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Abstract. In this paper we discuss how the in dubio pro reo principle and the 
corresponding standard of proof beyond reasonable doubt can be modelled in 
abstract argumentation. The in dubio pro reo principle protects arguments 
against attacks from doubtful arguments. We identify doubtful arguments with 
a subset of undecided arguments, called active undecided arguments, consisting 
of cyclic arguments responsible for generating the undecided situation. We 
obtain the standard of proof beyond reasonable doubt by imposing that attacks 
from doubtful undecided arguments are not enough to change the acceptability 
status of an attacked argument (the reo). The resulting semantics, called SCC-
void semantics, are defined using a SCC-recursive schema. The semantics are 
conflict-free, non-admissible (in Dung’s sense), but employing a more relaxed 
defence-based notion of admissibility; they allow reinstatement and they accept 
credulously what the corresponding complete semantics accepts at least 
credulosly.  

1   Introduction 

Abstract argumentation is a framework for non-monotonic reasoning, where 
conclusions are reached by evaluating arguments and their conflict relations. The 
theory is centered on the notion of argumentation framework [10], a directed graph 
where nodes represent arguments and links represent an attack relation defined over 
arguments. One of the main tasks of abstract argumentation is the computation of the 
acceptability status of arguments. This task is performed by the application of an 
argumentation semantics, a set postulates used to identify the sets of arguments, called 
extensions, which successfully survived the conflicts encoded in the attack relation. 
In the labelling approach [4], the effect of an argumentation semantics is to assign to 
each argument a label in, out or undec, meaning that the argument is respectively 
accepted, rejected or deemed undecided. The undec label represents a situation in 
which the semantics has not enough reasons to accept or reject an argument. 
In this paper we explore the definition of a new family of abstract semantics, called 
SCC-void semantics. For each complete semantics, it is possible to define a SCC-void 
version of it. SCC-void semantics are conflict-free and non-admissible semantics, but 



still employing a defence-based relaxed notion of admissibility; they allow 
reinstatement and generate extensions that are supersets of the extensions generated 
by the corresponding complete semantics. 
The rationale behind the SCC-void semantics is the aim of modeling the in dubio pro 
reo principle into abstract argumentation. From one hand, we claim that the current 
abstract semantics do not embed the in dubio pro reo principle in their postulates, and 
on the other hand we aim to show how it is possible to model this principle using a 
purely abstract argumentation semantics. The sentence in dubio pro reo translates in 
English as ”when in doubt, in favour of the accused” and it is a legal principle 
according to which, if evidence against an accused ܣ is not definitive but it leaves 
doubts about its validity or it leads to multiple interpretations, it should be ruled in 
favour of ܣ (the reo). The principle not only implies the presumption of innocence, 
that sets the burden of proof on the prosecutor, but it also implies that the standard of 
proof needed to prove that an accused is guilty must be beyond reasonable doubt. In 
other words, evidence that are not conclusive are deemed void. 

In terms of attacks and extensions, the in dubio pro reo principle should make 
harder for an argument to be excluded from an extension. Current complete semantics 
do not embed this principle. Under grounded semantics an attack from an undecided 
argument is enough to remove an argument from the extension, while preferred 
semantics allows attacks from credulously accepted arguments to make attacked 
arguments skeptically rejected. 
This is exemplified by the well-known floating assignment example, shown in Figure 
1. All the abstract argumentation semantics reported in literature either label ܿ 
undecided or rejected. Grounded semantics, representing the most skeptical position, 
labels the three arguments undecided. Preferred semantics generates two symmetrical 
labellings, one with ܽ accepted and ܾ and ܿ rejected, and one with ܾ accepted 
and ܽ and ܿ rejected, so that ܿ is skeptically rejected (since it is rejected in all the 
labellings). Stable and semi-stable semantics agree with the preferred semantics, as 
do the non-admissible Stage, CF1 and CF2 semantics. Only in the naive semantics 
accepting all the conflict-free subsets of a graph, argument ܿ is accepted, but losing 
conflict-freeness is not desirable. 

 

 
 

Fig. 1: The floating assignment in a legal context 
 
If we instantiate the floating assignment in a criminal case, argument ܿ represents 
the presumption of innocence of Carol, that is innocent unless proven guilty. It is 
therefore a defeasible argument that can be unidirectionally attacked if new evidence 
against her is provided. Arguments ܾ and ܽ could represent two equally reliable 
witnesses called Bob and Ann at a trial against Carol. Bob said that Carol is guilty 
since he saw Carol stabbing the victim. Ann also said that Carol is guilty since she 
saw her shooting the victim. The victim’s body was never found. According to the 



beyond reasonable doubt principle, the two contradictory testimonies are void. There 
is no legal evidence against Carol and she is free to go. An abstract argumentation 
semantics based on the in dubio pro reo principle would therefore assign the label in 
to argument ܿ. Regarding ܽ and ܾ, we believe they should be left undecided, to 
mark their conflicting status. 

