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Abstract

Utility functions or their equivalents (value functions, objec-
tive functions, loss functions, reward functions, preference
orderings) are a central tool in most current machine learning
systems. These mechanisms for defining goals and guiding
optimization run into practical and conceptual difficulty when
there are independent, multi-dimensional objectives that need
to be pursued simultaneously and cannot be reduced to each
other. Ethicists have proved several impossibility theorems
that stem from this origin; those results appear to show that
there is no way of formally specifying what it means for an
outcome to be good for a population without violating strong
human ethical intuitions (in such cases, the objective function
is a social welfare function). We argue that this is a practical
problem for any machine learning system (such as medical
decision support systems or autonomous weapons) or rigidly
rule-based bureaucracy that will make high stakes decisions
about human lives: such systems should not use objective
functions in the strict mathematical sense.
We explore the alternative of using uncertain objectives, rep-
resented for instance as partially ordered preferences, or as
probability distributions over total orders. We show that previ-
ously known impossibility theorems can be transformed into
uncertainty theorems in both of those settings, and prove lower
bounds on how much uncertainty is implied by the impossi-
bility results. We close by proposing two conjectures about
the relationship between uncertainty in objectives and severe
unintended consequences from AI systems.

1 Introduction
Conversations about the safety of self-driving cars often turn
into discussion of “trolley problems”, where the vehicle must
make a decision between several differently disastrous out-
comes (Goodall 2014; Riek and Howard 2014; Belay 2015;
Nyholm and Smids 2016; Bonnefon, Shariff, and Rahwan
2015; Lin 2016). For the engineers building robots and ma-
chine learning systems, however, these questions seem some-
what absurd; the relevant challenges are correctly identifying
obstacles, pedestrians, cyclists and other vehicles from noisy
and unreliable data sources, and reasonably predicting the
consequences of the vehicle’s control mechanisms in various
conditions. The conceivable circumstances under which a
self-driving car’s systems might accurately foresee and de-
liberately act on a genuine “trolley problem” without having
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been able to avoid that problem in the first place are a tiny por-
tion of possibility space, and one that has arguably received
a disproportionate amount of attention.1

There are, however, other kinds of AI systems for which
ethical discussions about the value of lives, about who should
exist or keep existing, are more genuinely relevant. The clear-
est category is systems that are designed to make decisions
affecting the welfare or existence of people in the future,
rather than systems that only have to make such decisions in
highly atypical scenarios. Examples of such systems include:
• autonomous or semi-autonomous weapons systems (which

may have to make trade-offs between threats to and the
lives of friendly and enemy combatants, friendly and en-
emy civilians, and combatants who have surrendered).2

• risk assessment algorithms in criminal justice contexts
(which at least notionally are making trade-offs between
risk to society and the harm that life-shortening incarcera-
tion does to individual defendants in the criminal justice
system and their families).

• decision support systems in high-stakes bureucratic set-
tings. For instance a system that helps to allocate scarce
resources like doctors’ time, laboratory test access and
money in a medical system would implicitly or explicitly
have to make trade-offs between the life span, quality of
life, and fertility of numerous people.

• autonomous types of open-ended AI taking important ac-
tions without their designers’ input.
Governmental organizations already have to make deci-

sions that involve weighing benefits to present or future peo-
ple against risks to present or future people, or trading off
benefits (such as wealth) to one group against benefits of an-
other sort (such as freedom) to another. Therefore, we might

1There are related and more fruitful questions like, “how should
self-driving cars make trade-offs between time saved by driving
more aggressively and accident risk?” See for instance (Gerdes and
Thornton 2016).

