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Abstract: The paper studies the optimal layout problem
of 3D-objects. The problem takes into account placement
constraints, as well as, behaviour characteristics of the
mechanical system. We construct a mathematical model
of the problem in the form of a multicriteria optimisation
problem and call the problem Multicriteria Balanced
Layout Problem (MBLP).
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I. INTRODUCTION

3D layout optimisation problems have a wide spectrum of
practical applications. In particular, these problems arise in
space engineering for rocketry design. Their distinctive
feature consists of taking into account behaviour constraints
of a satellite system. Behaviour constraints specify the
requirements for system’s mechanical properties such as
equilibrium, inertia, and stability. Many publications analyze
problems of the equipment layout in modules of spacecraft or
satellites [1, 2]. These problems are NP-hard.

In the research we consider the balance layout problem in
the following statement: arrange 3D-objects in a container
taking into account special placement and behaviour
constraints so that the objective function attains its extreme
value [3].

We consider here an extension of the balanced layout of
3D-objects considered in [3,4]. The paper studies 3D
optimisation balance layout problem taking into account
minimal and maximal allowable distances. Classes of
adjusted phi-functions and adjusted quasi-phi-functions are
derived for analytical description of non-overlapping,
containment and distance constraints. A circular cylinder, a
paraboloid, or a truncated cone are taken as a container. We
consider cylinders, spheres, tores, spherecylinders and
straight convex prisms as the placement objects. An exact
mathematical model of the problem in the form of NLP
problem is provided.

The aim of this study is to develop a mathematical model
of 3D layout optimisation problem taking into account
behavior constraints in the form of multicriteria optimisation
problem. We call the problem the Multicriteria Balanced
Layout Problem (MBLP).

To describe placement constraints  (non-overlapping of
objects, containment of objects in a container with regard for
the minimal and maximal allowable distances) analytically

we employ phi-function technique [5]. We also formalise
behaviour constraints (equilibrium, moments of inertia, and
stability constraints) based on [3].

The variety of forms of objective functions and
combinations of placement and behaviour constraints
generates various variants of the MBLP problem.

Il. PROBLEM FORMULATION

Let Q={(x,y, z)eR3: G(x,y,z) >0} be a container
of given height H. We consider the following types of
containers: 1) Q=C, C isa straight circular cylinder with a
base of radius R,

G(x,y,2)= min{—x2 —y2 +R?,-z+H, z};2) Q=A, A
is a paraboloid of revolution with a base of radius R = JH,
G(x,y,2)= min{—z—x2 —y2 +H,z}; 3) Q=E, E is a
straight circular blunted cone with lower and upper bases of
radii R and R, <Rg respectively,

G(x, y,z):min{—z—H(\/x2+y2 —Rl)/(Rl—RZ),—z+H,z}.
Suppose that Q is divided by circular racks Sy,
k=12,..,m+1, into subcontainers QX, k=12, .. m.
We assume that S; is a base of Q. Between racks S, and
Sy the distance t, is given.

Family A={A;,iel,}, I,={2,..,n}, involves the
following shapes of objects: solid spheres S; of radius r;;
straight circular cylinders C; of radius r; and height 2h; ;
tori 7; with metric characteristics (rj, h;), where r; is the

distance from the center of generating circle to the axis of
revolution, 2h; is the height of 7j, h; is the radius of the

generating circle; spherocylinders S
characteristics (I;, r;, h;), where [; is the height of ball
segments, r; is the radius and 2h; is the height of cylinder;
straight regular prisms and cuboids K; with metric

with metric

characteristics (h;,vii,), where 2h;is the height of K,
vil = (Xil, yj;), 1=1,...,s;, are vertices of the base of X
(which is a convex polygon Kj), s; is the number of
vertices of K;.
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MBLP: Pack 3D-objects A;e A, iel,={L2,...,n},

inside container Q, so that the vector function attains its
extreme value with regard for placement and behaviour
constraints.

The placement constraints in the MBLP problem are
generated by non-overlapping of objects A, A;, i>jel,,

Ql
iel,. In

which have to be placed inside container and

containment of object A; in container Q,
addition, the minimal pj; and maximal pf} > pjj allowable
distances between objects Aj,Aj, i>jel,, may be
specified. Also, the minimal allowable distance p; between
object A; € A, iel,, and the lateral surface of container Q

may be given. Without loss of generality we set pj; =0 (or
pﬁ =w) if a minimal (or a maximal) allowable distance

between objects A; and Aj isnotgiven, i>jel,.Here ©
is a given sufficiently great number. In particular, the
condition pﬁ=pﬁ provides the arrangment of objects

Ajand Aj on the exact distance. We also set p; =0 if a

minimal allowable distance between object A; and the

lateral surface of container Q is not given.
Placement constraints in the MBLP problem may be

presented as the following: pﬁgdist(Ai,Aj)Spfj,
i>jel,, and dist(Ai,Q*)Zpi‘, i=1..,n, where
Q" = R3\intQ.

