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ABSTRACT

We propose a framework toward more explainable reinforcement
learning (RL) agents. The framework uses introspective analysis of
an agent’s history of interaction with its environment to extract sev-
eral interestingness elements regarding its behavior. Introspection
operates at three distinct levels, first analyzing characteristics of
the task that the agent has to solve, then the behavior of the agent
while interacting with the environment, and finally by performing
a meta-analysis combining information gathered at the lower levels.
The analyses rely on data that is already collected by standard RL
algorithms. We propose that additional statistical data can easily
be collected by a RL agent while learning that helps extract more
meaningful aspects. We provide insights on how an explanation
framework can leverage the elements generated through introspec-
tion. Namely, they can help convey learned strategies to a human
user, justify the agent’s decisions in relevant situations, denote its
learned preferences and goals, and identify circumstances in which
advice from the user might be needed.
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1 INTRODUCTION

Reinforcement learning (RL) is a very popular computational ap-
proach to address problems of autonomous agents facing a sequen-
tial decision problem in a dynamic and often times uncertain envi-
ronment [19]. The goal of any RL algorithm is to learn a policy, i.e, a
mapping from states to actions, given trial-and-error interactions
between the agent and an environment. Typical approaches within
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RL focus on developing memoryless (reactive) agents, i.e., that se-
lect their actions based solely on their current observation [13].
This means that by the end of learning, a RL agent is capable of
selecting the most appropriate action in each situation it faces—the
learned policy ensures that by doing so, the agent will maximize the
reward received during its lifespan, thereby performing according
to the underlying task assigned by its designer.

On one hand, RL agents do not need to plan or reason about their
future in order to select actions. On the other hand, this means that
it is hard for them to come up with explanations for their behavior—
all they know is that they should perform one action in any given
situation, in the case of deterministic policies, or select an action
according to a probability distribution over actions, in the case of
stochastic policies. Importantly, the “why” behind decision-making
is lost during the learning process as the policy converges to an
optimal action-selection mechanism. At most, agents know that
choosing some action is preferable over others, or that some actions
have a higher value associated with them. Another key insight of
RL that complicates explainability is that it allows an agent to learn
from delayed rewards [19]—the reward received after executing
some action should be “propagated” back to the states and actions
leading to that situation, meaning that important actions might not
have associated any (positive) reward.

Ultimately, RL agents lack the ability of knowing why some
actions are preferable over others, of identifying the goals that they
are currently pursuing, of making sense of the dynamics of the
environment or recognizing what elements are more desirable, of
identifying situations that are “hard to learn”, or of summarizing
the strategy learned to solve the task. Without such an explanation
mechanism, autonomous RL agents may suffer from lack of trust
by end users of the system or human collaborators that wish to
delegate on them critical tasks.

1.1 Approach Overview

In this paper, we present a framework towards making autonomous
RL agents more explainable. The framework is illustrated in Fig. 1
and relies on introspective analysis. In particular, the agent ex-
amines its history of interaction with the environment to extract
interestingness elements denoting meaningful situations, i.e., poten-
tially “interesting” characteristics of the interaction. Each element
is generated by applying statistical analysis and machine learning
methods to data collected during the interaction. In that regard,
we argue that there is a great amount of information that is disre-
garded by typical RL algorithms that can be of most importance to
understand the behavior of the agent and address some the afore-
mentioned problems. Some of such information is already collected
by standard algorithms but used only for updates of the policy or
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Figure 1: Our framework for explainable autonomous RL agents. During its interaction with the environment, the agent col-
lects relevant statistical information. If the agent is learning, it updates its RL algorithm. Our introspection framework ana-
lyzes the collected data and identifies interestingness elements of the history of interaction. These elements can be used by
an explanation framework to expose the agent’s behavior to a human user.

value function, while other data can easily be collected and updated
by the agent during learning. As depicted in Fig. 1, the introspection
framework can be the basis of an explanation system operating on
top of the interestingness elements, selecting the ones that better
help explain the agent’s behavior.

There are a few characteristics of the proposed introspection
framework that are worth noting. First, the framework is domain-
independent, meaning that the data that is collected and analyzed
is agnostic to the specific learning scenario. Second, the framework
is also algorithm-independent in the sense that it can be used in
conjunction with standard RL tabular methods without having to
modify the learning mechanism itself. Furthermore, the framework
makes no assumptions with regards to optimality of the observed
behavior—it captures important aspects specific to some history
of interaction, independently of whether the agent was exploring
the environment, exploiting its knowledge after learning, or simply
acting randomly. Moreover, the framework is suitable to be used at
different times and for different explanation modes, namely: during
learning, by tracking the agent’s learning progress and acquired
preferences; after learning, by summarizing the most relevant as-
pects of the interaction; passively, where a user can query the agent
regarding its current goals or ask it to justify its behavior at any
given situation; proactively, where the agent requests input from
the user in situations where its decision-making is more uncertain
or unpredictable.