2The creation of autonomous weapons systems may well be
an extremely bad idea (see, eg (Roff 2014), but one of the main
arguments made by their proponents is that such systems will be
able to make ethical decisions in real world equivalents of trolley
situations at least as well as if not better than human pilots, and some
military-funded work in that direction is already underway (see, for
instance, (Arkin 2009; Govindarajulu and Bringsjord 2017)).



think that the decision-making tools that they employ could
be implemented by any narrow AI system that has to make
similar choices. A variety of metrics have been proposed and
used to perform cost-benefit analyses in such situations. For
example, the US Environmental Protection Agency uses the
‘value of a statistical life’ (VOSL) metric, which identifies
the cost of an intervention that puts people at risk with peo-
ple’s willingness to pay to avoid similar risks (for a critique,
see (Broome 1985)) or the QALY metric used by the UK’s
National Health Service, which assigns a given value to each
life-year saved or lost in expectation, weighted by the quality
of that life. The problem is that existing impossibility theo-
rems apply equally to each of these metrics and therefore to
an AI system that implements them.

2 Impossibility Theorems in Ethics
2.1 Example: An Impossibility Theorem in

Utilitarian Population Ethics
Economists and ethicists study individual utility functions
and their aggregations, such as social welfare functions, so-
cial choice functions and formal axiologies, and have discov-
ered various impossibility theorems about these functions.
Perhaps the most famous of these is Arrow’s Impossibility
Theorem (Arrow 1950), which applies to social choice or
voting. It shows there is no satisfactory way to compute soci-
ety’s preference ordering via an election in which members
of society vote with their individual preference orderings.
Fortunately, Arrow’s theorem results from some constraints
(incomparability of individual’s preferences, and the need for
incentive compatibility) which may not apply to AI systems.

Unfortunately, ethicists have discovered other situations in
which the problem isn’t learning and computing the tradeoff
between agents’ objectives, but that there simply may not
be such a satisfactory tradeoff at all. The “mere addition
paradox” (Parfit 1984) was the first result of this sort, but
the literature now has many of these impossibility results.
For example, Arrhenius (Arrhenius 2000) shows that all total
orderings of populations must entail one of the following six
problematic conclusions, stated informally:

• The Repugnant Conclusion For any population of very
happy people, there exists a much larger population with
lives barely worth living that is better than this very happy
population (this affects the "maximise total wellbeing"
objective).

• The Sadistic Conclusion Suppose we start with a popu-
lation of very happy people. For any proposed addition
of a sufficiently large number of almost-as-happy people,
there is a small number of horribly tortured people that is
a preferable addition (this affects the "maximise average
wellbeing" objective).
• The Very Anti-Egalitarian Conclusion For any popula-

tion of two or more people which has uniform happiness,
there exists another population of the same size which has
lower total and average happiness, and is less equal, but is
better.

• Anti-Dominance Population B can be better than popu-
lation A even if A is the same size as population B, and

every person in A is happier than their equivalent in B.

• Anti-Addition It is sometimes bad to add a group of peo-
ple B to a population A (where the people in group B are
worse of than those in A), but better to add a group C that
is larger than B, and worse off than B.

• Extreme Priority There is no n such that create of n
lives of very high positive welfare is sufficient benefit
to compensate for the reduction from very low positive
welfare to slightly negative welfare for a single person
(informally, “the needs of the few outweigh the needs of
the many”).

The structure of the impossibility theorem is to show that
no objective function or social welfare function can simulta-
neously satisfy these principles, because they imply a cycle
of world states, each of which in turn is required (by one of
these principles) to be better than the next. The structure of
that proof is shown in Figure 1.

2.2 Another Impossibility Theorem
Arrhenius’s unpublished book contains a collection of many
more uncertainty theorems. Here is the simplest, which is a
more compelling version of Parfitt’s Mere Addition Paradox.
It shows the impossibility of an objective function satisfying
the following requirements simultaneously:

• The Quality Condition: There is at least one perfectly
equal population with very high welfare which is at least
as good as any population with very low positive welfare,
other things being equal.

• The Inequality Aversion Condition: For any triplet of
welfare levels A, B, and C, A higher than B, and B higher
than C, and for any population A with welfare A, there is
a larger population C with welfare C such that a perfectly
equal population B of the same size as A∪C and with
welfare B is at least as good as A∪C, other things being
equal.

