variable next to SELECT DISTINCT into
?rel of SPARQL query generated by the above, inquiry to knowledge, and
determine relation candidates. For example, when we inquiry relations be-
tween j.2: carbonara and ?x1, we get a list [22-rdf-syntax-ns#type,

rdf-schema#label, forNumber, hasIngredient, pictureUrl, price,

hasAllergen] as the relation candidates.
6. SPARQL query completion

In the retrieval result of relation candidates, by the Jaccard index, we calcu-
late the similarity of both bigrams of each relation candidate and all synsets
of each word of the triple obtained by WordNet at step 1 (for example, we ob-
tain bigrams for relation candidates, e.g., {ha,as,sA,Al,ll,le,er,rg,ge,en}
and {al,ll,le,er,rg,gy}), and then determine a candidate over a thresh-
old previously set as the optimum relation. If there are more than one candi-
dates over the threshold, we select rarer one as the optimum relation accord-
ing to Zipf’s law. In this way, we complete a SPARQL query that reflects
the content of the natural language query.

4 Experiments

In the experiment, we focus on a situation where a customer orders food at
a cafeteria and confirm our proposed method for the input natural language
queries based on four question types set in our work. We evaluate the generated
SPARQL query with the validity of its knowledge extraction result.
4.1 Experimental setup

As for the knowledge to be referred to when generating SPARQL query from
natural language query, we prepared a small set of menu ontology. Fig. 2 illus-
trates a part of menu ontology used in our work. As the SPARQL environment,
we used Virtuoso (version 07.20.3214), SPARQL 1.1.

!"#$%%&

!"#'(!)*+,
-./(0

!"#-(1(&

!2#'(!)*+,
-./(0

!2#'(!)*+,
-./(0345+211/&4
-(*6(,/474

8("%9

!2#5+%*9&
8//:;<==

'(!)*+,4
-./(0

>??

!2#@92%9
;<==

!"#5+(.29

<AA,

!B#C(6D9,+/&2/9.

!B#B+2"/+&:6#1()/1

EA,

!B#(!%*9.

!2#F11/+,/9;
GC/(.;<==

!B#C(6F11/+,/9

+&:#.HB/ +&:#.HB/

+&:6#6*)I1(66@:

+&:6#6*)I1(66@:

+&:6#6*)I1(66@:

I1(66

D96.(9"/

J2./+(1

!B#C(6D9,+/&2/9.

!B#(!%*9.

:2#<<AK?

%L1#6(!/F6

:2#M<N>

%L1#6(!/F6

(2#4GC/(.

%L1#6(!/F6

Fig. 2. A part of menu ontology

6 F. Author et al.

4.2 Results

We implemented our method, and conducted an experiment for five queries
mentioned as examples of Table 1 such as “Does Carbonara contain any allergy
ingredient?”, “Do you have pasta with tomato?”, “Which is low-salt pasta?”,
“How many kinds of hamburg steak do you have?”, and “What kind of hamburg
steak do you have?”. We also did a test for a query which combines Degree type
and Basic type and have two predicates such as “Do you have the low-salt pasta
with tomato?”. Fig. 3 shows this detailed procedure.

!!!!