The fact that none of the current semantics models the in dubio pro reo 
principle does not count as a weakness. First, those semantics embed different 
assumptions in their postulates. There is no single correct treatment of the floating 
assignment example, since it depends on contextual information, standard of proof, 
criticality of the information, perceived level of disagreement between ܽ and ܾ and 
so on. The preferred semantics solution is totally valid if we know with certainty that 
either Ann or Bob are saying the truth, since in any interpretations Carol results guilty. 
The point is that there could be assumptions that are hidden in the analysis. Pollock 
[16] and Prakken [17-18] already suggested that the situation of inconsistent witnesses 
could be handled by adding two new arguments to the graph, each of them 
undercutting one of the witnesses, since the fact that a testimony ܽ is rebutted by a 
testimony ܾ  is an argument for ܽ  to be discarded (and vice-versa). Far from 
claiming that current semantics are not adequate, our challenge is to define a well-
behaved abstract argumentation semantics embedding the in dubio pro reo principle. 
Modelling it with the addition of new arguments leaves open the problem of when to 
add those arguments and how these additional arguments interact with existing 
arguments. Here we propose a family of semantics, called SCC-void semantics, that 
are based on a weaker notion of admissibility and that retain the majority of good 
properties of complete semantics. The starting idea is that the principle of in dubio 
pro reo is modelled in abstract argumentation by reconsidering the effect of undecided 
arguments. An attack from an undecided argument (the doubtful argument) should not 
change the acceptability status of the attacked argument (the reo). In an in dubio pro 
reo-labelling, only in-labelled arguments should be able to remove attacked 
arguments from the extension, while undecided arguments should not be strong 
enough to generate effective attacks. However, neglecting attacks from undecided 
arguments is a vague and potentially misleading statement. In the floating assignment 
example, using grounded semantics, one could say that all the three arguments should 
be turned into accepted arguments, on the basis that there is no conclusive evidence 
regarding their rejection. This would not only generate non-admissible semantics, but 
also semantics losing the property of conflict-freeness accepting sets of arguments 
internally attacking each other. 

Our central idea is that the in dubio pro reo principle protects an argument 
ܽ against the attacks of doubtful undecided arguments only if ܽ is not involved in 
generating the undecided situation attacking ܽ. We believe this is one of the possible 
faithful translations of the principle. In other words, we require the (doubtful) 
evidence against an accused to be external to the accused; the accused has no 
involvement in it. Note how the involvement of the accused would generate a situation 
of conflict of interest where evidence, independently from their reliability, could not 
even be considered as valid evidence. 
Under complete semantics there are two distinct reasons why an argument is labelled 
undec. Referring to Figure 2a and grounded semantics, we note how arguments ܽ 



and ܾ are responsible for the undecided situation by forming a cycle, and we refer to 
them as active undecided arguments. On the other hand, the label undec is propagated 
to c, that has nothing to do with the situation generating the undecided conflict, and it 
is therefore a passive undecided argument. Our proposal is that attacks from active 
undecided arguments have no effect on the status of other arguments (excluding 
themselves). This implies that some of the passive undecided arguments might be 
promoted to accepted arguments. In the paper, we discuss a way to partition undecided 
arguments into active and passive arguments based on the topological ordering of the 
strongly connected components of the argumentation graph. 
Our proposal generates a new family of semantics, called SCC-void semantics. In the 
paper, their formal definition is provided using the SCC-recursiveness schema. For 
each Dung’s complete semantics ݔ , an SCC-void version can be defined. The 
semantics ݔ is responsible for the identification of undecided arguments, on which 
our additional in dubio pro reo principle is applied to generate potentially new 
labellings. For instance, in case of the floating assignment, the grounded SCC-void 
semantics would start labelling ܽ and ܾ undecided, and it would then label ܿ in, 
since the undecided labels of ܽ and ܾ are not propagated outside the SCC created 
by those arguments. The arguments ܽ and ܾ  represent a doubtful situation that, 
according to the in dubio pro reo principle, should not affect the acceptability status 
of ܿ. 

The paper is organized as follows. The next section introduces the required 
background of abstract argumentation. Section 3 provides a SCC-recursive definition 
of our SCC-void semantics. Section 4 contains a discussion of the properties of our 
semantics. Section 5 contains related works before our conclusions. 

2  Background: Abstract Argumentation Semantics 

Definition 1. An argumentation framework ܨܣ is a pair < ,ݎܣ ܴ >, where ݎܣ is a 
non-empty finite set whose elements are called arguments and ܴ ⊆ ݎܣ ×  is a ݎܣ
binary relation, called the attack relation. If (ܽ, ܾ) ∈ ܴ we say that ܽ attacks ܾ. 
Two arguments ܽ, ܾ  are rebuttals iff (ܽ, ܾ) ∈ ܴ ∧ (ܾ, ܽ) ∈ ܴ , i.e. they define a 
symmetric attack. An argument ܽ is initial if it is not attacked by any arguments, 
including itself. 

An argumentation semantics identifies a set of sets of arguments that can 
survive the conflicts encoded by the attack relation ܴ. Dung’s semantics require a set 
of acceptable arguments to be conflict-free (an argument and its attacker cannot be 
accepted at the same time) and admissible (the set of arguments defends itself from 
external attacks). 
 
Definition 2. A set ݃ݎܣ ⊆ ,ܽ∄ is conflict-free iff ݎܣ ܾ ∈ ,ܽ) so that ݃ݎܣ ܾ) ∈ ܴ. 
 

Definition 3. A set ݃ݎܣ ⊆ ܽ defends an argument ݎܣ ∈ ܾ∀ iff ݎܣ ∈  such that ݎܣ
(ܾ, ܽ) ∈ ܴ, ∃ܿ ∈ ,ܿ)g such thatݎܣ ܾ) ∈ ܴ. The set of arguments defended by ݃ݎܣ is 
denoted (݃ݎܣ)ܨ. A conflict-free set ݃ݎܣ is admissible if ݃ݎܣ  and it is (݃ݎܣ)ܨ ⊇
complete if ݃ݎܣ =  .(݃ݎܣ)ܨ 
 



We follow the labelling approach of [4], where a semantics assigns to each argument 
a label in, out or undec. 
 

