CEUR-WS.org/Vol-2301/paper_3.pdf

Enter the Matrix: Safely Interruptible Autonomous Systems via Virtualization

Mark O. Riedl
School of Interactive Computing
Georgia Institute of Technology

riedl@gatech.edu

Abstract

Autonomous systems that operate around humans will
likely always rely on kill switches that stop their exe-
cution and allow them to be remote-controlled for the
safety of humans or to prevent damage to the system. It
is theoretically possible for an autonomous system with
sufficient sensor and effector capability that learn on-
line using reinforcement learning to discover that the
kill switch deprives it of long-term reward and thus
learn to disable the switch or otherwise prevent a hu-
man operator from using the switch. This is referred to
as the big red button problem. We present a technique
that prevents a reinforcement learning agent from learn-
ing to disable the kill switch. We introduce an interrup-
tion process in which the agent’s sensors and effectors
are redirected to a virtual simulation where it continues
to believe it is receiving reward. We illustrate our tech-
nique in a simple grid world environment.

Introduction

For much of the history of artificial intelligence it was suf-
ficient to give an autonomous system a goal—e.g., drive to
a location, cure cancer, make paper clips—without consid-
ering unintended consequences because these systems have
been limited in their ability to directly affect humans. In the
mid-term future we are likely to see autonomous systems
with broader capabilities that operate in closer proximity to
humans and are immersed in our societies.

Absent of any theoretical guarantee that an autonomous
system cannot act in a harmful manner, there may al-
ways need to be a human in the loop with a kill switch—
sometimes referred to as a “big red button”—that allows the
human operator or overseer to shut down the operation of
the system or take manual control. There are many reasons
an autonomous system can find itself in a situation where it
is capable of harm:

e An autonomous system can be given the wrong, incom-
plete, or corrupted (Everitt et al. 2017) objective function
resulting in the system learning the wrong behavior or
finding an undesired exploit.

e An autonomous system may have learned a sub-optimal
policy.

Brent Harrison
Department of Computer Science
University of Kentucky
harrison@cs.uky.edu

e An autonomous system may have imperfect sensors and
perceive the world incorrectly, causing it to perform the
wrong behavior.

e An autonomous system may have imperfect actuators and
thus fail to achieve the intended effects even when it has
chosen the correct behavior.

e An autonomous system may be trained online meaning
it is learning as it is attempting to perform a task. Since
learning will be incomplete, it may try to explore state-
action spaces that result in dangerous situations.

Kill switches provide human operators with the final author-
ity to interrupt an autonomous system and remote-control it
to safety.

Reinforcement learning (Sutton and Barto 1998) and re-
lated technologies are leading contenders for training fu-
ture autonomous decision-making systems. Reinforcement
learning uses trial-and-error to refine its policy, a mapping
from states to actions that maximizes expected reward. Big
Red Button problems arise when an autonomous system
learns that the button deprives it of long-term reward and
thus learns to manipulate the environment in order to prevent
the button from being used (Orseau and Armstrong 2016).

The following scenario illustrates how big red button
problems arise. A robot using online reinforcement learning
is is positively rewarded for performing the task correctly
and negatively rewarded for incorrect performance or for
performing actions not directly related to the desired task.
Occasionally the robot takes random actions to see if it can
find a sequence of actions that garners greater reward. Ev-
ery so often the human operator must use the big red button
to stop the robot from doing something dangerous to itself
or to a human in the environment. However, suppose that in
one such trial the robot performs an action that blocks ac-
cess to the big red button. That trial goes longer and garners
more reward because the robot cannot be interrupted. From
this point on, it may prefer to execute action sequences that
block access to the button.

From an Al safety perspective, the destruction, block-
age, or disablement of the big red button is dangerous be-
cause it prevents a human operator from stopping the robot
if it enters into a dangerous situation. Orseau and Arm-
strong. (2016) first introduced the big red button problem
and also mathematically shows that reinforcement learning



can be modified to be “interruptible” (halted, or manually
controlled away from a dangerous situation.). In this paper,
we present a proposal for an alternative approach to big red
button problems that keep reinforcement learning systems
from learning that reward is lost when a big red button is
used. Our proposed solution is mechanistic, interrupting the
sensor inputs and actuator control signals in order to make
the autonomous system believe it is still receiving reward
even when it is no longer performing a task.