To describe the placement constraints analytically we
employ the phi-function technique [5-8].

Let wus consider the constraints
characteristics of system Q, .

The equilibrium constaints are defined by the following
system of inequalities:

py1(u) =min{=(Xs(u) —X¢) +AXe, (Xs(U) —=X¢) +AXc}20
pyp(U) =min{-=(ys(u) —ye) +Aye, (Ys(U) —Ye) +AYe}>0,
pig(u) =min{=(z5(u) —z¢) + Azg, (25 (U) —2Z¢) +AZ} 20,

where  (Xq,Ye,Ze) is the expected position of O,
(AXq, Ay, Az,) are admissible deviations from the point
(Xes Ve Zg) -

The constraints of moments of inertia are defined as the
following:

Ho1(U)=-Ix(u)+Alx 20,

Moo (U)=—Jy(U)+AJy 20,

Hog(U)=-Jz(U)+AJz 20,
where Jy (u),Jy (u),Jz(u) are the moments of inertia of the
system Q, with respect to the axes of coordinate system
OXYZ, Alyx,Aly,Al;, are admissible values for
Jx (u),Jy (u),Jz(u), where

of mechanical
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N 2 2 2 4 o2 2 2
I (U) =dx, +D (U, €0s° 0; +3y, sin® 07)+ > (yi +2{)m; -M(ys +25)’
i-1 i-1

n
2 +zfymi ~M(xg +25)

n
Jy () =3y, +> Oy, sin? 0, +1y, cos? 0;)+
i=1 i=1

N 22 2.2
Jz(u) =2Jzi +Z(yi +2{)m; —M(xg +ys),

i=0 i=1
Jxg:JygrJz, are the moments of inertia of container Q
with respect to the axes of the coordinate system Oxyz,
Jx;1dyi1Jz,, 1€ 1y, are the moments of inertia of object A;
with respect to the axes of coordinate system O;X;V;z; .

The stability constraints are defined by the following
system of inequalities:

pa1(u) = min{=Jxy (U) + Ay, Ixy (U) + Al xy} 20,
tgz(U) =min{-Jyz(U)+Alyz,Jyz(U)+AJyz}>0,

uaz(u) =min{-Jxz(U)+Alxz, Ixz(U) +AJxz}>0,

where Jyy (u),Jyz(U),Jxz(u) are the products of inertia of
system Q, with respect to the axes of the coordinate system
O XYZ, Alxy,Alyz,Alyz are admissible values for

Ixy (U), Jyz(u), Ixz(u), respectively,
18 . 0

JXY(U) =EZ(JXi —in)SIn 26, +Z Xjyim; _MXSyS'
i=1 i=1

n
‘]YZ(U) :zyizimi _Myszs*
i=1

n
sz(u) = Z XjZimj _MXSZS .
i=1
Behaviour constraints of the BLP problem we define as
the system of inequalities

Hy(U)2 0, (U) 2 0, pg(u) 20,

where
pg(u) =min{py1(u), pyp (), nez(W)}, @
po(u) =min{uoq(u), puop(U), oz (U)}, 2
pa(u) =min{uzq(u), pap (u), paz(u)}. 3)

Here Og =(Xs, s, Zg) is the center of mass of system Qp ,

13 13
Xs(U)ZMZ m;X; ,yS(U)=MZ miYi,
i-1 i-1

n n
zs(u):$Zmizi M =Y"m; isthe mass of system Qp .
i=1 i=0

111. MATHEMATICAL MODEL

A mathematical model of the MBLP problem can be
presented in the form

extrF(p,u)s.t. (u,p)eW 4

W ={(u, p) e R5: Y(u, p) =0, u(u, p)=0,5>0}, (5)
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where F(p,u) = (Fy(p,u), F(p,u), ..., Fe (p, 1)),
Y(u, p) describes placement constraints,

Y(u, p) =min{Yy(u), Yo(u,p)},

Y4 (u) is responsible for non-overlapping constraints,
Y, (u, p) is responsible for containment constraints,
pw(u) =min{pg(u),seU;} is responsible for
constraints, U;ePU), PU) is the power set of
U ={1 2,3}, functions pq(u), po(u), ug(u) are given by (1)-
(3), >0 is the system of additional constraints of metric
characteristics of container Q and placement parameters of
objects. If s =&, i.e. behavior constraints are not involved in
(5), then our objective function F(u) meets mechanical
characteristics of system Q 4 .