Definition 4. Let ܨܣ =< ,ݎܣ ܴ > . A labelling is a total function ℒ: ݎܣ →
ሼ݅݊, ,ݐݑ݋ ሽܿ݁݀݊ݑ . We write ݅݊(ℒ)  for ሼܽ ∈ (ܽ)ℒ|ݎܣ = ݅݊ሽ (ℒ)ݐݑ݋ , for ሼܽ ∈
(ܽ)ℒ|ݎܣ = for ሼܽ (ℒ)ܿ݁݀݊ݑ ,ሽݐݑ݋ ∈ (ܽ)ℒ|ݎܣ =  .ሽܿ݁݀݊ݑ
 

Definition 5. ([4]). Let ܨܣ =< ,ݎܣ ܴ >. A complete labelling is a labelling such that 
for every ܽ ∈  :holds that ݎܣ
1. if ܽ is labelled in then all its attackers are labelled out; 
2. if ܽ is labelled out then it has at least one attacker that is labelled in; 
3. if ܽ is labelled undec then it has at least one attacker labelled undec and it 

does not have an attacker that is labelled in. 
 

Definition 6. Given ܨܣ =< ,ݎܣ ܴ >, 
1. ℒ is the grounded labelling iff ℒ is a complete labelling where ܿ݁݀݊ݑ(ℒ) 

is maximal (w.r.t. set inclusion) among all complete labellings of ܨܣ 
2. ℒ  is a preferred labelling iff ℒ  is a complete labelling where ݅݊(ℒ)  is 

maximal (w.r.t. set inclusion) among all complete labellings of ܨܣ 
3. ℒ is a stable labelling iff ℒ is a complete labelling where ܿ݁݀݊ݑ(ℒ) = ∅ 
4. ℒ is a semi-stable labelling iff ℒ is a complete labelling where ܿ݁݀݊ݑ(ℒ) 

is minimal (w.r.t. set inclusion) among all complete labellings of ܨܣ 
 

An argumentation framework ܨܣ =< ,ݎܣ ܴ > identifies a directed graph. The 
following are some graph-based definitions needed for the rest of the discussion. 
 

Definition 7. A subgraph of a graph ܩ =< ,ݎܣ ܴ >  is a graph ܩ௦ =< ܵ, ܴௌ > 
whose set of nodes ܵ is included in ݎܣ, and ܴௌ = ܴ ∩ (ܵ × ܵ). 
 

A subgraph contains a subset of nodes of the original graph and any link whose 
endpoints are both in ܵ (note how this subgraph is usually called a vertex induced 
subgraph). Given an argumentation framework ܨܣ , the restriction of an 
argumentation framework is a framework identified by a vertex induced subgraph of 
 .ܨܣ
 

Definition 8. Let us consider an argumentation framework ܨܣ =< ,ݎܣ ܴ >, and a 
set of nodes ܵ ⊆  ௌ, is the argumentation↓ܨܣ to ܵ, written ܨܣ The restriction of .ݎܣ
graph ܨܣ↓ௌ =< ܵ, ܴௌ > where ܴௌ = ܴ ∩ (ܵ × ܵ). 
 

Definition 9. If ܩ is a graph, a strongly connected graph of ܩ is a subgraph of ܩ 
where, for each pair of nodes ܽ, ܾ ∈  there is at least one directed path from ܽ to ܩ
ܾ  and at least one directed path from ܾ  to ܽ . A strongly connected component 
(SCC) of ܩ is a maximal (w.r.t. set inclusion) strongly connected subgraph. 
 

Given a graph ܩ =< ,ܣ ܴ > , we consider the graph composed by the strongly 
connected components of ܩ. This is the graph ܩ௦௖௖=< ௌܵ஼஼ , ܴ௦௖௖> where ௌܵ஼஼  is 
the set of strongly connected components of ܩ, and there is a link from the strongly 
connected component ଵܵ  to ܵଶ  if at least an element of ଵܵ  is connected to an 
element of ܵଶ  in the graph ܩ . Formally, ∀ ଵܵ, ܵଶ  ∈ ௌܵ஼஼ , ܴௌ஼஼( ଵܵ, ܵଶ)  iff ∃ܽ ∈

ଵܵ, ∃ܾ ∈ ܵଶ  such that ܴ(ܽ, ܾ) . The graph ܩ௦௖௖  is a directed acyclic graph. 



Therefore, it is possible to define a topological ordering of such graph. A topological 
ordering of a graph ܩ is an ordering such that, ∀ܽ, ܾ ∈ ,ܽ)ܴ if ,ܩ ܾ) then ܽ ≻ ܾ. 
Given ܩ and ܩ௦௖௖ , in order to simplify the discussion in the paper we introduce the 
following shortcut notation: for ܽ, ܾ ∈ ܽ we say that ,ܩ ≻ ܾ if ܽ belongs to ଵܵ ∈
௦௖௖ܩ , ܾ belongs to ܵଶ ∈ ௦௖௖ܩ  and ଵܵ ≻ ܵଶ. 
 