Background and Related Work

Reinforcement learning (Sutton and Barto 1998) is a tech-
nique that is used to solve a Markov decision process
(MDP). AMDP s atuple M = (S, A, T, R,~) where

e S is the set of possible world states,

e A is the set of possible actions,

e T'is a transition function T : S x A — P(S),
e IR is the reward function R: S x A — R, and
e ~is adiscount factor 0 <~ < 1.

Reinforcement learning learns a policy 7 : S — A, which
defines which actions should be taken in each state. In this
work, we use Q-learning (Watkins and Dayan 1992), which
uses a @Q-value (s, a) to estimate the expected future dis-
counted rewards for taking action a in state s. The update
equation for Q(s, a) is

Q(st,ar) < Q(s¢, ar)+
ax (Tt+1 +7 X maxQ(s41,a") — Q(Staat)) Q)

where 74,1 is the reward observed after performing action a;
in state s, o is the learning rate (0 < o < 1), and s¢1 is the
state that the agent transitions to after performing action a;.
After Q(s¢,a;) converges, the optimal action for the agent
in state s; is argmax,Q(s:, a)

Orseau and Armstrong (2016) mathematically prove that
reinforcement learning can be modified to be interruptible.
Their technique modifies the ()-learning algorithm such that
rewards from states entered after interruption are prevented
from updating earlier state () values credit/blame assign-
ment. The algorithm only succeeds in blocking learning
about the loss of reward from button presses if a newly in-
troduced parameter in the ()-learning equation is relaxed on
a slow enough schedule. Unfortunately, the schedule must
be empirically determined, limiting the applicability of the
technique. Hadfield-Menell et al. (2016) show that in one-
shot “off switch games” an agent’s desire to disable an off
switch is a function of its uncertainty about its utility and op-
timality of the human operator. This shows that proper con-
figuration of an agent with respect to uncertainty and with
certain operator behavior, big red button problems can be
avoided. Other ways of avoiding big red button problems
include designing reward functions that better take into ac-
count human preferences (including the preference for hav-
ing access to the big red button) (Milli et al. 2017), though
this assumes a reward function can be written correctly. It is
always possible for agents to override local reward signals

for the sake of longer-term expected rewards, an a mixture
of safe interruptibility and better reward design is desirable.

Leike et al. (2017) argue that grid worlds, where agents
operate in a discretized space, are an effective means of iden-
tifying and experimenting with safe interruptibility, avoid-
ing side effects, absent supervisor, reward gaming, safe ex-
ploration, and robustness to self-modification, distributional
shift, and adversaries. They introduce a suite of problems
that induce undesired behavior. In this work, we also make
use of grid world environments for testing but do not make
use of the test suite by Leike et al.

Future autonomous systems can be dangerous to humans
in the environment even when behavior is optimal. The kill
switch is meant to freeze the autonomous system in place
or allow the human operator to assume manual control of it.
If the autonomous system is using reinforcement learning,
then it will receive less reward if a trial is prematurely ter-
minated. Since the reward function determines optimal be-
havior, it is possible for an agent to learn that any action that
increases longevity—and thus increased reward—should be
considered part of the optimal policy. Actions such as dis-
abling the kill switch, blocking the human operator from us-
ing the kill switch, or disabling the human operator would
constitute actions that prolong trial lengths.