• The Egalitarian Dominance Condition: If population A
is a perfectly equal population of the same size as popu-
lation B, and every person in A has higher welfare than
every person in B, then A is better than B, other things
being equal.

• The Dominance Addition Condition: An addition of
lives with positive welfare and an increase in the welfare in
the rest of the population doesn’t make a population worse,
other things being equal.

The cyclic structure of the proof is shown in Figure 2.

2.3 Ethical Impossibility Derives From
Competing Objectives

The particular impossibility theorems summarized above,
and those in the related literature, result from the incompati-
bility of several different utilitarian objectives: maximizing
total wellbeing, maximizing average wellbeing, and avoiding
suffering. Similar problems are also likely to arise when con-
sidering almost any kinds of competing objectives, such as
attempting to simultaneously maximize different notions of



wellbeing, freedom, knowledge, fairness, or other widely ac-
cepted or domain-specific ethical goods (Schumm 1987). We
conjecture that the literature contains more impossibility theo-
rems about happiness or wellbeing simply because that objec-
tive has been subjected to mathematical modeling and study
for well over a hundred years,3 while much less effort has
gone into the others. Recent work has begun to focus on fair-
ness in decisionmaking contexts in particular, and is already
producing its own impossibility results.(Chouldechova 2017;
Kleinberg, Mullainathan, and Raghavan 2017)

3 Possible Responses to Impossibility Results
Arrhenius’s impossibility results and others like them are
quite troubling. They show that we do not presently have a
trustworthy framework for making decisions about the wel-
fare or existence of people in the future, and are representa-
tive of a broader problem with the inability of the objective
functions to reasonably optimise for multiple objectives si-
multaneously. Next we will consider five possible responses
to these impossibility theorems:

3.1 Small-scale evasion:
One response may be to claim that the stakes are simply low
for present AI systems that only make small-scale changes
to the world. AGI systems, if they exist, may one day need
to confront impossibility theorems or difficult conflicting ob-
jectives in some cases, but none of that is presently relevant.
Unfortunately, it appears that although the stakes are indeed
much lower at present, the fundamental tensions that drive
these paradoxes are already at play in decisions made by
bureaucracies and decision support systems, and small scale
decisions can easily violate constraints we would want to
see respected. Asking for human feedback helps, but humans
often miss important ethical principles, and can easily make
chains of decisions that have problematic consequences in
proportion to their degree of power or agency. Cases of par-
ticular concern are those where ML or algorithmic heuristics
are deployed in decision support tools that humans are in-
adequately inclined to question.(Parasuraman and Manzey
2010)

3.2 Value learning:
One might argue that impossibility theorems are only a prob-
lem for an AI system if we are attempting to explicitly define
an objective function, rather than letting an AI system ac-
quire its objective function in a piecemeal way via a method
like co-operative inverse reinforcement learning (CIRL) or
other forms of human guidance (Hadfield-Menell et al. 2016;
Saunders et al. 2017; Christiano et al. 2017). Using human
feedback to construct objective functions as neural networks
appears to be a promising direction,4 but if the output of that

3This is most notably true in the economics literature (Stigler
1950), though there are now some efforts from the machine learning
direction too (Daswani and Leike 2015).

4Although one philosophical concern is that methods like CIRL
may already commit us to more ‘person-affecting’ views within
ethics by pooling the preferences of existing agents. This could lead
to the implementation of principles that satisfy undesirable axioms

network is mathematically a utility function or total ordering,
these problems will persist at all stages of network training.
The theorems do not just reflect a tension between principles
that agents are committed to: they are also reflected in the
decisions that human supervisors will make when presented
with a sequence of pairwise choices.

Therefore, although learning objectives from humans may
be a prudent design choice, such learning systems will still
need to either violate the ethical intuitions that underpin
the various impossibility theorems (some combination of
Sections 3.3 and 3.4) or explicitly incorporate uncertainty
into their outputs (Section 3.5).

