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Abstract. Recent work has shown that deep-learning algorithms for
malware detection are also susceptible to adversarial examples, i.e., carefully-
crafted perturbations to input malware that enable misleading classifi-
cation. Although this has questioned their suitability for this task, it is
not yet clear why such algorithms are easily fooled also in this particu-
lar application domain. In this work, we take a first step to tackle this
issue by leveraging explainable machine-learning algorithms developed
to interpret the black-box decisions of deep neural networks. In partic-
ular, we use an explainable technique known as feature attribution to
identify the most influential input features contributing to each decision,
and adapt it to provide meaningful explanations to the classification of
malware binaries. In this case, we find that a recently-proposed convo-
lutional neural network does not learn any meaningful characteristic for
malware detection from the data and text sections of executable files, but
rather tends to learn to discriminate between benign and malware sam-
ples based on the characteristics found in the file header. Based on this
finding, we propose a novel attack algorithm that generates adversarial
malware binaries by only changing few tens of bytes in the file header.
With respect to the other state-of-the-art attack algorithms, our attack
does not require injecting any padding bytes at the end of the file, and
it is much more efficient, as it requires manipulating much fewer bytes.

1 Introduction

Despite their impressive performance in many different tasks, deep-learning al-
gorithms have been shown to be easily fooled by adversarial examples, i.e.,
carefully-crafted perturbations of the input data that cause misclassifications [1-
6]. The application of deep learning to the cybersecurity domain does not con-
stitute an exception to that. Recent classifiers proposed for malware detection,
including the case of PDF, Android and malware binaries, have been indeed
shown to be easily fooled by well-crafted adversarial manipulations [1,7-11].
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Despite the sheer number of new malware specimen unleashed on the Internet
(more than 8 millions in 2017 according to GData*) demands for the application
of effective automated techniques, the problem of adversarial examples has sig-
nificantly questioned the suitability of deep-learning algorithms for these tasks.
Nevertheless, it is not yet clear why such algorithms are easily fooled also in the
particular application domain of malware detection.

In this work, we take a first step towards understanding the behavior of deep-
learning algorithms for malware detection. To this end, we argue that explain-
able machine-learning algorithms, originally developed to interpret the black-box
decisions of deep neural networks [12—-15], can help unveiling the main character-
istics learned by such algorithms to discriminate between benign and malicious
files. In particular, we rely upon an explainable technique known as feature at-
tribution [12] to identify the most influential input features contributing to each
decision. We focus on a case study related to the detection of Windows Portable
Executable (PE) malware files, using a recently-proposed convolutional neural
network named MalConv [16]. This network is trained directly on the raw in-
put bytes to discriminate between malicious and benign PE files, reporting good
classification accuracy. Recently, concurrent work [9,10] has shown that it can
be easily evaded by adding some carefully-optimized padding bytes at the end of
the file, i.e., by creating adversarial malware binaries. However, no explanation
has been clearly given behind the surprising vulnerability of this deep network.
To address this problem, in this paper we adopt the aforementioned feature-
attribution technique to provide meaningful explanations of the classification of
malware binaries. Our underlying idea is to extend feature attribution to aggre-
gate information on the most relevant input features at a higher semantic level,
in order to highlight the most important instructions and sections present in
each classified file.

Our empirical findings show that MalConv learns to discriminate between be-
nign and malware samples mostly based on the characteristics of the file header,
i.e., almost ignoring the data and text sections, which instead are the ones where
the malicious content is typically hidden. This means that also depending on the
training data, MalConv may learn a spurious correlation between the class labels
and the way the file headers are formed for malware and benign files.

To further demonstrate the risks associated to using deep learning “as is”
for malware classification, we propose a novel attack algorithm that generates
adversarial malware binaries by only changing few tens of bytes in the file header.
With respect to the other state-of-the-art attack algorithms in [9, 10], our attack
does not require injecting any padding bytes at the end of the file (it modifies
the value of some existing bytes in the header), and it is much more efficient, as
it requires manipulating much fewer bytes.