!"#

!"$
%&$''()
*+,-./

!*+,-./

!"#$

!"#

!"$
%&$''()
*+,-./

!*+,-./

012)/345

012)/345
4*6/*

6*7/

89:9;<=>?8<?@;<=!"#$AB9C9=D
!"#=!"#$!"$&

!"#=012)/345 %&$)E*6/*&

!"$=012)/345 %&$)8*7/&

!"$=%&$''()*+,-./=!*+,-./&

F

89:9;<=>?8<?@;<=!"#$AB9C9=D
!"# %&'(()*+,-./0"#12#/34!"$&

!"#=012)/345 %&$)E*6/*&

!"$=012)/345 %&$)8*7/&

!"$=%&$''()*+,-./=!*+,-./&

!"#=!"#$!"(&
!"(=012)/345 %&$)<,+*/,&

F

89:9;<=>?8<?@;<=!564AB9C9=D
!"# %&$''()G*6?.H051I5./=!"$&

!"#=012)/345 %&$)E*6/*&

!"$=012)/345 %&$)8*7/&

!"$=%&$''()*+,-./=!*+,-./&

!"#=%&'(()*+,-./0"#12#/34!"(&
!"(=012)/345 %&$)<,+*/,&

F=JC>9C=KL=M8;N!*+,-./O=:?P?<=Q

!"#$

!"#

!"$
%&$''()
*+,-./

!*+,-./

012)/345

012)/345
4*6/*

6*7/

!"(
/,+*/,

012)/345

%&'(()*

+,-./0"#12#/3

!56

!"$
%&$''()
*+,-./

!*+,-./

012)/345

012)/345
4*6/*

6*7/

!"(
/,+*/,

012)/345

%&$''()
G*6?.H051I5./

%&'(()*

+,-./0"#12#/3

89:9;<==>?8<?@;<=R==AB9C9=D
!"#=!!!!==!"$&

!"$=%&$''()*+,-./=!*+,-./&

F=JC>9C=KL=M8;N!*+,-./O=:?P?<=Q

$&=SIT5=I/=>5H055=/345=/5+47*/5&

(&=>5UI15=*0H-+5./=/345=*.1=I.V-I03=*=
057*/I,.=W5/X55.=!"#=*.1=!"$&

Q&=8575U/=YG*6?.H051I5./Z=*6=/G5=,4/I+-+=
057*/I,. W5/X55.=!"#=*.1=!"$&=[,0=65U,.1=

/0I475\=X5=40,U566=I/=7I]5XI65 *.1=I.V-I03=*=

057*/I,.=W5/X55.=!"#=*.1 !"(&

^&=8575U/=YG*6?.H051I5./Z=*6=/G5=,4/I+-+=057*/I,.=
W5/X55.=!"#=*.1=!"(&=A5=U,+475/5=/G5=U,./5./6=

,2=AB9C9=DF=*.1=I.V-I03=*=T*0I*W75=

U,00564,.1I.H=/,=/G5=*.6X50=U*.1I1*/5&

Fig. 3. Example: the procedure of “Do you have the low-salt pasta with tomato?”

In Fig. 3, we firstly extract two triple candidates (low, pasta, salt) and (with,
pasta, tomato) by using KNP. For the first triple (low, pasta, salt), we provide
it with a Degree type template by step 2 of our proposed method. We decide
argument type by step 3 and inquiry a relation between ?x0 and ?x1, and then
select hasIngredient as the optimum one. For the second triple (with, pasta,
tomato), we process it likewise and complete the contents of WHERE {} in the
query. Finally, we add a variable corresponding to the answer candidate identified

Title Suppressed Due to Excessive Length 7

by step 4 to a variable list next to SELECT DISTINCT, and generate the SPARQL
query we aim to.

In the experimental result as Table 2 shows, for each question type, we got
useful knowledge to answer natural language query and therefore confirmed that
our method generated the correct SPARQL query.

Table 2. Knowledge extraction results on each question type

Type Natural language query Generated SPARQL query Answer from knowledge

Basic Do Carbonara contain SELECT DISTINCT ?x1 WHERE { Allergen Gelatin 71,Allergen Wheat 71
type any allergy food? j.2:Carbonara j.1552:hasAllergen ?x1. Allergen Milk 71,Allergen Beef 71

} Allergen Egg 71,Allergen Pork 71
Allergen Soybean 71,Allergen Chicken 71

Do you have pasta SELECT DISTINCT ?x0 WHERE { Seafood Spaghetti with Tomato & Cream
with tomato? ?x0 j.1552:hasIngredient ?x1. Spaghetti with Meat Sauce

?x0 rdf:type j.1:Pasta. Spaghetti with Meat Sauce & Soft-boiled Egg
?x1 rdf:type j.1:Tomato.

}
Degree Which is low-salt SELECT DISTINCT ?x0 WHERE { Spaghetti with Tomato & Bacon
type pasta? ?x0 j.1552:hasIngredient ?x1. Spaghetti with Meat Sauce

?x0 rdf:type j.1:Pasta. Spaghetti with Meat Sauce & Soft-boiled Egg
?x1 rdf:type j.1:Salt.

?x1 j.1552:amount ?amount.

} ORDER BY ASC(?amount) LIMIT 3

Count How many kinds of SELECT DISTINCT (COUNT(?x0) as ?count) 6
type hamburg steak do you WHERE {

have? ?x0 rdf:type j.1:Hamburg Steak.

}
List What kind of hamburg SELECT DISTINCT ?x0 WHERE { Hamburg Steak with Cheese & Tomato Sauce
type steak do you have? ?x0 rdf:type j.1:Hamburg Steak. Hamburg Steak

} Hamburg Steak, Grilled Sausage & Bacon
Hamburg Steak & Teriyaki Pork
Stewed Hamburg Steak
Hamburg Steak with Vegetable Salsa

Degree Do you have the low-salt SELECT DISTINCT ?x0 WHERE { Spaghetti with Meat Sauce
type pasta with tomato? ?x0 j.1552:hasIngredient ?x1. Spaghetti with Meat Sauce & Soft-boiled Egg
+ ?x0 rdf:type j.1:Pasta. Seafood Spaghetti with Tomato & Cream

Basic ?x1 rdf:type j.1:Salt.

type ?x1 j.1552:amount ?amount.

?x0 j.1552:hasIngredient ?x2.

?x2 rdf:type j.1:Tomato.

} ORDER BY ASC(?amount) LIMIT 3

5 Conclusions and Future Work

We proposed a method to convert natural language into SPARQL queries using
an analysis of predicate-argument structures and dependency structures by KNP
and a transformation of RDF triples by a data driven approach. Mapping entities
to knowledge vocabularies and acquiring a relation between entities from knowl-
edge allow us generate the SPARQL query which is assured to return some sort
of answer. We set four question types; i.e., Basic type, Degree type, Count type,
and List type. Our method generated the appropriate SPARQL query for each
natural language query of question type set in our work and more generalized
query that combines them.