2.1 SCC-recursiveness and Complete Semantics 
 

Definition 10. A given argumentation semantics ܵ is SCC-recursive if and only if 
for any argumentation framework ܨܣ =< ,ܣ ܴ > , its extensions are given by 
(ܨܣ)࣭ܧ  = ,ܨܣ)ࡲࡳ  ,ܨܣ)ࡲࡳ where ,(ܣ (ܣ ⊆ 2஺ is defined as follows:  
ܧ∀ ⊆ ,ܣ ܧ ∈ ,ܨܣ)ࡲࡳ  if and only if (ܣ

1. in case |ܵܥܥ ஺ܵி| = ܧ ,1 ∈ ,ܨܣ)ࡲ࡮  (ܣ
2. otherwise, ∀ܵ ∈ ܥܥܵ ஺ܵி , is (ܧ ∩ ܵ) ∈ ,௎௉ಲಷ(ௌ,ா)↓ܨܣ)ࡲࡳ U୅୊(S, E) ∩ C) 

 

where ܵܥܥ ஺ܵி is the set of the strongly connected components of ܨܣ)ࡲ࡮ ,ܨܣ,  (ܣ
is a function, called base function, that, given an argumentation framework ܨܣ =<
,ܣ ܴ >, such that |ܵܥܥ ஺ܵி| = 1 and a set ܥ ⊆  returns a subset of 2஺. The set ,ܣ
ܷ ஺ܲி(ܵ,  is the set of all the arguments in ܵ not attacked by argument already in (ܧ
the extension ܧ, while U୅୊(S, E) ⊆ ܷ ஺ܲி(ܵ,  is the set of arguments of ܵ that (ܧ
are not attacked by an argument in the extension ܧ and also defended by arguments 
in ܧ. 
 

The idea [2] is that a semantics is computed by recursively analysing the strongly 
connected components of the argumentation graph. At the beginning, the procedure 
is applied to the entire argumentation graph. If the graph is composed by more than 
one SCC, it is decomposed in its SCCs and the extension is recursively built by 
analysing each SCC following the topological ordering of the acyclic graph identified 
by its SCCs. Portion of the graph that are represented by a single strongly connected 
component are analysed using a base function ࡲ࡮  specific to each semantics. 
Therefore, extensions of an initial SCC are labelled using the base function ࡲ࡮. A 
non-initial strongly connected component ܵ is labelled once all the SCCs preceding 
it in the topological ordering have been analysed. The extension of a non-initial SCC 
ܵ is computed by the base function on a restriction of ܵ containing all the arguments 
in ܵ  minus the ones attacked by arguments already accepted (=already in the 
extension ܧ) and belonging to SCCs previously analysed. This is why the recursive 
step is applied to a restriction of ܵ  including the arguments in the set ܷ ஺ܲி , 
representing all the arguments in ܵ not attacked by argument already in the extension 
ܧ . In building the extension of ܵ , the algorithm could also consider the set of 
arguments in ܵ that are attacked from outside by arguments not in the extension ܧ 
but that in turn are defended by at least an argument in ܧ (the set ஺ܷி ⊆ ܷ ஺ܲி , the 
second parameter of the function ࡲࡳ). 

All Dung’s complete semantics are SCC-recursive. We describe the 
computation of any complete Dung’s semantics with the following variation of the 
SCC schema, which uses a different notation more convenient for our labelling-based 
discussion. For each complete semantics ݔ , the base function is a function 
ℒ௫  returning the labellings of a graph consisting of a single SCC according to 



semantics ݔ. Following the general SCC-recursiveness schema, a SCC ܵ is labelled 
by considering arguments in ܵ but also the effect of external attacks from arguments 
in SCCs preceding ܵ in the topological ordering, that can be labelled before ܵ and 
independently from the labelling of ܵ. In particular, some arguments in ܵ could be 
attacked by arguments that have been labelled out, and therefore these attacks are 
irrelevant in a complete labelling. Some arguments in ܵ  could be attacked by 
arguments labelled in (we call the arguments in ܵ attacked by in-labelled arguments 
the set ݐݐܣ௜௡) and some could be attacked by arguments not in the extension (not 
labelled in) but not defended by an argument in the extension (and therefore not 
labelled out). For definition 5, it follows that these attacking arguments must be 
labelled undec by a previous application of ℒ௫. We call the arguments in ܵ attacked 
by undec-labelled arguments the set ݐݐܣ௨௡ௗ௘௖. 
The labelling of ܵ is done by applying ℒ௫ over the arguments of ܵ after having 
labelled out the arguments in the set ݐݐܣ௜௡ (and therefore only the restriction of ܵ 
to ܵ ∖  ௨௡ௗ௘௖ areݐݐܣ ௜௡ is de facto labelled), and by considering that arguments inݐݐܣ
attacked by undecided arguments and therefore they are labelled undecided if they are 
not labelled out (again, for definition 5), and that their undecided label might spread 
over other nodes in ܵ. 
Note that we have followed the SCC-recursiveness schema using a different notation. 
Referring to the original SCC-recursiveness paper, ܵ ∖ ௜௡ݐݐܣ = ܷ ஺ܲி . The set 
 ௨௡ௗ௘௖ carries the same information that in the original SCC-recursive schema isݐݐܣ
represented by the set ஺ܷி  (part of the second argument of ࡲࡳ), but ݐݐܣ௨௡ௗ௘௖ 
represents what in the original SCC-recursiveness paper is the set ஺ܲி  (provisionally 
defeated arguments), constisting of arguments of ܵ attacked by arguments not in the 
extension (not labelled in) and not defended by an argument in the extension. Since 
ܷ ஺ܲி = ஺ܷி ∪ ஺ܲி , the two sets ஺ܷி  and ஺ܲி = ௨௡ௗ௘௖ݐݐܣ  carry the same 
information in complementary ways. While ஺ܷி  represents the set of arguments of 
ܷ ஺ܲி ⊆ ܵ that could be part of the extension ݐݐܣ ,ܧ௨௡ௗ௘௖ is the set of arguments of 
ܷ ஺ܲி ⊆ ܵ that (even if not defeated by in-labelled arguments) cannot belong to the 
extension of ܵ. 