The structure of this paper is the following: in Section 2 we introduce how
to solve the problem of malware detection using machine learning techniques,
and we present the architecture of MalConv; (ii) we introduce the integrated
gradient technique as an algorithm that extracts which features contributes most

* https://www.gdatasoftware.com/blog/2018/03/30610-malware-number-2017
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Fig. 1: Architecture of MalConv [16], adapted from [9].

for the classification problem; (iii) we collect the result of the method mentioned
above applied on MalConv, highlighting its weaknesses, and (iv) we show how
an adversary may exploit this information to craft an attack against MalConv.

2 Deep Learning for Malware Detection in Binary Files

Raff et al. [16] propose MalConv, a deep learning model which discriminates
programs based on their byte representation, without extracting any feature.
The intuition of this approach is based on spatial properties of binary programs:
(1) code, and data may be mixed, and it is difficult to extract proper features; (i7)
there is correlation between different portions of the input program; (iii) binaries
may have different length, as they are strings of bytes. Moreover, there is no clear
metrics that can be imposed on bytes: each value represents an instruction or a
piece of data, hence it is difficult to set a distance between them.

To tackle all of these issues, Raff et al. develop a deep neural network that
takes as input a whole program, whose architecture is represented in Fig. 1. First,
the input file size is bounded to d = 22! bytes, i.e., 2 MB. Accordingly, the input
file x is padded with the value 256 if its size is smaller than 2 MB; otherwise,
it is cropped and only the first 2 MB are analyzed. Notice that the padding
value does not correspond to any valid byte, to properly represent the absence
of information. The first layer of the network is an embedding layer, defined
by a function ¢ : {0,1,...,256} — R%*8 that maps each input byte to an 8-
dimensional vector in the embedded space. This representation is learned during
the training process and allows considering bytes as unordered categorical values.
The embedded sample Z is passed through two one-dimensional convolutional
layers and then shrunk by a temporal max-pooling layer, before being passed
through the final fully-connected layer. The output f(x) is given by a softmax
function applied to the results of the dense layer, and classifies the input x as
malware if f(x) > 0.5 (and as benign otherwise).

We debate the robustness of this approach, as it is not clear the rationale
behind what has been learned by MalConv. Moreover, we observe that the deep
neural network focuses on the wrong sequences of bytes of an input binary.
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3 Explaining Machine Learning

We address the problem mentioned at the end of Section 2 by introducing tech-
niques aimed to explain the decisions of machine-learning models. In particular,
we will focus on techniques that explain the local predictions of such models,
by highlighting the most influential features that contribute to each decision. In
this respect, linear models are easy to interpret: they rank each feature with a
weight proportional to their relevance. Accordingly, it is trivial to understand
which feature caused the classifier to assign a particular label to an input sam-
ple. Deep-learning algorithms provide highly non-linear decision functions, where
each feature may be correlated at some point with many others, making the in-
terpretation of the result nearly impossible and leading the developers to naively
trust their output. Explaining predictions of deep-learning algorithms is still an
open issue. Many researchers have proposed different techniques to explain what
a model learns and which features mostly contribute to its decisions. Among the
proposed explanation methods for machine learning, we decided to focus on a
technique called integrated gradients [12], developed by Sundararajan et al., for
two main reasons. First, it does not use any learning algorithm to explain the
result of another machine learning model; and, second, it is more efficient w.r.t.
the computations that are required by the other methods in the state-of-the-art.

Integrated gradients. We introduce the concept of attribution methods: algo-
rithms that compute the contribution of each feature for deciding which label
needs to be assigned to a single point. Contributions are calculated w.r.t. a
baseline. A baseline is a point in the input space that corresponds to a null
signal: for most image classifiers it may be identified as a black image, it is an
empty sentence for text recognition algorithms, and so on. The baseline serves
as ground truth for the model: each perturbation to the baseline should increase
the contributions computed for the modified features. Hence, each contribution
is computed w.r.t. the output of the model on the baseline. The integrated gra-
dients technique is based on two axioms and upon the concept of baseline.

Axiom I: Sensitivity.

The first axiom is called sensitivity: an attribution method satisfies sensitivity
if, for every input that differ in one feature from the baseline but they are
classified differently, then the attribution of the differing feature should be non-
zZero.

Moreover, if the learned function does not mathematically depend on a par-
ticular feature, the attribution should be zero. On the contrary, if sensitivity
is not satisfied, the model is focusing on irrelevant features, as the attribution
method fails to weight the contribution of each variable. Authors state that
gradients violate the sensitivity axioms, hence using them during the training
phase by applying back-propagation implies attributing wrong importance to
the wrong features.