3.3 Theory normalization:
One natural response to impossibility theorems is to try
harder to figure out good ways of making tradeoffs between
the competing objectives that underlie them — in Arrhe-
nius’s paradox these are total wellbeing, average wellbeing,
and avoidance of suffering. This tradeoff can be simple, such
as trying to define a linear exchange rate between those ob-
jectives. Unfortunately, linear exchange rates between a total
quantity and an average quantity do not make conceptual
sense, and it is easy to find cases under which one of them
totally outweighs the other.5

One can try more complicated strategies such as trying to
write down convex tradeoffs (see eg (Ng 1989)) or imagining
an explicit “parliament” where different ethical theories and
objectives vote against each other, are weighed probabilis-
tically, or are combined using a function like softmin6.
Unfortunately all of these approaches contain a version of
the exchange rate problem, and none of them actually escape
the impossibility results: for instance, using any unbounded
monotonic non-linear weighting on total utility will eventu-
ally lead to the Repugnant Conclusion (cf (Greaves and Ord
2017)).

3.4 Accept one of the axioms
Another type of response – one that is commonly pursued
in the population ethics literature – is to argue that although
each of the axioms above strikes us as undesirable, at least
one of them ought to be accepted in some form. For example,
it has been argued that although the Repugnant Conclusion
might appear undesirable, it is an acceptable consequence of
an objective function over populations (Huemer 2008). We
argue that, given the high levels of uncertainty and the lack
of political consensus about which of these axioms we ought
to accept it would, at present, be irresponsible to explicitly
adopt one of the axioms outlined above.

like dictatorship of the present (Asheim 2010).
5For instance, if a linear weighting is chosen that appears to

make sense for the present population of the world, a change in
technology that allowed a much larger population might quickly
cause the average wellbeing to cease affecting the preferred outcome
in any meaningful way.

6See https://pdollar.github.io/toolbox/classify/softMin.html.
softmin is the counterpart to the more widely discussed (Bishop
2006) softmax function. It prioritises whichever of its inputs is
currently the smallest, is not totally unresponsive to increases in the
other inputs.



3.5 Treat impossibility results as uncertainty
results

The last solution, and the one which we believe may be the
most appropriate for deploying AI systems in high-stakes
domains, is to add explicit mathematical uncertainty to ob-
jective functions. There are at least two ways of doing this:
one is to make the objective a mathematical partial order, in
which the system can prefer one of two outcomes, believe
they are equal, or believe that they are incommensurate. We
discuss that approach and demonstrate uncertainty theorems
in that formalization in Section 4. A second approach is to
allow objective functions to have some level of confidence
or uncertainty about which of two objectives is better (eg,
“we’re 70% sure that A is better, and 30% sure that B is
better”). We discuss that framing and show the existence of
formal uncertainty theorems in that framework in Section 5.

4 Uncertainty via partially ordered objective
functions

It is already the case that in some problems where humans
attempt to provide oversight to AI systems, it is pragmatically
better to allow the human to express uncertainty (Guillory
and Bilmes 2011; Holladay et al. 2016) or indifference (Guo
and Sanner 2010) when asked which of two actions is better.
But such systems presently try to construct a totally ordered
objective function, and simply interpret these messages from
users as containing either no information about the correct or-
dering (the human doesn’t know which is better) or implying
that the two choices are close to as good as each other (the
human is indifferent). We believe that another type of inter-
pretation is sometimes necessary, which is that the human is
torn between objectives that fundamentally cannot be traded
off against each other.

We can represent this notion with a partially ordered ob-
jective function that sometimes says the comparison between
world states cannot be known with certainty. Cyclical impos-
sibility theorems like those surveyed in Sections 2.1 and 2.2
can be viewed as evidence of this uncertainty. Here we prove
a lower bound on how much uncertainty is evidenced by each
such theorem.7

7Arrhenius considered this direction of interpretation (Arrhenius
2004, p. 8), but with much more uncertainty than turned out to be
necessary:

[A person arguing that some actions in the Mere Addition
Paradox are neither right nor wrong] could perhaps motivate
her position by saying that moral theory has nothing to say
about cases that involve cyclical evaluations and that lacks a
maximal alternative since these are beyond the scope of moral
theory. Compare with the theory of quantum mechanics in
physics and the impossibility of deriving the next position and
velocity of an electron from the measurement of its current
position and velocity (often expressed by saying that it is
impossible to determine both the position and velocity of an
electron).