1.2 Reinforcement Learning

RL agents can be modeled using the partially observable Markov
decision process (POMDP) framework [10], denoted as a tuple M =
(S, A,Z,P,0,R,y). At each time step t = 0,1,2,..., the envi-
ronment is in some state S; = s € S. The agent selects some
action A; = a € A and the environment transitions to state
St+1 = s’ € S with probability P(s” | s, a). The agent receives
areward R(s, a) = r € R and makes an observation Z;41 =z € Z
with probability O(z | s’, a), and the process repeats.

In this paper, we deal with the problem of explainability in situa-
tions where the agent may have limited sensing capabilities, i.e., the
environment may be partially-observable. Notwithstanding, as in
typical RL scenarios, we assume that the agent’s observations are
sufficient for it to solve the intended task, in which case Z is treated
as if it were S, and O is discarded. The simplified model thus ob-
tained, represented as a tuple M = (S, A, P, R, y), is referred to as
a Markov decision process (MDP) [16].

The goal of the agent can be formalized as that of gathering as
much reward as possible throughout its lifespan discounted by y.
This corresponds to maximizing the value v = E [Zt vt r]. To that
end, the agent must learn a policy, denoted by 7 : Z — A, that
maps each observation z € Z directly to an action 7(z) € A. In the
case of MDPs, this corresponds to learning a policy 7* : § — A
referred to as the optimal policy maximizing the value v.

We focus on value-based RL, where a function Q* : S X A — R
associated with 7* verifies the recursive relation Q*(s,a) = r +
Y 2ses P(s’ | s,a) maxye 7 Q" (s, b). Q*(s, a) represents the value
of executing action a in state s and henceforth following the optimal
policy. Standard RL algorithms like Q-learning [22] assume that
the agent has no knowledge of either P or R. Hence, they typically
start by exploring the environment—Dby selecting actions in some ex-
ploratory manner—collecting samples in the form (s, a, r, s”) which
are then used to successively approximate Q* using the above re-
cursion. After exploring, the agent can exploit its knowledge and
select the actions that maximize (its estimate of) Q*.

2 INTROSPECTION FRAMEWORK

2.1 Interaction Data

As depicted in Fig. 1, the introspection framework relies on interac-
tion data that is collected by the agent during its interaction with
the environment. Namely, the analyses rely on the following data:

e n(z), n(z,a) and n(z, a,z’), which respectively denote the
number of times that some observation z, observation-action
pair (z, a) and transition (z, a, z’) were observed by the agent
while interacting with the environment;

P(z’ | z,a) corresponds to the estimated probability of ob-

serving z’ when executing action a after observing z. This

can be estimated by using n(z, a,z’)/n(z, a);

R(z, a) is the agent’s estimate of the reward received for per-

forming action a after observing z. This can be estimated by

maintaining a running average of the rewards received,;

Q(z, a) is the agent’s estimate of the Q function. It corresponds

to the expected value of executing a having observed z and

henceforth following the current policy. It can be estimated
by using any value-based RL algorithm;

. @(z, a) is the expected prediction (Bellman) error associated
with Q(z, a). For a transition (z, a, r, z’), the prediction error
corresponds to AQ(z,a) = r + y maxpc .4 Q(z’, b) — QO(z, a).
As such, the agent can maintain a running average of the
prediction errors after each visit to (z, a).
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As we can see, some of the data is already collected by value-based
RL methods, namely the Q function, and by model-based algorithms,
namely P and R. The remaining data can easily be collected by the
agent during its interaction with the environment by updating
counters and running averages.

In addition, as is the case with many RL scenarios, let us assume
that, at each time-step ¢, the agent observes its environment through
a finite set of features Z; =zi,i=1,...,N, each taking values in
some feature space Z'. The observation-space thus corresponds to
the cartesian product Z = Z1X...XZN. When this is the case, the
structure exhibited by such factored MDPs can also be exploited to
derive interesting aspects related to specific observation elements.