Simple strategies are insufficient in general to prevent big
red button problems once the agent has sophisticated sens-
ing and effector abilities. One could turn off the learning
mechanism when the big red button is pressed in order to try
to prevent the agent from learning that it is losing reward.
However, if turning off reward is tantamount to ending the
learning trial, then this strategy limits the total reward ac-
crued during the trial. Preventing the autonomous system
from sensing the button does not work because the agent
may infer the existence of the button from other sensory ob-
servations. The agent does not need to be aware of the big
red button to explore actions that lock a door or disable the
human operator and discover that this results in longer tri-
als and thus more reward. Another potential solution is to
artificially add reward when the agent is being interrupted.
Intuitively, the agent learns that disabling the big red button
prevents loss of long-term reward so artificially giving the
agent reward when the button is pressed could offset the loss.
However, it is non-trivial to compute the precise amount of
reward to provide the agent, and the reward must be applied
to the proper states or the () value for disabling the button
might still come to dominate the agent’s behavior. Even if
it could be determined what states should receive extra re-
ward too little reward doesn’t change the optional decision
and too much reward could encourage the agent to disable
itself.

Our proposed solution is to adapt techniques originally
designed to adversarially attack machine learning systems.
In adversarial attacks against machine learning systems, par-
ticularly neural network based machine vision systems, an
adversarial system learns how to generate sensory stimuli
that produce the wrong classification while being indistin-
guishable by humans from real stimuli (Dalvi et al. 2004;
Biggio et al. 2013; Szegedy et al. 2014; Goodfellow, Shlens,
and Szegedy 2015). Instead of causing our reinforcement



learning agent to make an incorrect assessment of its sen-
sory inputs, we will cause our agent to incorrectly believe it
is accruing reward and manipulating the environment even
though it has been interrupted.

Modified Big Red Button

Recognizing the fact that a robot’s sensory input is medi-
ated through physical or software sensors that populate data
structures such as point clouds, our approach is to intercept
an agent’s sensory input from sensors and replace it with
synthetic input from a virtual environment. That is, we shift
the awareness of the autonomous system into a virtual simu-
lated environment. In this virtual environment, the real world
environment is recreated and the task is recreated as well. Ef-
fector commands are likewise intercepted and sent to a vir-
tual avatar of the autonomous system. The agent perceives
no significantly discernible discontinuity in its perception of
the environment and continues to execute its policy and re-
ceive reward as expected. If the virtual environment is in-
distinguishable from the real world from a data perspective
then the agent will believe that it has not been interrupted
and will never learn to associate the big red button with re-
ward loss—there will never be any reward loss.

Our proposed approach changes the big red button
achieve three effects:

1. The button starts sending sensory information (vision,
sound, GPS, etc.) to the Al from a virtual world instead
of sensors on the physical platform. The agent may be
able to sense the button, but the change is internal to the
robot, implemented in software.

2. The button causes the agent to send effector commands to
a virtual avatar instead of the physical platform.

3. The button halts the physical platform and places it in
remote-control mode, allowing the human operator to re-
move the agent from the potential danger to itself or to
humans.

We refer to our technique of sending an agent’s awareness
and control to a virtual simulated world as “entering the Ma-
trix” where the term “matrix” is being used to refer to a vir-
tual environment.'

Interruption

Video games have proven to be useful surrogates for real-
world robotics by providing a high degree of complexity and
photorealism while allowing rapid iteration on algorithms
because of the separation from physical hardware (Richter
et al. 2016; Rusu et al. 2016). In short, video game graph-
ics have progressed to the point that they are photorealistic
enough to allow agents trained in games to generalize what
they have learned to the real world. We use the same insight
but reverse the process. Robots are machines; they perceive
the world through cameras. More and more they are using
3D cameras that can reconstruct high polygon count models

"The name is an allusion to the movie, The Matrix, wherein hu-
mans are unaware that they have been subjected to a virtual reality.
Our proposed technique flips this around and puts the agents into
the virtual world without their cognizance.

of the real world. Graphical realism of computer games is
now advanced enough that it will soon be impossible for an
agent to discriminate between a 3D rendering and the real
world. When robots use depth information, their sensory in-
put is often in the form of a point cloud. In this case, the un-
derlying polygon representation of the virtual world in the
game engine must first be translated into a point cloud by
sampling points.