Depending on the different combinations of objective
functions F (p,u), Fo(p,u),..., F (p,u) different variants
of mathematical model (4)-(5) can be generated. The most
frequently occurring objective functions found in related
publications are the following: 1) size of container Q; 2)
deviation of the center of mass of system Q, from a given
point; 3) moments of inertia of system Q , [3,9-13].

Let us consider some of realisations of model (4) - (5):

behavior

o F(p,u)=p st (p,u)eW c R®,
W ={(p,u) e R®:Y;(u)=0,Y,(p,u)>0,
u(p,u)>0,6>0}
e F(u)=d, (p,u)eW c R,

d = (X (U) = Xg)® + (Y5 (U) — ye) * + (25 () - 2¢) %,
W ={(p,u) e R®: Y (u)=0,Y,(p,u)=0,u,(p,u)=0,
uz(p,u)=0,£>0};

o F(p.u)=(Fy(p.u)=p,Fp(p,u)=d), (p,u)eW < R®,
W ={(p,u) € R :Y;(u)>0,Y,(p,u)>0,py(p,u)=0,
ua(p,u)=0,¢>0};

o F(p,u)=(F(p,u)=J x (p,u), Fo(p,u)=Jy (p,u),
Fa(p,u)=1J7(p,u))

(p,u)eW c R>,

W ={(p,u) € R*:Y1(u) =0, Y,(p,u) 20, uy(p,u) =0,
nz(p,u)=20,6=0}.

I1l. CONCLUSIONS

In this paper we formulate the optimisation layout
problem of 3D-objects into a container taking into account
placement (hon-overlapping, containment, distance) and
behaviour (equilibrium, inertia and stability) constraints. We
call the problem as Multicriteria Balance Layout Problem
(MBLP). In order to describe placement constraints
analytically we employ phi-function technique. A
mathematical model of the problem in the form of
multicriteria optimisation problem is proposed.

We also consider some variants of the MBLP problem
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depending on the forms of the objective functions, shapes of
objects and containers, combinations of placement and
behavior constraints.

1\V. COMPUTATIONAL RESULTS

Instance 1. Let Q=E, m=2, H=06,R =0.5,
R =03, A={S,S,C,C,T, T;;S..,S., Ky K, },
Al = {S,,Cy, T, S K, } s Ai ={5,,C,\ T, iy K, } s
p, =003, i<jel, Py =01, pr =008

(z,,y,2)=1(0,0,0.275), t, = 0.3, n =10,
{2,i=1,..,10}={0.19, 0.4, 0.19, 0.41, 0.24, 0.35, 0.19,

039, 018, 042}, {m,i=1,.,10}={27.8764, 20.944,
34.5575, 16.9332, 28.4245, 22.2066, 17.2159, 19.2265, 38.4,
199532}, 7 =011, r,=01, r,=01, h =0.11,
T

=007, h, =011, r =0.08, h =0.06, r, =0.09,
h, =0.05,7. =008, h =005, L =006, h =0.06,
=003, s =4,h =012, wvu=/(0.080.1),
(0.08,-0.1), vos =(-0.08,-0.1), ves = (~0.08,0.1), s

hy =012, voon = (0.04,0.07), vz = (0.08,0), vuos,
=(0.04,-0.07) v

V92 =

10

6 1

vaoy+ =(-0.04,-0.07), vaos = (—0.08,0),

vaoe = (—0.04,0.07).
The local-optimal solution found by NLP-solver in CAS
Math 9 (Fig. 1) is F(u',u/") = 1.12726 x10°.

Fig. 1 The local optimal layout of 3D-objects in Instance 1
Instance 2. Let Q=C, m=3, H=1, R=0.45,
t, =035, n=20, A={S,i=1...4, C,i=5,..,8

T,i==9.12 §,,i=13..16  K,i=17,.,20},
A#l» = {‘§‘17C'57 CG’];’ SCIAI’ E7}'Ai = {S2’§3’C7’ I;07

3
SCIS’ ES’KQU}'A+ = {S4’CS7 71177127 §@167ZZD19}’ Ut = @,
p, =0.02, 1<j=1..,20, (z,y,2)=1(0,0,0.5),

{z,i=1..,20}={0.1, 0.44, 0.46, 0.81, 0.11, 0.12, 0.46,
0.78, 0.06, 0.425, 0.76, 0.77, 0.11, 0.13, 0.46, 0.81, 012, 0.47,
0.82, 0.46}, {m.,i=1,..,20}={20.944, 15.2681, 27.8764,

