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ABSTRACT
Concomitant with the rapid spread of cyber-physical systems
and the advancement of technologies from the Internet of Things,
manymodern production environments are characterized by vast
amounts of sensor data which are generated throughout differ-
ent stages of production processes. In this paper, we propose a
novel method for discovering the inherent structures of anom-
alies arising in IoT sensor data. Our idea consists in modeling and
describing anomalies by means of kernel expressions, which are
combinations of well-known kernels. The results of our empirical
analysis show that our proposal is suitable for modeling differ-
ently structured anomalies. Moreover, the results indicate that
Gaussian processes provide a powerful tool for future algorithmic
investigations of IoT sensor data.

1 INTRODUCTION
Concomitant with the rapid spread of cyber-physical systems
and the advancement of technologies from the Internet of Things
(IoT), many modern production environments are characterized
by vast amounts of sensor data which are generated through-
out different stages of production processes. These sensor data
streams are often considered as valuable information sources
with a high economic potential and are characterized by high vol-
ume, velocity and variety. Their data-driven value is indisputable
for optimizing and fine-tuning industrial production processes.

Monitoring sensor data from complex production processes in
order to detect outliers or low-performing production behavior
caused by undesired drifts and trends, which we summarize as
anomalies, is a challenging task. Not only due to the massive
amount of sensor data but also due to different types of anom-
alies, which are potentially unknown in advance, manual or au-
tomatic inspection systems are frequently supported by anomaly
detection algorithms. While the last years have witnessed the
development of different anomaly detection algorithms, cf. the
work of Renaudie et al. [21] for a recent performance evaluation
in an industrial context, only less effort has been spent to the
investigation of the inherent structure of an anomaly.

In this paper, we thus propose a novel method to discover the
inherent structure of an anomaly. Our idea consists in model-
ing and describing anomalies by means of kernel expressions,
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which are combinations of well-known kernels. By fitting ker-
nel expressions to the corresponding sensor data, we are able
to decompose the inherent structure of an anomaly and to de-
scribe its individual behavior such as linearity and periodicity
by natural language. For this purpose, we make use of Gaussian
processes [20] and the Compositional Kernel Search model [11].
We carry out our analysis on the recently proposed IoT dataset
[5], a real-world industry 4.0 dataset, which has been collected
within the EU project MONSOON1. To sum up, we make the
following contributions:

• We propose a machine-learning-based method in order to
model anomalies and to describe their inherent compo-
nents.

• We enrich the MONSOON IoT dataset with a novel ground
truth derived from domain experts in order to further
stimulate research of anomaly detection algorithms on
this real-world dataset.

The paper is structured as follows. In Section 2, we outline re-
lated work. In Section 3, we briefly introduce Gaussian processes
and their application to adapt kernel expressions to sensor data.
The preliminary results of our proposed method are reported
and discussed in Section 4, before we conclude our paper with
an outlook on future research directions in Section 5.

2 RELATEDWORK
Strongly related to our approach are anomaly detection algo-
rithms. There is a plethora of these algorithms including Z-Score
[10], Mahalanobis Distance-Based, Empirical Covariance Estima-
tion [18] [9], Mahalanobis Distance-Based, Robust Covariance
Estimation [22] [9], Subspace-based PCA Anomaly Detector [9],
One-Class SVM [23] [18] [9] [12], Isolation Forest (I-Forest) [16]
[18], Gaussian Mixture Model [18] [9] [19], Deep Auto-Encoder
[8], Local Outlier Factor [7] [18] [9] [1], Least Squares Anomaly
Detector [24], GADPL [14] and k-nearest Neighbour [13] [1] [12].

While these algorithms are all possible options for anomaly
detection, as shown in different surveys such as [13], [19] and [9],
they are not directly suited for describing the inherent structure
of anomalies, which is the major focus of this paper. We choose
the means of Gaussian processes for anomaly description due
to their capability to not only gather statistical indicators, but
deliver the very characteristics of specific anomalous behavior
from the data [20].