3 SCC-void Semantics 

The in dubio pro reo principle should protect arguments against doubtful attacks. We 
propose to identify doubtful attacks with attacks coming from undecided arguments. 
However, as discussed in the introduction, we propose to apply the principle of the in 
dubio pro reo under a condition: the attacked argument ܽ is not actively involved in 
generating the undecided situation attacking ܽ. This was proposed mainly to avoid a 
situation of conflict of interest. 

The first step is the identification of arguments actively involved in the 
undecided situation (called active undecided arguments) and arguments that are not 
involved, called passive undecided arguments. The latter are the ones that could 
benefit from the in dubio pro reo principle. Among the possible proposals, we suggest 



to partition passive and active undecided arguments using the topological ordering of 
the graph.  
Under complete semantics ݔ, a label undec is assigned to an argument ܽ because 
one or more of its attackers is labelled undec. A passive undecided argument ܽ is an 
argument receiving the undecided label because of one or more attacks from  
undecided arguments preceding ܽ in the topological ordering. If all those attacks 
were ignored, ܽ  would not be labelled undecided by semantics ݔ  anymore, 
meaning that ܽ is not the cause of the undecided situation. On the contrary, an active 
undecided argument would still be labelled undecided, meaning that the argument is 
part of a cycle of undecided arguments and actively takes part in generating the 
undecided situation. 

 

 
Figure 2. Argumentation Graphs discussed in the paper 

 
We want to build a pro reo semantics where an argument ܽ does not have to be 

defended from undecided arguments if it is not involved in generating the undecided 
situation. The in dubio pro reo principle joint to our topology-based criterion implies 
that arguments are protected from attacks coming from undecided arguments 
preceding them in the topological ordering. 

 We obtain such semantics by modifying the SCC-recursive schema of complete 
semantics. For each Dung’s complete semantics ݔ, we define a corresponding SCC-
void semantics, that is the semantics ݔ  where our in dubio pro reo criterion is 
applied. 

 The SCC-void labelling for a complete semantics ݔ, called ℒௌ஼஼ ௫ , is a SCC-
recursive labelling computed following the topological ordering of the strongly 
connected components of the argumentation graph. Arguments belonging to an initial 
strongly connected component ௜ܵ are labelled using the labelling function ℒ௫ of the 
chosen complete semantics ݔ . We then apply the pro reo criterion: attacks from 
undecided arguments in ௜ܵ  to arguments not in ௜ܵ  are considered not beyond 
reasonable doubt and they have no effect. These attacks are therefore discarded in the 
labelling of subsequent SCCs in the topological ordering and the undec label is not 
propagated outside the SCC component where it was generated.  
Recursively, arguments that are in a non-initial SCC ܵ are labelled in the following 
way. First, we label out all the arguments in ܵ included in the set ݐܣ ௜௡, that are the 
arguments in ܵ attacked by an in-labelled argument not belonging to ܵ that was 
labelled in a previous step of the recursion. Then, we apply again the recursive step 
on the argumentation framework composed by the remaining arguments, that is a 



restriction of the original argumentation graph. We continue to do so until all the 
arguments have been labelled. Therefore, when labelling a SCC ܵ, we ignore the 
attacks coming from undecided arguments preceding ܵ.  
Note how we are following the recursive scheme of the chosen complete semantics 
described in section 3, with the only modification that we are not considering the 
external attacks from the set of undecided arguments when labelling a SCC. Using the 
terminology of the original SCC-recursiveness paper, neglecting attacks from external 
undecided arguments is equivalent to assume that the set ஺ܲி = ௨௡ௗ௘௖ݐݐܣ = ∅ and 
therefore ܷ ஺ܲி = ஺ܷி . We can therefore give the following extension-based SCC-
recursive definition of SCC-void semantics. 
 

Definition 12. Given an argumentation framework ܨܣ =< ,ݎܣ ܴ > ܧ ,  is an 
extension of the SCC-void semantics ௌܵௌ஼ೣ  if and only if: 

1. in case |ܵܥܥ ஺ி| = ܧ ,1 ∈  (ܨܣ)࢞ࡿ
2. otherwise, ∀ܵ ∈ ܥܵ ஺ி , it is (ܧ ∩ ܵ) ∈ ௌܵௌ஼ೣ(ܨܣ↓௎ಲಷ(ௌ,ா)) 
 

where (ܨܣ)࢞ࡿ  returns the extensions of a complete semantics ݔ  of an 
argumentation framework ܨܣ, and ஺ܷி  is the set of arguments in ܵ ⊆  that are ݎܣ
not externally attacked by an argument in the extension ܧ. 
The definition considers that ܷ ஺ܲி = ܷ஺ி  , and therefore the function ௌܵௌ஼ೣ  needs 
only one parameter. We also provide a labelling-based definition. 
 