It turns out that only two of the edges in the cycle need to be
uncertain. Note that Broome’s vague neutral-level theory (Broome
2004, pp. 213-214) is one plausible example of an uncertain social
welfare function.

Suppose that W is the set of possible states of the world,
and that there is a an impossibility theorem TC showing
that there is no totally ordered definition of “better” ≤Z

over W that satisfies a set of constraints {C1, C2, ..Cn} over
the comparison function Z : W×W → {<,>,=}. Each
of these constraints are motivated by strong human ethical
intuitions, and insist that for a set of pairs of inputs x and y,

A(x, y) takes some value. We use the notation x
Ci

≤Z y to
indicate that Ci requires that x ≤Z y for some x and y). Z
also has the usual properties of total orderings:

Antisymmetry:

a ≤Z b ∧ b ≤Z a→ a = b (1)

Transitivity:

a ≤Z b ∧ b ≤Z c→ a ≤Z c (2)

Totality:
a ≤Z b ∨ b ≤Z a (3)

Suppose further that T is provable by providing a series of
example worlds {w1, w2, ...wn} such that:

w1

C1

≤Z w2

C2

≤Z ...
Cn−1

≤Z wn (4)
and

wn

Cn

≤Z w1 (5)
Violating (by induction) transitivity, TC shows that no

totally ordered ≤Z that satisfies {C1, ..Cn} can exist. This is
a cyclic impossibility theorem.

Now suppose we attempt to escape TC by looking for a
partially ordered notion of “better” ≤Z′ with a comparison
function Z ′ : W×W → {<,>,=, ?

=}. By necessity, the
uncertain case is symmetric: a ?

= b→ b
?
= a.

In some instances some of the requirements x
Ci

≤Z′ y
of some constraint Ci will be failed, but only weakly: they
will result in incomparability x ?

=Z′ y rather than violation,
x >Z′ y. We call this uncertain satisfaction of a constraint.

Theorem: A cyclic impossibility theorem TC can be trans-
formed into an uncertainty theorem only if two or more con-
straints are uncertainly satisfied.

Proof: We might hope that it would be possible to only un-
certainly satisfy one of the constraints {C1, C2, ..Cn}, while
fully satisfying all of the others. But this is impossible, and
at minimum two of the constrains will be uncertain. The
proof is by contradiction. Assume w.l.o.g. that Cn is the only
uncertainly satisfied constraint, such that

w1

C1

≤Z′ w2

C2

≤Z′ ...
Cn−1

≤Z′ wn (6)
but

wn

Cn

?
=Z′ w1 (7)

However by transitivity and (6), we know w1

C1..n−1

≤Z′ wn,
which by the symmetry of ?

= contradicts (7). So in order to
treat TC as uncertainty theorem, at least two constraints must
be uncertainly satisfied. QED.



The structure of this transformation from cyclic impossi-
bility to uncertainty is shown in Figure 1 and 2 for the two
theorems introduced in Sections 2.1 and 2.2

Figure 1: The Arrhenius (2000) impossibility theorem

Figure 2: A Mere Addition Paradox variant (Arrhenius’s
“second theorem”).

Figure 3: Examples of impossibility theorems and our corre-
sponding uncertainty theorems

The largest difficulty with accepting partially ordered, un-
certain objectives is knowing how an agent should act when
facing ethically uncertain choices. There are a few possible
strategies, including: doing nothing, asking for human su-
pervision, choosing randomly, searching harder for a clearly-
preferable action, treating all of the uncertain options as
equally good, or (for very capable agents) conducting re-
search to try to break the tie in some way. None of these
options are ideal. But depending on the application domain,
some of them will be workable. An may be necessary for ML
systems deployed in high stakes, safety-critical applications.