For describing these characteristics, Lloyd et al. [17] have pro-
posed the Automatic Bayesian Covariance Discovery System
that adapts the Compositional Kernel Search Algorithm [11] by
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Figure 1: An example of the MONSOON IoT dataset with three anomalies.

adding intuitive natural language descriptions of the function
classes described by their models. In [15], these models are ex-
panded to discover kernel structures which are able to explain
multiple time series at once.

In this work, we make use of these algorithms in order to
describe the inherent structures of anomalies, as shown in the
following section.

3 GAUSSIAN PROCESSES
In this section, we describe the analysis of anomalies in sensor
data via Gaussian processes. To this end, we assume the sensor
data to be univariate2 and an anomalyA to be a finite subsequence
of timestamp-value pairsA = {(ti ,vi )}

n
i=i with timestamps ti ∈ T

and values vi ∈ R.
As we do not know in advance the number of values and the

distances between individual timestamps, we can also thought
of an anomaly A as a mathematical function A : T→ R, which
assigns every timestamp t ∈ T a real-valued value v(t) ∈ R. By
considering the individual values v(t) to be random variables
following a Gaussian distribution, we can formalize the Gaussian
process as

v(t) ∼ GP(m(t),k(t, t ′)),

where m(t) = E[v(t)] is the mean function and k(t, t ′) =
E[(v(t) −m(t)) · (v(t ′) −m(t ′))] is the covariance function k : T×
T→ R. In other words, a Gaussian process is a stochastic process
over random variables, where every subset of random variables
from the Gaussian process follows a normal distribution. The
distribution of the Gaussian process is the joint distribution of all
of these random variables and it is thus a probability distribution
over (the space of) functions in RT.

While the covariance function k defined above is a general
way to model the behavior of data, we aim to describe each
anomaly A by its own covariance function kA. That is, we aim
to learn a covariance function kA, which is then also denoted as
kernel expression in the domain of machine learning, by fitting
combinations of well-known kernels, such as

• the constant kernel kC(t, t ′) = λ ∈ R,
• the linear kernel kLIN(t, t ′) = (t − l) · (t ′ − l),
• the squared exponential kernel kSE(t, t ′) = exp− |t−t ′ |2

2l 2 ,

• or the periodic kernel kPER(t, t ′) = exp 2 sin2 t−t ′
2

l 2 .
In order to individually fit a kernel expression to each anomaly

based on the aforementioned kernels, we use the compositional
kernel model, as utilized for instance in [17]. This allows us to
decompose an anomaly into individual components, which can be
ranked by their contribution towards explaining the data. As an

2It is noteworthy that this approach also applies to multivariate data.

Anomaly BIC Kernel Expression
0 -799 C*PER + C*PER + C*PER
1 -706 C*SE*PER + C*SE + C
2 -604 C*PER + C*PER + C*PER + C
3 -921 C*SE*PER + C*PER + C
4 -742 C*PER + C*PER + C*SE + C
5 -543 C*SE*LIN + C*SE + C*WN + C
6 -630 C*PER + C*SE + C*WN + C
7 -1020 C*PER + C*PER + C*PER + C*SE + C
8 -762 C*SE*PER + C*PER + C
9 -1025 C*PER + C*PER + C*SE + C
10 -424 C*PER + C*SE + C*SE
11 -849 C*PER + C*PER + C*SE + C
12 -311 C*SE*PER + C*PER + C
13 -860 C*LIN + C*PER + C*PER + C*PER + C
14 -339 C*PER + C*SE + C*SE
15 -590 C*SE*PER + C*PER + C*SE
16 -503 C*PER + C*SE + C
17 -602 C*SE*PER + C*SE + C*WN + C
18 -545 C*PER + C*SE + C*SE + C
19 -804 C*PER + C*SE + C*WN + C
20 -281 C*PER + C*SE + C*SE
21 -426 C*PER + C*PER + C*SE
22 -425 C*SE*PER + C*PER + C*SE
23 -975 C*SE*PER + C*PER + C
24 -1181 C*PER*LIN + C*PER + C*SE
25 -880 C*PER*PER + C*PER + C*PER + C
26 -455 C*PER + C*PER + C*SE
27 -542 C*PER + C*SE + C*SE

Table 1: Discovered kernel structures and the Bayesian In-
formation Criterion (BIC) for the encountered 28 anom-
alies.

example, an anomalyAwith a highly weighted linear kernel kLIN
indicates a hidden linearity component while a highly weighted
periodic kernel kPER indicates an inherent periodicity in the
anomaly.