Definition 13. Let us consider the argumentation framework ܨܣ =< ,ܣ ܴ >, and 
the function ℒ௫ computing the labelling of a complete semantics ݔ. The SCC-void 
labelling for semantics ݔ is identified by the function ℒௌ஼ ೣ , defined as follows: 

1. in case |ܵܥܥ ஺ܵி| = 1, ℒௌ஼஼ೣ
(ܨܣ) = ℒ௫(ܨܣ) 

2. otherwise, ∀ܵ ∈ ܥܥܵ ஺ܵி , it is 

ℒௌ஼஼ೣ
(ܵ) = ቊ

ℒௌ஼ ೣ൫ܨܣ↓ௌ∖஺௧௧೔೙(ௌ)൯, ∀ܽ ∈ ܵ ∖ (ܵ)௜௡ݐݐܣ
ܽ∀   ,ݐݑ݋ ∈ (ܵ)௜௡ݐݐܣ

 

 
where ݐݐܣ௜௡(ܵ) is the set of arguments in ܵ externally attacked by an ݅݊-labelled 
argument: ݐݐܣ௜௡(ܵ) = ൛ܽ ∈ ܵ|∃ܾ ∈ ݅݊൫ℒௌ஼஼ೣ൯: ܾ ∉ ܵ ∧ ܴ(ܾ, ܽ)ൟ. 
 
3.1 Examples 
In the floating assignment example (Figure 2a) using grounded SCC-void semantics, 
ܽ  and ܾ  are in an initial SCC and are therefore labelled undec using grounded 
semantics; however their attacks are not propagated to ܿ  that is labelled in. For 
preferred, semi-stable and stable SCC-void semantics, there are no undecided 
arguments, so the two valid labellings are also preferred, semi-stable and stable SCC-
void labellings.  
In Figure 2d, ܽ is labelled undec and ܾ is in for all the SCC-void semantics.  
In Figure 2e, all the arguments are undecided in the grounded SCC-void labelling 
since, even if the attack from ܾ to ݀ is neglected, the arguments ݀ and ݁ are still 
in a cycle. Therefore the grounded SCC-void labelling agrees with the grounded 
labelling. For preferred SCC-void semantics there are two labellings: ܽ, ܾ, ܿ  are 



always undecided but, since the attack from ܾ to ݀ is neglected, ݀ is accepted and 
݁ is rejected in one labelling, while ݁ is accepted and ݀ is rejected in the other. 
Note that only the second labelling is a Dung’s valid preferred labelling.  
In Figure 2c, using the grounded SCC-void semantics, arguments ܽ  and ܾ  are 
labelled undec, the initial argument ݁ is in, ݀ is out (defeated by ݁) and since we 
neglect the attack from ܾ to ܿ also ܿ is accepted. Regarding preferred semantics, 
the two preferred semantics labellings are also SCC-void preferred labellings. 

4 DISCUSSION AND PROPERTIES 

By relying on the properties of the underlying Dung’s complete semantics ݔ, we can 
prove these properties for ௌܵ஼஼ೣ : 
 

Lemma 1. If ݔ is a complete semantics, the semantics ௌܵ஼஼ೣ  satisfies the following: 
 

1. It is conflict free and non-admissible (in Dung’s sense) 
2. It allows reinstatement 
 

SCC-void semantics are clearly non-admissible, since they can accept arguments not 
defended by ݅݊-labelled arguments, as in the floating assignment example. They 
could be seen as employing a different form of admissibility, weaker than Dung’s 
admissibility. We still require an argument to be defended, but in a SCC-void 
semantics attacks from (some) undecided arguments are considered too weak and 
neglected, so an argument is not required to be defended from them. SCC-void 
semantics are still based on a concept of defence as the admissibility-based semantics, 
and they still satisfy the reinstatement property since, if an argument has all its 
attackers labelled ݐݑ݋, it is labelled ݅݊. However, the in dubio pro reo principle 
makes reinstatement easier, since an argument ܽ  defeated by ܾ  (initial) is fully 
reinstated even by an argument ܿ rebutting ܾ, since the doubt casted by ܿ’s attack 
is enough to make the attack from ܾ to ܽ no more beyond reasonable doubt. 
SCC-void semantics are the only non-admissible semantics known to the author 
satisfying reinstatement. Other non-admissible semantics, such as Stage semantics, 
allow an initial argument to be excluded from the extension, while both CF1 and CF2 
semantics allow an argument whose attackers are all labelled ݐݑ݋ to be labelled ݐݑ݋. 

It is interesting to study the relation between the set of in-labelled arguments 
of semantics ݔ and the set of in-labelled arguments of the corresponding SCC-void 
semantics ௌܵ஼ ೣ . Since attacks from active undecided arguments are neglected, some 
of the arguments previously labelled undec could be promoted to the label in, and 
those arguments are now free to effectively attack other arguments. We wonder if 
some of the arguments accepted by ݔ are now discarded by the corresponding SCC-
void semantics, which would not be desirable. The following holds. 
 

Theorem 1. 
If an argument is at least credulously accepted by semantics ݔ , it is at least 
credulously accepted by SCC-void semantics for semantics ݔ 
 



Proof. We prove that, if an argument ܽ is labelled in in a complete labelling ݈, there 
is also a SCC-void labelling ݈௦௖௖  where ܽ  is labelled in. We first notice that 
arguments labelled in in a complete labelling ݈  are indifferent to undecided 
arguments. They either are initial arguments or defended by some in-labelled 
arguments (potentially including themselves). The same is for arguments labelled out 
in ݈: their label is assigned by the presence of an in-labelled argument. Moreover, in 
a complete labelling ݈ , in-arguments do not receive any attacks from undecided 
arguments, and undec arguments only attack arguments labelled undec or out. In a 
SCC-void labellings, attacks from a subset of undecided arguments are neglected. 
There are two cases: 
 

Case 1. The neglected attacks are directed to undec-labelled arguments. In this case, 
the attacked arguments could be promoted to the label in. However, each new in-
labelled argument ܾ  does not attack any in-labelled argument in ݈ , but only 
arguments labelled undec and out, since ܾ was undecided in ݈. Therefore the only 
potential effect of the attacks from ܾ is that some arguments labelled undec in ݈ are 
now labelled out in ݈௦௖௖ , and therefore ݅݊(݈) ⊆ ݅݊(݈௦௖௖). 
 