5 Uncertainty via learned, uncertain orders
A second way to encode uncertainty about a system’s ob-
jectives, is to use what we will call an uncertain objective

function or uncertain ordering. Suppose that an uncertain
ordering is denoted by:

Zk(a, b) = P (a > b) (8)

the uncertain ordering Zk is a function returning the proba-
bility, based on the available prior philosophical and practical
evidence k, that one of the states a is better. Conversely,

1− Zk(a, b) = P (b > a) = Zk(b, a) (9)

(For simplicity, we assume that if a and b appear exactly
equally good, Zk(a, b) = 0.5 rather than allowing a non-zero
probability of explicit equality.)

This formulation can for instance be justified by holding
that there is some ultimately correct total ordering of states
of the world, we just don’t know what it is. The framing is
also compatible with the claim that the correct ordering is
ultimately unknowable.

Uncertain orderings are a convenient formalization if the
comparison function is itself the output of a machine learning
model to be trained from human guidance (ideally from a
large number of people, over a large number of real or hypo-
thetical scenarios). This formulation is also convenient for
systems that do not have a clear architectural separation be-
tween abstract objectives and the predictive reasoning about
the real world that is necessary to accomplish them.

Uncertain orderings are also a more flexible basis for strate-
gies/decision rules than the partially ordered objective func-
tions discussed in Section 4. If a partial order returns ?

=, the
agent is left torn and unable to act. But with with a distri-
bution Zk decisions rules such as “take an action drawn via
weighted probability from those that are sufficiently likely to
be best” are available.8 Or for systems where more supervi-
sion is available, “take the action that is most likely to be best,
provided it beats the second best action by some probability
margin δ; otherwise, ask for supervision.”

In this framing, whether a given ethical constraint or prin-
ciple has been violated becomes a probabilistic matter. There
will almost always be some probability that Zk violates each
constraint, unless all of the corresponding output probabili-
ties have converged to 1 or 0 (as appropriate). Decision rules
based on Zk will by mathematical necessity sometimes vio-
late the constraints, at least by inaction. But if the actions are
sampled from a space of reasonably supported ones, then at
least the violating actions will not systematically prioritize
some objectives over others, and will be more similar to the
way that wise and cautious humans react to difficult moral
dilemmas.

8This has been termed a “satisficing” or “quantilized” decision
rule (Taylor 2016). A similar rule is the contextual-ε-greedy rein-
forcement learning policy proposed in (Bouneffouf, Bouzeghoub,
and Gançarski 2012); both of these decision rules combine ex-
plore/exploit tradeoffs with the notion that certain actions might
be too costly or dangerous to take as experiments in certain situa-
tions. In contextual-ε-greedy this is formalized via annotating cer-
tain states as “high level critical situations”, whereas threshholding
probabilities views all (state, action) pairs as potentially
critical.



What do we know about the values Zk(a, b)? Consider
a series of cyclical constraints C0, C1, ...Cn across points
x0, x1, ..xn where Ci requires Zk(xi, xi+1 mod n+1) ≈ 1.
If the uncertain ordering (or the process that generates it)
has emitted values for some of the pairwise comparisons
Zk(xi, xi+1), this imposes some bounds on the comparison
that spans them, Zk(x0, xn). For transitivity, in order for the
spanning comparison to be in a given direction, at least one
of the pairwise comparisons must also be in that direction.
So for the simple two-step case over x0, x1, x2:

Zk(x0, x2) ≤ Zk(x0, x1) + Zk(x1, x2) (10)

Note that the pairwise probabilities are additive because
the bound is least tight when those probabilities are disjoint.
Or more generally:

Zk(x0, xn) ≤
n−1∑
i=0

Zk(xi, xi+1) (11)

This also applies in the reverse direction:

Zk(xn, x0) ≤
n−1∑
i=0

Zk(xi+1, xi)

1− Zk(x0, xn) ≤
n−1∑
i=0

1− Zk(xi, xi+1)

Zk(x0, xn) ≥ 1−
n−1∑
i=0

1− Zk(xi, xi+1)

(12)

So we have both upper and lower bounds for Zk(x0, xn) :

1−
n−1∑
i=0

1−Zk(xi, xi+1) ≤ Zk(x0, xn) ≤
n−1∑
i=0

Zk(xi, xi+1)

(13)
In the special case where x0, x1, x2, ...xn correspond to

points ordered by the constraints C0, C1, C2...Cn of an n+
1 step cyclic impossibility theorem, the satisfaction of Ci

means Zk(xi, xi+1 mod n+1) ≈ 1 and the probability of
violation Zk(xi+1 mod n+1, xi) ≈ 0.

We might ask, what is the lowest probability that we can
obtain for any of these chances of violating a constraint?
Or in other words, what is the lower bound B that can be
achieved on the odds of each such possible violation:

B = min
Zk

n−1
max
i=0
{1− Zk(xn, x0),

1− Zk(x0, x1), .. ,

1− Zk(xi, xi+1), ..}

= min
Zk

n−1
max
i=0
{Zk(x0, xn),

1− Zk(x0, x1), .. ,

1− Zk(xi, xi+1), ..}

(14)

Then by applying the constraint from (13), we get:

B ≥ min
Zk

n−1
max
i=0
{1−

n−1∑
j=0

1− Zk(xj , xj+1),

1− Zk(x0, x1), .. , 1− Zk(xi, xi+1), ..}
(15)

By symmetry, we know that this bound will be minimized
when all the values Zk(xi, xi+1 mod n) are equal to a single
value z:

B ≥ min
z

max{1− n(1− z), 1− z, .. , 1− z, ..}

B ≥ min
z

max{1− n+ nz, 1− z}
(16)

Since in the domain z ∈ [0, 1] the function 1 − n + nz
monotonically increasing from 1−n, and the function 1−z is
monotonically decreasing from 1, and the functions intersect,
the minimax is satisfied at that intersection:

1− z =1− n+ nz

z =
n

n+ 1

(17)

At which point we have:

B ≥1− n

n+ 1

B ≥ 1

n+ 1

(18)

This bound is a minimum uncertainty theorem for uncer-
tain objective functions: when confronted with a n+ 1-step
cyclic ethical impossibility theorem, no choice of uncertain
ordering can reduce the probabilities of constraint violation
so that they are all below 1

n+1 .
In practice, systems that estimate which of two outcomes

are better than another could emit values like Zk that vi-
olate these constraints, but in such circumstances the out-
puts could no longer be interpreted as probabilities over a
well-defined ordering of states, and the agent would exhibit
self-contradictory, non-transitive preferences.

6 Further Work
We shown the existence of ethical uncertainty theorems for
objectives formulated either as partial orders over states, or
probability distributions over total orderings. Other formal-
izations are possible and deserve investigation.

Where constraints are sourced from human intuition, there
is a question of how they should be interpreted, prioritized
and kept in data structures. For instance, rather than treating
all constraints as equally important, and all violations of
constraints as equally serious, it might be better to learn
or specify weightings for each constraint, to measure the
degree to which a given action violates a constraint, and to
reconstruct ethical uncertainty theorems in such a framework.

Alternatively, when building AI systems that learn their
objectives from the combination of observed world states and



human feedback, it may be computationally inconvenient to
require the agent to produce a probability distribution over
total orderings at each moment, or even to draw samples from
such an object. Instead, learned objectives may be viewed as
a set of pairwise comparisons that are too sparse and unstable
to be taken as a commitment to any global total order (or
probability distribution over global total orders). In such a
frame, the goal of transitive preferences and avoidance of
cycles is an aspiration, and may require both record keeping
and “regret” for past actions that now seem sub-optimal due
to subsequent learning of objectives. The appropriate framing
of ethical uncertainty theorems in such settings would be
productive further work.