The resulting kernel expressions are reported and discussed
in the next section.

4 PRELIMINARY RESULTS
In this section, we report and discuss the results of our pre-
liminary performance evaluation. For this purpose, we use the
recently introduced MONSOON IoT dataset [5] which comprises
357,383 data records in total. This dataset is based on a real pro-
duction line of coffee capsules and the attribute under observation
is the plastification time, that is the time which is needed to melt



(plastify) the plastic melt for the actual injection molding cycle.
More information about this process can be found in [3].

An overview of this attribute value, i.e. the pastification time,
as a function of the cycle number is shown in Figure 1. As can
be seen in the figure, while the normal plastification time is at
approximately 4.2 seconds, it drops down to less then 3 seconds
in case of an anomaly. Supported by domain experts, we figured
out 28 anomalies in total in this dataset, of which three are shown
in the above figure.

In the first series of experiments, we computed the best fit-
ting kernel expressions by means of the ABCD algorithm. The
results are shown in Table 1 for each anomaly. Together with the
kernel expression of the corresponding anomaly, we also show
the Bayesian Information Criterion (BIC) value which models
the trade-off between model accuracy and size. As can be seen in
the table, all anomalies are well described by their corresponding
kernel expression (lower BIC values indicate better fit and vice
versa). Surprisingly many kernel expressions do not show a lin-
ear component kLIN, although some anomalies clearly show this
linear tendency. We figure out that this is due to overfitting of
the kernel expression in the ABCD algorithm. We aim to address
this issue in future research.

In the second series of experiments, we evaluated how suitable
a kernel expression of a certain anomaly fits to other anomalies.
The results in form of the corresponding BIC values are summa-
rized in Table 2. As can be seen in this table, kernel expressions
of a certain anomaly do in general not fit to other anomalies.
One reason for this behavior is the high degree of idiosyncrasy
of the anomalies. Another reason might be the overfitting issue
mentioned above.

To sum up, we have investigated the potential of describing
anomalies in IoT sensor data by means of kernel expressions.
Our preliminary results indicate that our proposal is well suited
for this purpose. As one major challenge, we figure out that the
problem of overfitting needs to be addressed in future research.

5 CONCLUSIONS AND FUTUREWORK
In this paper, we have addressed the problem of discovering the
inherent structures of anomalies arising in IoT sensor data. To this
end, we have proposed tomodel and describe anomalies bymeans
of kernel expressions, which are combinations of well-known
kernels. The results of our empirical analysis show that our pro-
posal is suitable for modeling differently structured anomalies.
Moreover, the results indicate that Gaussian processes provide a
powerful tool for future algorithmic investigations of IoT sensor
data.

In future work, we aim to address the problem of overfitting
by modifying the grammar used within the ABCD algorithm for
computing the kernel expressions. In addition, we aim to further
develop our proposal in order to not only describe anomalies
but also detect anomalies (which is not the focus of the current
paper). For this purpose, we aim to measure similarity in IoT
sensor data by incorporating Gaussian processes into adaptive
distance-based similarity models, such as the Signature Matching
Distance [6], and query processing algorithms [2, 4].
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10
29
0

-4
55

79
2

27
18
8

10
10
1

32
68
9

44
25

22
95

82
95

35
33
9

11
45
0

12
86
0

96
09

-3
25

51
89

-2
94

96
51

-3
18

96
26

-4
55

69
45

-5
35

13
49

-1
51

-2
31

71
29

74
97

81
93

10
34
2

-4
37

-5
42

Table 2: Evaluation of the BIC for every kernel expression
against every anomaly.



responsible for any use that may be made of the information it
contains.
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