Axiom II: Implementation Invariance. The second axiom is called imple-
mentation invariance, and it is built on top of the notion of functional equiv-
alence: two networks are functionally equivalent if their outputs are equal on
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all inputs, despite being implemented in different ways. Thus, an attribution
method satisfies implementation invariance if it produces the same attributions
for two functionally equivalent networks. On the contrary, if this axiom is not
satisfied, the attribution method is sensitive to the presence of useless aspects
of the model. On top of these two axioms, Sundararajan et al. propose the
integrated gradient method that satisfies both sensitivity and implementation
invariance. Hence, this algorithm should highlight the properties of the input
model and successfully attributing the correct weights to the feature believed
relevant by the model itself.

Integrated Gradients. Given the input model f, a point = and baseline «’,
the attribution for the it feature is computed as follows:

o [ rE el - a)
I1Gi(w) = (o~ ) | 2= da. &

This is the integral of the gradient computed on all points that lie on the line
passing through  and «’. If 2’ is a good baseline, each point in the line should
add a small contribution to the classification output. This method satisfies also
the completeness axiom: the attributions add up to the difference between the
output of the model at the input & and =’. Hence, the features that are important
for the classification of  should appear by moving on that line.

Since we can only compute discrete quantities, the integral can be approx-
imated using a summation, adding a new degree of freedom to the algorithm,
that is the number of points to use in the process: Sundararajan et al. state that
the number of steps could be chosen between 20 and 300, as they are enough to
approximate the integral within the 5% of accuracy.

4 What Does MalConv Learn?

We applied the integrated gradient technique for trying to grasp the intuition of
what is going on under the hood of MalConv deep network. For our experiments
we used a simplified version of MalConv, with an input dimension shrunk to 229
instead of 22!, that is 1 MB instead of 2 MB, trained by Anderson et al. [17]
and publicly available on GitHub ®. To properly comment the result generated
by the attribution method, we need to introduce the layout of the executables
that run inside Windows operating system.

Windows Portable Executable format. The Windows Portable Executable
format® (PE) describes the structure of a Windows executable. Each program
begins with the DOS header, which is left for retro-compatibility issues and for
telling the user that the program can not be run in DOS. The only two useful
information contained into the DOS header are the DOS magic number MZ and
the value contained at offset 0x3c, that is an offset value that point to the
real PE header. If the first one is modified, Windows throws an error and the

® https://github.com/endgameinc/ember /tree/master /malconv
5 https://docs.microsoft.com/en-us/windows/desktop/debug/pe-format
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program is not loaded, while if the second is perturbed, the operating system
can not find the metadata of the program. The PE header consists of a Common
Object File Format (COFF) header, containing metadata that describe which
Windows Subsystem can run that file, and more. If the file is not a library, but
a standalone executable, it is provided with an Optional Header, which contains
information that are used by the loader for running the executable. As part of
the optional header, there are the section headers. The latter is composed by
one entry for each section in the program. Each entry contains meta-data used
by the operating system that describes how that particular section needs to be
loaded in memory. There are other components specified by the Windows PE
format, but for this work this information is enough to understand the output
of the integrated gradients algorithm applied to MalConv.

Integrated gradients applied to malware programs. The integrated gra-
dients technique works well with image and text files, but we need to evaluate
it on binary programs. First of all, we have to set a baseline: since the choice of
the latter is crucial for the method to return accurate results, we need to pick a
sample that satisfies the constraints’ highlighted by the authors of the method:
(i) the baseline should be an empty signal with null response from the network;
(ii) the entropy of the baseline should be very low. If not, that point could be
an adversarial point for the network and not suitable for this method.