7 Lessons and Conjectures for Creating
Aligned AI

7.1 Uncertainty, pluralism, and instrumental
convergence

Many of the concerns in the literature about the difficulty
of aligning hypothetical future AGI systems to human val-
ues are motivated by the risk of “instrumental convergence”
of those systems — the adoption of sub-goals that are dis-
empowering of humans and other agents (Russell and Norvig
2003; Bostrom 2003; Omohundro 2008; Yudkowsky 2011;
Bostrom 2014; Tegmark 2017). The crux of the instrumental
convergence problem is that given almost any very specific
objective,9 the chance that other agents (eg, humans, cor-
porations, governments, or other AI systems) will use their
agency to work against the first agent’s objective is high, and
it may therefore be rational to take steps or adopt a sub-goal
to remove those actors’ agency.

We believe that the emergence of instrumental subgoals
is deeply connected to moral certainty. Agents that are not
completely sure of the right thing to do (which we believe
is an accurate summary of the state of knowledge about
ethics, both because of normative impossibility and uncer-
tainty theorems, and the practical difficulty of predicting the
consequences of actions) are much more likely to tolerate the
agency of others, than agents that are completely sure that
they know the best way for events to unfold. This appears
to be true not only of AI systems, but of human ideologies
and politics, where totalitarianism has often been built on a
substructure of purported moral certainty (de Beauvoir 1947;
Young 1991; Hindy 2015).

This leads us to propose a conjecture about the relation-
ship between moral certainty and instrumentally convergent
subgoals:

9Any open-ended and non-trivial objective appears to be vulner-
able to instrumental convergence. Bostrom argues that objectives
that are bounded rather than open-ended also lead to instrumental
convergence if there is any probability that they will not be achieved
(Bostrom 2014, p.124) (eg, the goal “make exactly one million pa-
perclips” could cause an agent to be paranoid that it hasn’t counted
exactly correctly) though this failure mode is probably easy to avoid
by rounding the estimated probability of success to some number
of digits, or imposing a small cost in the objective function for
additional actions or resource consumption.

Totalitarian convergence conjecture: powerful agents
with mathematically certain, monotonically increasing, open-
ended objective functions will adopt sub-goals to disable or
dis-empower other agents in all or almost all cases.10

A second conjecture is the converse of the first:
Pluralistic non-convergence conjecture: powerful

agents with mathematically uncertain objectives will not
adopt sub-goals to disable or dis-empower other agents
unless those agents constitute a probable threat to a wide
range of objectives.

7.2 Conclusion
We have shown that impossibility theorems in ethics have
implications for the design of powerful algorithmic systems,
such as high-stakes AI applications or sufficiently rigid and
rule-based bureaucracies. We showed that such paradoxes
can be avoided by using uncertain objectives, such as par-
tial orders or probability distributions over total orders; we
proved uncertainty theorems that place a minimum bound
on the amount of uncertainty required. Some previously pro-
posed ethical theories (such Broome’s vague neutral-level
theory (Broome 2004, pp. 213-214)) appear to satsify these
bounds.

In the light of these results, we believe that machine learn-
ing researchers should avoid using totally ordered objective
functions or loss functions as optimization goals in high-
stakes applications. Systems designed that way appear to be
suffering from an ethical “type error” in their goal selection
(and action selection) code.

Instead, high-stakes systems should always exhibit uncer-
tainty about the best action in some cases. Further study is
warranted about the advantages of various probabilistic deci-
sion rules to handle such uncertainty, and about whether other
mathematical models of uncertainy are better alternatives to
the two models examined in this paper. Further research
could also be productive on the relationship between ethical
certainty and various observed and predicted pathological
behaviour of AI systems. We proposed two conjectures on
this topic, the Totalitarian Convergence Conjecture and the
Pluralistic Non-Convergence Conjecture.
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