Case 2. The neglected attacks are directed to arguments labelled out in ݈. In this case, 
the effect is that each attacked argument ܿ remains labelled out also in ݈௦௖௖ , since 
the out label of ܿ in ݈ was necessarily the effect of the attack from an in-labelled 
argument. This in-labelled argument is still labelled in in ݈௦௖௖ , since it cannot be 
affected by attacks included in case 1 above, and it is not affected by attacks included 
in case 2, since all the attacked arguments ܿ remain labelled out, and therefore they 
do not affect any in-labelled arguments in ݈, and ݅݊(݈) ⊆ ݅݊(݈௦௖௖).       □ 
 

By promoting some arguments to the in status, an SCC-void semantics might generate 
additional valid labellings affecting the justification status of arguments. For instance, 
if we consider the graph in Figure 2d, there is one valid preferred labelling where ݁ 
is accepted, ܽ, ܾ, ܿ and ݀ undecided, that is also an SCC-void labelling. Therefore 
݁ is at least credulously accepted by the preferred SCC-void semantics. However, by 
neglecting the attack from ܾ to ݀, the preferred SCC-void semantics generates also 
the labelling where ݀ is accepted, ܽ, ܾ, ܿ undecided and ݁ rejected and therefore 
݁ and ݀ are credulously accepted by the SCC-void semantics. 
In case of a single-status semantics, like the grounded, theorem 1 means that the 
grounded SCC-void semantics is unique, always existing, and its extension is a 
superset of the complete grounded semantics. In particular, some undecided 
arguments could be promoted to in or demoted to out, while arguments labelled out 
and in under Dung’s grounded semantics retain their label in the grounded SCC-void 
labelling (Figure 3).  

 

 
 



Fig. 3: ݅݊൫ℒ௚௥൯ ⊆ ݅݊ ቀℒ௦௖௖೒ೝ
ቁ,ݐݑ݋൫ℒ௚௥൯ ⊆ ݐݑ݋ ቀℒ௦௖௖೒ೝ

ቁ,ܿ݁݀݊ݑ ቀℒ௦௖௖೒ೝ
ቁ ⊆  .൫ℒ௚௥൯ܿ݁݀݊ݑ

 
4.1 An alternative definition of SCC-void semantics 
 
We defined each SCC-void semantics as a modification of an underlying Dung’s 
complete semantics ݔ, a less skeptical version of ݔ embedding the in dubio pro reo 
principle in the way attacks are evaluated. By doing so, we have retained some 
desirable properties of Dung’s semantics and a relation between the extensions 
prescribed by a semantics ݔ and its SCC-void version. However, an alternative path 
could have been followed. In literature, grounded, preferred, stable and semi-stable 
semantics are often defined as complete labellings whose set of undec- or in-labelled 
arguments satisfy some properties of maximality or minimality. The grounded 
semantics is for instance the complete labelling maximizing the set of undec 
arguments. We could have defined the SCC-void semantics in the same way, starting 
from the set of complete SCC-void labellings. We first wonder if the two proposals 
coincide. A weaker result holds, but the answer is negative. It can be proved that: 
 

Lemma 2. A grounded (preferred/semistable/stable) SCC-void labelling is a complete 
SCC-void labelling maximizing the set of undecided arguments (maximizing the set of 
in-labelled arguments/minimizing the set of undecided arguments/where the set of 
undecided arguments is empty). 
 

Proof. The proof is for grounded semantics (the other proofs are analogous). We have 
to prove that ܿ݁݀݊ݑ ቀℒ௦௖௖೒ೝ

ቁ is not contained in the undec set of any other SCC-void 

complete labellings ℒ௦௖௖ೣ
. The ℒ௦௖ ೒ೝ

 labelling uses the grounded labelling as base 
function. Because of this, we are sure that in all the initial SCCs the set of undec 
arguments is maximal. If in another complete SCC-void labelling ℒ௦௖௖ೣ

 there is at 
least one initial SCC ܵ  with a different labelling, then ܿ݁݀݊ݑ൫ℒ௦௖௖ೣ

(ܵ)൯ ⊂

ܿ݁݀݊ݑ ቀℒ௦௖௖೒ೝ
(ܵ)ቁ, and we prove the thesis. If this is not the case, we move to the next 

non-initial SCC ܵ in the topological ordering. So far, the labels of all the arguments 
considered coincide with the labels assigned by the grounded SCC-void labelling 
ℒ௦௖௖೒ೝ

. Therefore, every SCC-void labelling labels the same restriction of ܵ in the 
next recursive step. The grounded semantics guarantees again that the labelling of ܵ 
maximizes the set of undecided arguments. Therefore, in every SCC-void labelling 
ℒ௦௖௖ೣ

 generating a different labelling for ܵ  it is ܿ݁݀݊ݑ൫ℒ௦௖௖ೣ
(ܵ)൯ ⊂

ܿ݁݀݊ݑ ቀℒ௦௖௖೒ೝ
(ܵ)ቁ, and we prove the thesis. 