In this work, we conducted a preliminary experiment with small knowledge
data and limited natural language queries. As future work, we will use larger scale

8 F. Author et al.

knowledge base like DBpedia and more question types, handle various natural
language expressions as input, and introduce quantitative evaluation on results.
We will also introduce a method of knowledge graph embedding such as Bordes
et al. [16] to generate SPARQL queries more flexibly.

Acknowledgments

This work has been supported by the Core Research for Evolutional Science and
Technology (CREST) of the Japan Science and Technology Agency (JST) “A
Framework PRINTEPS to Develop Practical Artificial Intelligence”(JPMJCR14E3).

References

1. Chong WangMiao XiongQi ZhouYong Yu, PANTO: A Portable Natural Language Interface to
Ontologies, European Semantic Web Conference ESWC 2007: The Semantic Web: Research and
Applications pp.473-487, 2007.

2. Miller, George A.,WordNet: A Lexical Database for English, Commun. ACM, Vol. 38, Num. 11,
pp.39-41, Nov. 1995.

3. Zou, Lei and Huang, Ruizhe and Wang, Haixun and Yu, Jeffrey Xu and He, Wenqiang and
Zhao, Dongyan, Natural Language Question Answering over RDF: A Graph Data Driven Ap-
proach, Proceedings of the 2014 ACM SIGMOD International Conference on Management of
Data, pp.313–324, Snowbird, Utah, USA, 2014.

4. Ryoji Suzuki, Makoto Miwa, Yutaka Sasaki, Converting Questions into SPARQL Queries for
Traffic ontology , 2015 The Association for Natural Language Processing, P2-13, pp.171-174,
Kyoto, 2015.

5. Saeedeh Shekarpour, Edgard Marx, Soren Auer, Amit Sheth, RQUERY: Rewriting Natural Lan-
guage Queries on Knowledge Graphs to Alleviate the Vocabulary Mismatch Problem, the Thirty-
First AAAI Conference on Artificial Intelligence (AAAI-17), San Francisco, CA, February 4-9,
2017.

6. Tommaso Soru, Edgard Marx, Diego Moussallem, Gustavo Publio, Andre Valdestilhas, Diego
Esteves, and Ciro Baron Neto, SPARQL as a Foreign Language, http://arxiv.org/abs/1708.07624,
2017.

7. Ilya Sutskever, Oriol Vinyals, and Quoc V. Le, Sequence to Sequence Learning with Neural
Networks, http://arxiv.org/abs/1409.3215, 2014.

8. Fabiano Ferreira Luz and Marcelo Finger, Semantic Parsing Natural Language
into SPARQL: Improving Target Language Representation with Neural Attention,
http://arxiv.org/abs/1803.04329, 2018.

9. Christina Unger, Lorenz Buhmann, Jens Lehmann, Axel-Cyrille Ngonga Ngomo, Daniel Ger-
ber, Philipp Cimiano Template-based Question Answering over RDF Data, WWW 2012, Lyon,
France, April 1620, 2012.

10. Abdalghani Abujabal, Mohamed Yahya, Mirek Riedewald, Gerhard Weikum, Automated Tem-
plate Generation for Question Answering over Knowledge Graphs, WWW 2017, Perth, Australia,
April 37, 2017.

11. Wanyun Cui, Yanghua Xiao, Haixun Wang, Yangqiu Song, Seung-won Hwang, Wei Wang,
KBQA: Learning Question Answering over QA Corpora and Knowledge Bases, 3rd International
Conference on Very Large Data Bases, VLDB 2017, Munich, DEU, 28 August - 01 September
2017.

12. Marcelo Arenas, Martin Ugarte, Designing a Query Language for RDF: Marrying Open and
Closed Worlds, PODS ’16, San Francisco, CA, USA, June 26July 1, 2016.

13. S ebastien Ferr e, SQUALL: a Controlled Natural Language for Querying and Updating RDF
Graphs, T. Kuhn and N.E. Fuchs. Controlled Natural Languages, Zurich, Switzerland, Aug.
Springer, pp.11-25, 2012.

14. Takuma Ebisu, Ryutaro Ichise, Triple Extraction from Texts using Distributed Representations
of Words, The 31st Annual Conference of the Japanese Society for Artificial Intelligence, 2017.

15. Yuanzhe Zhang, Shizhu He, Kang Liu, Jun Zhao, A Joint Model for Question Answering over
Multiple Knowledge Bases, the Thirtieth AAAI Conference on Artificial Intelligence (AAAI-16),
Phoenix, Arizona ― February 12 - 17, 2016.

16. Antoine Bordes, Jason Weston, Ronan Collobert, Yoshua Bengio, Learning Structured Embed-

dings of Knowledge Bases, the Twenty-Fifth AAAI Conference on Artificial Intelligence, pp.

301-306, San Francisco, California, August 07 - 11, 2011.