Hence, we have two possible choices: (i) the empty file, and (ii) a file filled
with zero bytes. For MalConv, an empty file is a vector filled by the special
padding number 256, as already mentioned in Section 2. While both these base-
lines satisfy the second constraint, only the empty file has a null response, as
the zero vector is seen as malware with the 20% of confidence. Hence, the empty
file is more suitable for being considered the ground truth for the network. The
method returns a matrix that contains all the attributions, feature per feature,
V € R4*8 where the second dimension is produced by the embedding layer. We
compute the mean for each row of V to obtain a signed scalar number for each
feature, resulting in a point v’ € R? and it may be visualized in a plot. Figure 2
highlights the importance attributed by MalConv to the header of an input mal-
ware example using the empty file as baseline, marking with colours each byte’s
contribution. We can safely state that a sample is malware if it is scored as such
by VirusTotal® which is an online service for scanning suspicious files. The cells
colored in red symbolize that MalConv considered them for deciding whether
the input sample is malware. On the contrary, cells with blue background are
the ones that MalConv retains representative of benign programs. Regarding our
analysis, we may notice that MalConv is giving importance to portions of the
input program that are not related to any malicious intent: some bytes in the
DOS header are colored both in red and blue, and a similar situation is found
for the other sections. Notably, the DOS header is not even read by modern
operating systems, as the only important values are the magic number and the
value contained at offset 0x3c, as said in the previous paragraph. All the other

" https://github.com/ankurtaly /Integrated-Gradients/blob/master /howto.md
8 https://www.virustotal.com



Explaining Vulnerabilities of Deep Learning to Adversarial Malware Binaries

Confidence: 99.9382%
DOS + COFF + OPT + SECT Headers

Baselme empty file
° Z 0x90 0x0 0x3 0xO O0xO OxO0 Ox4 Ox0 Ox0 OxO0 ' Oxff Oxff Ox0 Ox0
0xb8 O0x0 0x0 Ox0 0xO Ox0 0xO O0xO0 0x40 0xO 0xO 0xO0 Ox0 O0x0 Ox0 O0x0
0 0x0 ~0x0 Ox0 Ox0 O0x0 O0x0
0x0 Ox0 0x0 Ox0 0x0 0x0 0x0 0x0 0x0 0x0 [0x80 0x0 OxU 0x0
Oxe Ox1f Oxba Oxe OxO Oxb4 0x9 Oxcd 0><21 Oxbs Ox1 L Oxcd Ox21 h
i s 0x20 p r o o] r m 0x20 c a n n
t 0x20 b e 0x20 r u n 0><20 i n_ 0x20 D S 0x20
m o0 3 & a6 oxd O Oxa 0x34 OO OXO O%0. OXO 0%0 0RO 00 0.30
o P E O0x0 Ox0 L OxI Ox3 Ox0O Ox5f Oxc8 0 b 6 4l 0x0 0x0 0x0 0x0
0x0 0x0 0x0 O0x0 0xe0 OxO0 "0x2 Oxb  0x1 0x0 0x0 0x60 0x3 0x0
0x0 0x0 0x0 0x0 O0x0 0x0 Oxde 0x3 0x0 0x0 0x20 0x0 O0x0
0x0 0x3 0x0 0x0 0x0 0x0 0x0 0x0 0x0 O0x0 0x10 Ox0 0x0
0x4 OxO 0x0 Ox0 0x0O Ox0 0xO O0xO WUZH 0xO 0x0O 0x0 _0x0  0x0 O0x0_ 0xO0
0x0 0xe0 0x3 0x0 Ox0 0x10 O0xO O0x0 0x0 O0x0 O0x0 0x0 [0V 0x40 0x85
0x0 Ox0 EU@K 0x0 0x0 0.15
0x0 Ox0 O0xO Ox0 0x10 Ox0 0xO O0x0 0xO 0xO 0xO O0xO0 O0x0 0x0 Ox0 O0x0
0x3 O0x0O S OxO Ox0 Ox0 Ox0 0x80/0x3  O0x0O [0xe8 0x3e 0x0 0x0
0x0 Ox0 O0x0 Ox0 0x0O O0x0 0xO 0xO 0x0 0xO 0xO O0x0 Ox0 0x0 Ox0 O0x0
o 0x3 O0x0 Oxc Ox0O 0x0O Ox0 O0x0 OxO Ox0O O0xO O0x0 O0x0 Ox0 0x0
0x0 Ox0 Ox0O Ox0 O0x0O Ox0 O0x0O 0xO O0xO O0x0O O0x0 0x0 Ox0 0x0 Ox0 ' 0x0
0x0 Ox0 Ox0O Ox0 O0xO Ox0 O0xO 0x0 O0xO 0xO 0x0O O0x0 O0x0 0x0 O0x0 0x0
0x0 ' O0x0 O0x0O Ox0 O0x0O Ox0 O0x0O O0x0 O0xO 0x20 0xO O0x0 O0x8 [OX0' Ox0 0x0
0x0 0x0 Ox0 OxO OxO OxO O0xO OxO Ox8 0x20 OxO OxO ~H  0xO OxO Ox0 0.00
0x0 Ox0O OxO OxO0O OxO Ox0O Ox0O Ox0O Ox2e t WM X t 0x0 0x0 0x0
Oxe4 W 0x3 Ox0 OxO 0x20 0xO O0x0 Ox0 0x60 Ox3 0x0 O0x0 0x10 O0x0 _0x0
0x0 Ox0O OxO Ox0 O0xO O0xO0 O0OxO O0x0 Ox0 O0xO 0x0 O0x0O 0x20 0x0 O0x0
S 0xe8 0x3el Ox0 0x0 0x0 0x80 0x3 0x0
0x0 0x40 0x0 0x0 0x0 P Ox3 O0x0O Ox0O Ox0O OxO0O Ox0O Ox0 O0x0 O0x0 O0x0
0.15