When all the arguments of have been labelled, either all the complete SCC-void 
labellings agree with the unique grounded SCC-void labelling, or for every different 
SCC-void labellings ℒ௦௖௖ೣ

 there was at least one SCC ܵ labelled in a different way 

for which ܿ݁݀݊ݑ൫ℒ௦௖ ೣ
(ܵ)൯ ⊂ ܿ݁݀݊ݑ ቀℒ௦௖ ೒ೝ

(ܵ)ቁ and we prove the thesis. □ 
 



 
Fig. 4: A preferred SCC-void labelling (left) and the grounded SCC-void labelling for the same 
argumentation graph, both maximizing the set of undec arguments. 
 
The above lemma is not a double implication, except for the stable semantics. Not all 
the SCC-void labellings maximizing the undec set are grounded SCC-void labellings, 
and not all the labelling maximizing the set of in-labelled arguments are preferred 
SCC-void labellings. Labelling generated by ℒ௦௖௖೛ೝ

 can also maximize the set of 
undec arguments. An example is given in Figure 4, where both the grounded and the 
preferred SCC-void labellings maximize the set of undec arguments. The example 
also shows that the SCC-void labellng maximizing the set of undec arguments is not 
always unique and therefore a grounded SCC-void labelling defined in that way would 
have lost that property too. The example also shows that also a labelling produced by 
ℒ௦௖௖೒ೝ

 can maximise the set of in labelled argument. An example is also the floating 
assignment in Figure 2a, where argument ܿ is accepted by the grounded SCC-void 
semantics but rejected by the preferred SCC-void semantics. 

5   Related Works 

The principles of beyond reasonable doubt, in dubio pro reo and standard of proof 
have been extensively study in argumentation theory (see [12]), but only few studies 
are relevant to abstract argumentation. In the context of structured argumentation, we 
mention the work by Prakken [17] on modelling standards of proof, and the 
modification of the Carneades framework [11]. 
Regarding abstract argumentation, the most explicit study about standard of proof is 
[1]. Here the authors consider how each Dung’s semantics has a different level of 
cautiousness that is mapped to a corresponding legal standard of proof. Only initial 
arguments are beyond doubt, but they consider the skeptically preferred justification 
a beyond reasonable doubt position. In the floating assignment example (Figure 2a), 
the authors recognize the two attackers as doubtful, but they consider the skeptically 
preferred rejection of ܿ  beyond reasonable doubt. It could be noticed that this 
position is failing to acknowledge that, if each of the attackers are considered doubtful, 
their effect cannot be (at last in all the situations) beyond doubt. 
Brewka et al. [3] also criticises [1], since they doubt the fact that various Dung’s 
semantics can capture the intuitive meaning of legal standard of proof (detailed 
discussion in here [12]). In case of beyond reason-able doubt, we agree with Brewka, 
complete Dung’s semantics are not adequate to model this principle. 
Prakken has analysed the floating assignment and its link to standard of proof in his 
work [18], where he responds to objections advanced by Horty in [13]. Prakken 
underlines that in many problematic situations, including the floating assignment, 



there could be hidden assumptions about the specific problem which, if made explicit, 
are nothing but extra information that defeat the defeasible inference. In the case of 
the floating assignment, Prakken agrees that if beyond reasonable doubt is our 
standard of proof (like in a criminal case where there are two conflicting testimonies) 
we should not conclude that the accused is guilty. However, this does not mean that 
argumentation semantics are somehow invalid. In the case of conflicting testimonies, 
as already showed by Pollock [16], the situation could be correctly modelled by 
making explicit some hidden assumptions and adding extra arguments to model such 
assumptions. In the conflicting testimonies, the fact that two witnesses contradict each 
other is a reason to add an argument undercutting the credibility of both. However, 
the problem of when to add arguments and how they interact with existing arguments 
has still to be faced, and in this work we have tackled it by embedding assumptions in 
an abstract argumentation semantics rather than adding arguments. In his presentation 
of semi-stable semantics, Caminada [5] also clarifies the logical assumptions beyond 
the treatment of the floating assignment. In particular, he observes how the preferred 
semantics solution is based on the assumption that we know with certainty that one of 
the two attacking arguments is valid, since in this case we do not need to know which 
one is valid in order to safely discard ܿ. 

6   Conclusions and Future Works 

In this paper we explored how the principles of in dubio pro reo and beyond 
reasonable doubt can be modelled in abstract argumentation. The two principles 
impose a high standard for an attack to be effective. We proposed to consider attacks 
from undecided arguments the weaker forms of attacks, considering them not beyond 
reasonable doubt. We proposed to neglect attacks from undecided arguments under 
some conditions and we generated the SCC-void semantics using an SCC-recursive 
schema. We provided a SCC-recursive version of SCC-void semantics and proved 
their fundamental proper-ties. For each complete semantics, it is possible to define a 
corresponding SCC-void semantics. SCC-void semantics are conflict-free, non-
admissible (in Dung’s sense), but employing a defence-based relaxed notion of 
admissibility, they allow reinstatement and they accept credulously what the 
corresponding complete semantics accepts at least credulosly. We believe to have 
proposed an original and novel contribution to abstract argumentation semantics. 
Future research works include the investigation of alternative definitions of active and 
passive undecided argument, the study of the impact of the in dubio pro reo principle 
on the justification status of arguments and the study of how the principle could be 
implemented in probabilistic, fuzzy or numerical argumentation systems ([6][7][8]). 
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