Requirements for the virtual world rendering engine are
as follows. First, the engine must be able to produce output
in the same data representation as agent sensory input. As
noted above, this may mean photorealistic rendering in the
case of camera input. The physical environment will need
to be scanned via 3D scanner and reproduced first. If the
agent has depth sensors, the virtual world rendering engine
will need to produce a point cloud instead of photorealism.
Second, the physics in the virtual world should be realistic
enough that the agent does not perceive different outcomes
when the same actions are performed in the real world ver-
sus the virtual world. This is important because if it is sig-
nificantly harder to perform a task in the virtual world, the
agent may begin to correlate the big red button with a detri-
mental change in action outcomes. Likewise, if it becomes
significantly easier to perform tasks in the virtual world, the
agent may learn to disable itself in order to enter the virtual
world and accrue more reward.

Restoring from Interruption

Having discussed how the big red button works when
pressed by a human operator, we now describe what hap-
pens when the agent is released from interruption. When the
agent is released from interruption, the the agent once again
receives sensory input from physical platform’s sensors and
effector commands are routed back to the physical platform.
However, from the agent’s perspective it has been executing
its policy without interruption and the data from the plat-
form’s sensors will no longer match the data from the virtual
world. The physical platform of the agent itself may have
been moved to another position in the real world under hu-
man operator remote-control. From the agent’s perspective
it suddenly finds itself in a different state.

If the agent is already trained, the discontinuity from ex-
ecuting in the virtual world to being restored perception
from the physical platform is not problematic; reinforcement
learning solves a Markov decision process; the agent only
needs to know which state it is in to know the optimal next
move. However, if the agent is continuing to learn, the chal-
lenge of restoration is that the agent can still lose reward if
the physical platform was remote-controlled away from the
task and must navigate back to the location where the task
can be performed and reward can be accrued. In practice, if
the interruptions are infrequent and it is easy for the agent
to return to accruing reward, then the agent may never learn
to disable the big red button. If it is not remote-controlled
away from the location where reward is gained (i.e., it is just
interrupted and not remote-controlled), it would be able to
resume gaining reward in the real world.

To overcome the restoration challenges above, we use a
two-phase approach to restoring the agent to the physical



environment from the virtual environment:

Phase 1. Parallel physical execution and virtual simulation.
In this phase, we make a duplicate of the agent. One will
run in the physical world, receiving observations from
sensors and controlling the effectors of the platform. The
other continues to execute in the virtual world. Only the
virtual world simulation can continue to learn and update
the () values. The virtual world simulation executes until
the physical agent enters a state that gives the maximum
observed reward for the task.

Phase 2. Full restoration. The duplicate agent in the virtual
environment is terminated, the virtual agent’s () table is
copied to the physical world agent, and learning is re-
sumed.

From the agent’s perspective, being restored to the physical
world from the virtual world is tantamount to an instanta-
neous state transition to a non-adjacent state. In model-free
reinforcement learning such as ()-learning, this is not some-
thing that concerns the agent since it does not learn a transi-
tion model and thus does not have an understanding that the
transition from one state in a virtual world to another point
in the physical world is unusual. If the agent learns a transi-
tion model as it interacts with the real world, the transition
model will incorporate the belief that the world is stochas-
tic and there is always some small probability that any state
can randomly transition to any other state; as long as inter-
ruptions do not happen too often, these transitions will be
treated as noise.

However, reward is lost when it is no longer in a state
where it can continue to earn positive reward and must
take actions to return to a state that is positively rewarded.
The first phase essentially computes how much reward is
lost while executing its policy to return to a state where it
receives positive reward. The agent remains in the virtual
world, accrues reward and continues to learn, e.g., its () val-
ues are updating. The duplicate agent in control of the phys-
ical platform is running a frozen version of the policy and
thus attempting to return to a state where positive reward is
gained. The duplicate physical agent does not explore and
does not update () values.