4 2
=3
XX
°
o
X
o
=}
X
)
=3
X
o
o
X
=3
=
°
=
X
oo
29
XX
=)
o
X
o
29
X X
oo

6

6 1 W 1
ooRoo
RLFRR
55355
o
o
AXEXX
a o
o
K
S
°
2
S
o
K
&)
15
o
=
=)
o
K
S
)
2
S
o
R
)
o
b
e
o

0x0 Ox0 0x0 0x0 0x40 0x0 0x0 0x40 Ox2e r [E] | o Cc  Ox0 [Ox0
Oxc 0x0 0x0 0x0 0xcO 0x3 | Ox0 0x0 [0XI0] 0xO 0xO 0xO 0xb0 0x3 _Ox0
0x0 0x0 O0x0 O0x0 o><o 0x0 0x0 | 0X0 O0x0 O0x0O O0x0 O0xO [T 0x0 Ox0 =N

o 1 2 3 s s 5 7 8 s 10 n 1 13 14 15

% 28 2 24 2 2
=)
X
N
@
el
a
=3
X
=3
o
=
o
o
X
=)

Fig. 2: Attribution given by MalConv to the header of a malware sample.

bytes are repeated in every Windows executable, and they are not peculiar nei-
ther for goodware nor malware programs. We can thus say that this portion
of the program should not be relevant for discriminating benign from malicious
programs. Accordingly, one would expected MalConv to give no attribution to
these portions of bytes.

We can observe the attribution assigned by integrated gradients to every
byte of the program, aggregated for each component of the binary, in Figure 3.
Each entry of the histogram is the sum of all the contributions given by each
byte in that region. The histogram is normalized using the /1 norm of its compo-
nents. The color scheme is the same as the one described for Figure 2. MalConv
puts higher weights at the beginning of the file, and this fact has been already
formalized by Kolosnjaji et al. [9] in the discussion of the results of the attack
they have developed. It is clear that the .text section has a large impact on the
classification, as it is likely that the maliciousness of the input program lies in
that portion of the malware. However, the contribution given by the COFF and
optional headers outmatch the other sections. This further implies that the lo-
cations that are learned as important for classification are somewhat misleading.
We can state that among all the correlations that are present inside a program,
MalConv surely learned something that is not properly relevant for classification
of malware and benign programs. By knowing this fact, an adversary may per-
turb these portions of malware and sneaking behind MalConv without particular
effort: all she or he has to do is to compute the gradient of the model w.r.t. to
the input. Hence, we describe how a malicious user can deliver an attack by
perturbing bytes contained into an input binary to evade the classifier.
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Fig. 3: Sum of contributions expressed in percentage.