34.5575, 63.7115, 41.8146, 30.4106, 28.4245, 49.9649,
24.8714, 38.6888, 26.2637, 20.7764, 17.2159, 16.8756, 52.8,

52.8, 528, 231489}, r =0.1, r, =009, r, =011,
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r, =011, r, =01, h =011, h =012, 7, =0.11,

r. =011, h,=0.08, 7, =0.08, hy =0.07, r, =0.09,
h, =0.075, 7 =007, h, =006, £, =008,
h, =0.07, r, =0.1, h, =0.05, I, =0.07, =, =0.05,
h, =005, 1, =0.08, r_=0.08, h =0.05, =0.06,
r, =008,  h, =004 I =007, s =4,

va = (—0.11,-0.1), w2 = (0.11,—0.1), v = (0.11,0.1),
v = (=0.11,0.1), h =012, i=17,1819, s, =6,
Voo = (0.045,0.078) , ve2 =(0.09,0), vens =(0.045,-0.078),
e = (—0.045,—0.078), Voo = (—0.09,0),
vens = (=0.045,0.078), h, = 0.11.

The local optimal solution found by NLP-solver in CAS
Math 9is F(u ,u"") = 0.001911 (Fig. 2).

-04 _pn2 gp
x

Fig. 2 The local optimal layout of 3Dujobjects in Instance 2
Instance 3. Let Q=C, m=2, H=20, R=838,
t, =10, n=80, A={C.,i=1..64,K i=65,..,80},
A ={C,i=1,.,16,K i =65,.,68},A' ={C, i=17,
32, K,i=69,..,72}, A* = {C.,i=49,...,64, K ,i=77,
.., 80} ,Ai ={C,i=33,..,48,K ,i=T73,..,76},
{r,i=1,.,64} ={2.0,24,08, 1.1, 1.3, 0.7, 0.7, 1.5, 2.4,

18,15,17,17,14,16,2.1,20,24,08,1.1,1.3,0.7,0.7,
15,24,18,15,1.7,1.7,14,16,2.1,2.0,24,08, 1.1, 1.3,
0.7,0.7,15,24,18,15,1.7,1.7,1.4, 16, 2.1, 2.0, 2.4, 0.8,
11,13, 07 07,15, 24,18, 15, 1.7, 1.7, 1.4, 1.6, 2.1},

s =4, i = 65,...,80, va = (—1.8,—1.8),
ve = (1.8,-1.8), vy =(1.818), wvi=(-1818),
i =65,69,73,77, wva =(—0.5,-0.5), vs = (0.5-0.5),
vis = (0.5,0.5),  wva =(—0.50.5), i=6670,74,78,
va = (=2.1,-2.1),  wve=(21L-21), v =(2.12.1),
v = (—2.1,2.1), i=67,7,75,79, wva=(-1.3,-1.3),
vo = (1.3,-1.3), vy =(13,1.3),  vu=(-1313),

i = 68,72,76,80, {h,i=1,..,62 }={15, 15, 1.5, 1.5, 15,

3.0,15,15,15,3.0,15,3.0,15,3.0,3.0, 15,15, 15, 3.0,
15,3.0,15,15,3.0,15,15,3.0,15,15,3.0,15, 15,15,
3.0,15,15,15,3.0,15,15,15,3.0, 15, 15, 1.5, 3.0, 3.0,
15,15,15,30,15,30,15,15,3.0, 15,15, 30, 15,15,

3.0, {h,i=63,..,80 }={1.5}, {m,i=1,..,80}={86, 72,

25

81, 54, 29, 94, 92, 41, 57, 77, 40, 67, 31, 47, 39, 61, 73, 83,
11, 20, 86, 72, 81, 54, 29, 94, 92, 41, 57, 77, 40, 67, 31, 47,
39, 61, 73, 83, 11, 20, 86, 72, 81, 54, 29, 94, 92, 41, 57, 77,
40, 67, 31, 47, 39, 61, 73, 83, 11, 20, 86, 72, 81, 54, 29, 94,
92,41, 57,77, 40, 67, 31, 47, 39, 61, 73, 83, 11, 20}.

The local optimal solution found by IPOPT

“u’") = 0.000000 (Fig. 3).

is
F(u ,u

g
e Y

Fig. 3 The local optimal layout of 3D-objects in Instance 3
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