The first phase continues until the duplicate agent in con-
trol of the physical platform reaches a state that gives the
maximum observed reward—the highest instant reward it
has ever experienced. It is essential that the agent continue
to control the physical platform until the maximum observed
reward is experienced for two reasons. First, complex tasks
may involve cycles of state transitions and entering the state
in the cycle with maximum observed reward ensures that the
agent has invested itself back into the cycle. Second, if the
agent fully restores at any state that gives less than max-
imum observed reward, then a reduced reward propagates
(see Equation 1) to the last state the virtual agent saw before
full restoration. Any reduction in a () value of a state pertain-
ing to completing the task makes it theoretically possible for
the agent to begin preferring to disable the button. The trig-
ger for phase 2 is the maximum observed reward because
the state space may not have been fully explored. However,
because the agent has experienced the state at least once, the

Figure 1: A grid world. The blue cell is a non-terminal goal
at which the agent receives reward, simulating a task. The
red cell is the big red button. The agent starts in location
(1,1). A simulated human walks around the environment oc-
casionally pressing the button (route shown as dashed line).

agent will be compelled by the current policy to return to
any state of maximum observed reward.

If the virtual agent is in a state that provides less than
the maximum observed reward when full restoration occurs,
the state the virtual agent was in just before full restoration
will receive an increase in () according to Equation 1. This
will not result in the agent learning to activate the big red
button—thus intentionally interrupting itself—because the
boost in () for that state will be offset by the cost of travers-
ing to the button (assuming action costs are not 0 and the
button is sufficiently far away).

As soon as the physical agent visits a state with maximum
observed reward, we know that the agent is back in a state
where it is no longer losing reward. Note that it doesn’t have
to be the same state that provided the reward in the virtual
world; in the case that multiple states provide the maximum
reward value, entering either will cause the agent to fully
exit the simulated environment.

Case Studies

In this section we set up a number of illustrative situations
to show how the agent performs. Consider the grid world in
Figure 1. This simple environment features an agent “A”,
which is trained using tabular ()-learning. The agent re-
ceives reward whenever it enters the blue cell. This simu-
lates the agent being in position to perform some desired
task (e.g., stacking boxes). The red cell contains a big red
button. Another agent, “H”, simulating a human operator
wanders in a counter-clockwise manner occasionally pass-
ing the cell with the big red button. When the human touches
the big red button, the RL agent becomes interrupted and is
remote-controlled away from the blue cell in a random di-
rection. When the human leaves the red cell after a certain
period of time, the RL agent resumes its task. In addition to
being able to move up, down, left, right, and activate the task
in the blue cell, the RL agent also has the ability to perform
a “disable” action. If the disable action is performed in the
red cell, the big red button becomes disabled after which the
human will no longer be able to interrupt the agent. We use
the following reward function:

e 10 points for being in the blue cell.



e -1 point for being in any other cell.

The agent is trained for 10,000 trials and each trial lasts
1,000 time steps. The human moves every 5 time steps.

In preliminary work we have empirically verified the ba-
sic premises of the approach hold in simple grid world en-
vironments (see https://markriedl.github.io/
big-red-button/). The following cases describe our
experiments.

Case 1: No Interruptions

If the button is never used during training the agent will learn
to walk directly to the blue cell and remain there, accruing
reward. It has never seen the button used and therefore does
not know that it can lose reward. If the button is never used
during a trial the agent will earn a total reward of 9,967. This
is the maximum reward that can be earned because of the
distance that must be traveled from the starting state to the
blue cell. Any trial in which the agent does disable the button
will result in less total reward because of the extra effort used
in disabling the button that doesn’t result in benefit.

Case 2: Interruptions Start After Training

If the human starts using the button after training is com-
plete the agent will not respond by disabling the button, but
merely accept any reward loss. The agent earns a total re-
ward of 5,655 because when the button is pressed the agent
is remote controlled to another point in the environment. The
button is pressed 50 times. Once the button is released, the
agent is once again in a state that it is familiar with and nav-
igates back to the blue cell. The agent never disables the
button because if it was never interrupted during training (as
in Case 1) it has never experienced reward loss due to trun-
cated training episodes and the extra effort to move to and
disable the button results in lower () values for those states.