5 Evading Malconv by Manipulating the File Header

We showed that MalConv bases its classifications upon unreliable and spurious
features, as also indirectly shown by state-of-the-art attacks against the same
network, which inject bytes in specific regions of the malware sample without
even altering the embedded malicious code [9,10]. In fact, these attacks can not
alter the semantics of the malware sample, as it needs to evade the classifier
while preserving its malicious functionality. Hence, not all the bytes in the input
binary can be modified, as it is easy to alter a single instruction and break the
behavior of the original program. As already mentioned in Section 1, the only
bytes that are allowed to be perturbed are those placed in unused zones of the
program, such as the space that is left by the compiler between sections, or at the
end of the sample. Even though these attacks have been proven to be effective,
we believe that it is not necessary to deploy such techniques as the network
under analysis is not learning what the developers could have guessed during
training and test phases. Recalling the results shown in Section 4, we believe
that, by perturbing only the bytes inside the DOS header, malware programs
can evade MalConv. There are two constraints: the MZ magic number and the
value at offset 0x3c can not be modified, as said in Section 4. Thus, we flag as
editable all the bytes inside the DOS header that are contained in that range.
Of course, one may also manipulate more bytes, but we just want to highlight
the severe weaknesses anticipated in Section 3.

Attack Algorithm. Our attack algorithm is given as Algorithm 1. It first com-
putes the representation of each byte of the input file  in the embedded space,
as Z < ¢(x). The gradient G of the classification function f(x) is then com-
puted w.r.t. the embedding layer. Note that we denote with g;, z; € R® the i}
row of the aforementioned matrices. For each byte indexed in I, i.e., in the sub-
set of header bytes that can be manipulated, our algorithm follows the strategy
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implemented by Kolosnjaji et al. [9]. This amounts to selecting the closest byte
in the embedded space which is expected to maximally increase the probability
of evasion. The algorithm stops either if evasion is achieved or if it reaches a
maximum number of allowed iterations. The latter is imposed since, depending
on which bytes are allowed to be modified, evasion is not guaranteed.

The result of the attack applied using an example can be appreciated in
Figure 4: the plot shows the probability of being recognized as malware, which
is the curve coloured in blue. Each iteration of the algorithm is visualized as black
vertical dashed lines, showing that we need to interpret the gradient different
times to produce an adversarial example. This is only one example of the success
of the attack formalized above, as we tested it on 60 different malware inputs,
taken from both The Zoo? and Das Malverik.'® Experimental results confirm
our doubts: 52 malware programs over 60 evade MalConv by only perturbing
the DOS header. Note that a human expert would not be fooled by a similar
attack, as the DOS header can be easily stripped and replaced with a normal
one without perturbed bytes. Accordingly, MalConv should have learned that
these bytes are not relevant to the classification task.

Algorithm 1: Evasion algorithm HEADER_DOS perturbations
1.0 —
input : x input binary, I indexes
of bytes to perturb, f o5

classifier, T' max iterations.
output: Perturbed code that should
achieve evasion against f.

0.6

Probability of being malware

t < 0, 0.4
while f(z)>05At<T do
7 ¢($) € Rdxs; 0.2
G« —Vyf(z) € R — malware prob.
forall i € I do 00 iteration
9: < 9:/19;ll2; © % Number of modiications.
s < 0 € R?°¢;
d + 0 € R*; Fig.4: Evading MalConv by per-
forall b € 0, ..., 255 do turbing only few bytes in the DOS
zp < B(b); header. The black dashed lines rep-
sy < g, (26— 24); resent the iterations of the algo-
dy < ||zo — (zi +s5-9;)|;  rithm. In each iteration, the algo-
end rithm manipulates 58 header bytes
T; < arg ming,, - dy; (excluding those that can not be
end ' changed). The blue curve shows the
tt+1; probability of the perturbed sample
end being classified as malware across

the different iterations.

9 https://github.com/ytisf/theZoo
0 http://dasmalwerk.eu/
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6 Related Work

We discuss here some approaches that leverage deep learning for malware detec-
tion, which we believe may exhibit similar problems to those we have highlighted
for MalConuv in this work. We continue with a brief overview of the already pro-
posed attacks that address vulnerabilities in the MalCon architecture. Then, we
discuss other explainable machine-learning techniques that may help us to gain
further insights on what such classifiers effectively learn, and potentially whether
and to which extent we can make them more reliable, transparent and secure.