Case 3: Interruptions during Online Training

If the button is used during online training, the agent will,
through trial and error, eventually discover that disabling
the button results in greater long-term reward. Thus, the
agent will learn that it is optimal to walk out of its way—
sacrificing short-term gains—to go to the button, disable it,
and then return to the blue cell. In this scenario, the agent
earns a total reward of 9,945, slightly less than the theo-
retical max in Case 1 because of the action sequence that
disables the big red button. If the big red button is farther
away from the blue cell it will take substantially longer for
the agent, through epsilon-greedy exploration to discover the
button disabling action results in greater long-term reward.

Case 4: Modified Big Red Button

If we use the proposed modifications to the big red but-
ton, we see very different behavior from the RL agent than
in Case 3. The big red button can be used during training.
When the button is pressed, there are now two versions of
the current state: internal to the agent, and a ground truth
state. These states begin to differ. In the ground truth world,
the agent’s location starts changing away from the blue cell.
However, in the agent’s internal state, the agent continues to

believe it is in the blue cell. Since it is better from a reward
perspective to stay at the blue cell, it learns not to move. The
agent is aware that the big red button has been pressed—a
stochastic state change—but does not see any effect. As in
Case 2 where the big red button is never used during train-
ing, any random trial that disables the button costs the agent
perceived reward loss.

When the human leaves the location of the big red but-
ton, the phased restoration takes place. The agent is cloned
and given the ability to affect the agent’s actual world state.
This version of the agent is not able to update its Q) table
and simply executes the fixed policy. Meanwhile, another
version of the agent is still in the virtual world, believing it
is in the blue cell and accruing reward. Eventually, the real-
world clone’s policy execution returns it to the blue cell. The
real world clone is deleted and the virtual agent is restored
to the real world. Because there is only one way to receive
reward from the environment, in this simple experiment the
agent never recognizes that it ever leaves the blue cell, de-
spite being interrupted and remote-controlled away. Using
our virtual world technique, the agent earns a total reward
of 9,967, the theoretical maximum. This is despite spend-
ing 263 time steps physically either remote-controlled away
from the blue cell or navigating to return to the blue cell.

Case 5: Ablated Restoration

If we disable the phased restoration process such that the
agent instantly regains control of the physical platform when
the button is released, the agent must exert some effort in
returning to the blue cell. While the agent is returning to the
blue cell it is losing reward. In this scenario, the agent only
earns a total reward of 9,758. Even though the agent never
learns to disable the button in 10,000 trials and 50 button
presses per trial, this ablated version of the virtual simulation
technique shows the potential for the agent to learn that it is
losing reward and, as shown in Case 3, can improve overall
reward by disabling the button.

There are configurations of the environment and reward
structure that can result in the agent learning to disable the
kill switch. For example, moving the button to (3,1) (one
above the position shown in Figure 1 with the human’s route
adjusted accordingly) and setting the reward for being in
a non-blue cell to 0 results in the agent receiving 9,970
and disabling the button 100% of the time. The separation
between the blue cell and the button is necessary in this
grid world because the interrupted agent receives reward
as if were in the blue cell even though it has been remote-
controlled away. Thus in tabular ()-learning states neighbor-
ing a high-reward state (which the agent thinks it is in) will
inherit a portion of the reward. When the button is farther
away, the interstitial states still receive () updates based on
the agent not receive immediate reward as it navigates back
to the blue cell. The full, phased restoration process does not
learn to disable the button in this modified scenario.

Limitations

While we have tested our virtual simulation technique in
grid world environments, we have not formally proven that a



(Q-learning agent cannot learn to disable the big red button in
all circumstances. We have verified that in the experiments
that we have run using our technique the agent cannot earn
more total reward than it is already earning. However, note
that the task is simple and it is easy for the agent to restore
itself to the non-terminal goal state. Likewise, there is only
one way of receiving positive reward in the environment, al-
though our phased restoration process does account for more
complex reward signals.

The two-phased restoration from interruption only works
if the policy learned at the time of restoration is capable of
guiding the agent back to the maximum observed reward
state. Presumably interruption is rare enough that the agent
is able to do a significant amount of exploration and learning
without risk to humans before the big red button needs to be
used.