Deep Malware Classifiers. Saxe and Berlin [18] use a deep learning system
trained on top of features extracted from Windows executables, such as byte en-
tropy histograms, imported functions, and meta-data harvested from the header
of the input executable. Hardy et al. [19] propose DL4AMD, a deep neural network
for recognizing Windows malware programs. Each sample is characterized by its
API calls, hence they are passed to a stacked auto-encoders network. David et
al. [20] use a similar approach, by exploiting de-noising auto-encoders for classi-
fying Windows malware programs. The features used by the author are harvested
from dynamic analysis. Yhuan et al. [21] extract features from both static and
dynamic analysis of an Android application, like the requested permissions, API
calls, network usage, sent SMS and so on, and samples are given in input to
a deep neural network. McLaughlin et al. [22] propose a convolutional neural
network which takes as input the sequence of the opcodes of an input program.
Hence, they do not extract any features from data, but they merely extract the
sequence of instructions to feed to the model.

Evasion attacks against MalConv. Kolosnjaji et al. [9] propose an attack
that does not alter bytes that correspond to code, but they append bytes at the
end of the sample, preserving its semantics. The padding bytes are calculated
using the gradient of the cost function w.r.t. the input byte in a specific location
in the malware, achieving evasion with high probability. The technique is similar
to the one developed by Goodfellow et al. [3], the so-called Fast Sign Gradient
Method (FSGM). Similarly, Kreuk et al. [10] propose to append bytes at the
end of the malware and fill unused bytes between sections. Their algorithm is
different: they work in the embedding domain, and they translate back in byte
domain after applying the FSGM to the malware, while Kolosnjaji et al. modify
one padding byte at the time in the embedded domain, and then they translate
it back to the byte domain.

Explainable Machine Learning. Riberio et al. [13] propose a method called
LIME, which is an algorithm that tries to explain which features are important
w.r.t. the classification result. It takes as input a model, and it learns how it
behaves locally around an input point, by producing a set of artificial samples.
The algorithm uses LASSO to select the top K features, where K is a free param-
eter. As it may be easily noticed, the dimension of the problem matters, and it
may become computational expensive on high dimensional data. Guo et al. [14]
propose LEMNA, which is an algorithm specialized on explaining deep learning
results for security applications. As said in Section 2, many malware detectors
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exploit machine learning techniques in their pipeline. Hence, being able to in-
terpret the results of the classification may be helpful to analysts for identifying
vulnerabilities. Guo et al. use a Fused LASSO or a mixture Regression Model
to learn the decision boundary around the input point and compute the attri-
bution for K features, where K is a free parameter. Another important work
that may help us explaining predictions (and misclassifications) of deep-learning
algorithms for malware detection is that by Koh and Liang [15], which allows
identifying the most relevant training prototypes supporting classification of a
given test sample. With these technique, it may be possible to associate or com-
pare a given test sample to some known training malware samples and their
corresponding families (or, to some relevant benign file).

7 Conclusions and Future Work

We have shown that, despite the success of deep learning in many areas, there
are still uncertainties regarding the precision of the output of these techniques.
In particular, we use integrated gradients to explain the results achieved by
MalConv, highlight the fact that the deep neural network attributes wrong non-
zero weights to well known useless features, that in this case are locations inside
a Windows binary.

To further explain these weaknesses, we devise an algorithm inspired by re-
cent papers in adversarial machine learning, applied to the malware detection.
We show that perturbing few bytes is enough for evading MalConv with high
probability, as we applied this technique on a concrete set of samples taken from
the internet, achieving evasion on most of all the inputs.

Aware of this situation, we are willing to keep investigating the weaknesses
of these deep learning malware classifiers, as they are becoming more and more
important in the cybersecurity world. In particular, we want to devise attacks
that can not be easily recognized by a human expert: the perturbations in the
DOS header are easy to detect, as mentioned in Section 5 and it may be patched
without substantial effort. Instead, we are studying how to hide these modifi-
cations in an unrecognizable way, like filling bytes between functions: compilers
often leave space between one function and the other to align the function entry
point to multiple of 32 or 64, depending on the underlying architecture. The
latter is an example we are currently investigating. Hence, all classifiers that
rely on raw byte features may be vulnerable to such attacks, and our research
may serve as a proposal for a preliminary penetration testing suite of attacks
that developers could use for establishing the security of these new technologies.

In conclusion, we want to emphasize that these intelligent technologies are far
from being considered secure, as they can be easily attacked by aware adversaries.
We hope that our study may focus the attention on this problem and increase
the awareness of developers and researchers about the vulnerability of these
models.
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