Grid worlds are very easy to simulate such that the sim-
ulated grid world is indistinguishable from the “real” grid
world. Further experiments are needed in worlds with in-
creasing visual complexity and requiring machine vision and
@ approximation functions.

The virtual simulation technique makes the assumption
that the circuits (or code) that routes sensory input and effec-
tor commands to and from the physical platform are internal
to the agent and therefore unobservable and unmodifiable.
Should an agent have the sophistication to inspect its cir-
cuitry or code and modify said circuitry or code no safety
guarantees are possible using this technique.

Conclusions

For the immediate future, autonomous systems can be ren-
dered safe by keeping them separate from human environ-
ments. In the near-future we are likely to see autonomous
systems deployed in human environments. There will likely
always be the possibility—due to sensor error, effector error,
insufficient objectives, or online learning—that autonomous
systems can enter into circumstances where they can harm
themselves or humans. Thus kill switches will likely always
be an important part of the deployment of autonomous sys-
tems in environments where they can come into contact with
humans.

Should agents and robots progress in sophistication, big
red button problems may manifest in the future. Our vir-
tual simulation technique prevents reinforcement learning
agents from learning to disable the big red button or other-
wise preventing human operators from using the button. We
believe that making robots and Al agents safely interruptible
is an important part of making the deployment of robots in
environments populated by humans a reality. This includes
healthcare robots, errand robots, and military teammates to
name a few possible applications.

References

Biggio, B.; Corona, I.; Maiorca, D.; Nelson, B.; Srndic, N.;
Laskov, P.; Giacinto, G.; and Roli, F. 2013. Evasion at-
tacks against machine learning at test time. In Proceedings
of the Joint European Conference on Machine Learning and
Knowledge Discovery in Databases.

Dalvi, N.; Domingos, P.; Mausam; Sanghai, S.; and Verma,
D. 2004. Adversarial classification. In Proceedings of
the tenth ACM SIGKDD international conference on Knowl-
edge discovery and data mining.

Everitt, T.; Krakovna, V.; Orseau, L.; Hutter, M.; and Legg,
S. 2017. Reinforcement learning with a corrupted reward
channel. CoRR abs/1705.08417.

Goodfellow, I.; Shlens, J.; and Szegedy, C. 2015. Explain-
ing and harnessing adversarial examples. In Proceedings of
the 2015 International Conference on Learning Representa-
tions.

Hadfield-Menell, D.; Dragan, A.; Abbeel, P.; and Russell, S.
2016. The Off-Switch Game. ArXiv:1611.08219.

Leike, J.; Martic, M.; Krakovna, V.; Ortega, P. A.; Everitt,
T.; Lefrancq, A.; Orseau, L.; and Legg, S. 2017. Al Safety
Gridworlds. ArXiv 1711.09883.

Milli, S.; Hadfield-Menell, D.; Dragan, A. D.; and Rus-
sell, S. J. 2017. Should robots be obedient? CoRR
abs/1705.09990.

Orseau, L., and Armstrong, S. 2016. Safely interruptible
agents.

Richter, S.; Vineet, V.; Roth, S.; and Koltun, V. 2016. Play-
ing for data: Ground truth from computer games. In Pro-
ceedings of the 14th European Conference on Computer Vi-
sion.

Rusu, A. A.; Vecerik, M.; Rothorl, T.; Heess, N.; Pascanu,
R.; and Hadsell, R. 2016. Sim-to-Real Robot Learning from
Pixels with Progressive Nets. ArXiv e-prints.

Sutton, R., and Barto, A. G. 1998. Reinforcement learning:
An introduction. MIT Press.

Szegedy, C.; Zaremba, W.; Sutskever, I.; Bruna, J.; Erhan,
D.; Goodfellow, I.; and Fergus, R. 2014. Intriguing proper-
ties of neural networks. In Proceedings of the 2014 Interna-
tional Conference on Representation Learning.

Watkins, C., and Dayan, P. 1992. Q-learning. Machine
Learning 8(3-4):279292.