All these data are used by the agent as sources of information
for the several introspection analyses. Table 1 lists the analyses
implemented so far, how they are group at different levels, and the
elements that each generates.! The idea is to take the most out of
the data collected during the interaction to highlight information
that helps explain the agent’s behavior.

2.2 Level 0: Analyzing the Environment

In this level we analyze characteristics of the task or problem that
the agent has to solve.

2.2.1 Transition Analysis. The estimated transition probability func-
tion P(z’ | z, a) can be used to expose the environment’s dynamics.
Namely, it allows the identification of (un)certain transitions. Given
an observation z and an action a, the transition certainty associ-
ated with (z, a) is measured according to how concentrated the
observations z’ € Z following (z, a) are. In particular, we use the
evenness of the distribution over observations following (z, a) as the
normalized true diversity (information entropy) [15] by resorting
to the probabilities stored in P.

Certain/uncertain transitions: denote situations in which the
next state is hard/easy to be predicted by the agent.
Certain/uncertain observation-features: are values of observa-
tion features that are active, on average, whenever certain/uncertain
observation-action pairs occur.

Transitions leading to many different states—according to a given
threshold—have a high evenness and are considered uncertain. Like-
wise, transitions leading only to a few states have a low even-
ness and are considered certain. This analysis thus highlights the
(un)certain elements of the agent’s transitions, actions and of its
observation features. Uncertain elements are especially important
as people tend to resort to “abnormal” situations for the explanation
of behavior [14]. This information can also be used by the agent in
a more proactive manner while interacting with the environment.
For example, the agent can express its confidence in the result of its
actions when necessary, or request the help of a human user when
it faces a very uncertain situation.

2.2.2  Reward Analysis. The idea of this analysis is to identify un-
common situations regarding the reward received by the agent
during its interaction with the environment, namely:

Observation-action reward outliers: (z, a) pairs in which, on
average among all other states and actions, the agent received

Due to space restrictions, only some elements are detailed here.
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significantly more/less reward.? This information may be used to
identify situations in which the agent is likely to receive relatively
low or high rewards.

Feature-action reward outliers: correspond to feature-action
pairs that are, on average among all observations taken, signifi-
cantly more or less rewarding than other pairs. The rationale is
that, in typical RL scenarios, the agent designer defines rewards
to be provided to the agent when it interacts with elements of the
environment in a (in)correct manner, e.g., the agent may have to
interact with the appropriate object to achieve some subgoal. How-
ever, the reward from executing some action after making some
observation is “diluted” among all the features that were active at
that time. Therefore, this element may be used to denote significant
individual contributions of features to the agent’s reward.

2.3 Level 1: Analyzing the Interaction with the
Environment

The purpose of this level is to help characterize the environment’s
dynamics and extract important aspects of the agent’s behavior
and history of interaction with it.

2.3.1 Observation Frequency Analysis. This analysis identifies in-
terestingness elements that can be found given information stored
in the counters n, namely:

Observation coverage: corresponds to how much of the observation-
space—regarding all possible combinations between the observation
features—were actually observed by the agent. This information
may provide an indication of how much of the state-space was
covered by the agent’s behavior, which is an important quality of
its exploration strategy.

Observation evenness: corresponds to how even the distribution
of visits to the observation space was. In particular, it analyzes the
histogram of observations using the aforementioned distribution
evenness metric. It can be used to infer how unbalanced the visits to
states were, which in turn may denote how interesting the dynamics
of the environment are, e.g., denoting situations that are physically
impossible to occur, and how exploratory the agent was during the
interaction with it.

Frequent/infrequent observations: these correspond to obser-
vations that appeared less/more frequently than others during the
interaction. This element can assess the agent’s (in)experience with
its environment, denoting not only common situations it encoun-
ters but also rare interactions. Importantly, the latter may indicate
states that were not sufficiently explored by the agent, e.g., locations
that are hard to reach in a maze or encounters with elements that
are scarce, or situations that had such a negative impact on the
agent’s performance that its action-selection and learning mecha-
nisms made sure they were rarely visited, such as a death situation
in a game.

Strongly/weakly-associated feature-sets: are sets of observa-
tion features (feature-sets) that frequently/rarely co-occur. To that
end, we resorted to frequent pattern-mining (FPM) [1], a data-
mining technique to find patterns of items in a set of transactions.
In this case, each observation corresponds to a transaction con-
taining the features that are active in that observation. We then

%In our analyses, we detect outliers based on whether the distance to the mean is
higher than a certain number of standard deviations.
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Table 1: Overview of the analyses of the introspection framework and the interestingness elements that each generates.

Level Purpose Analysis

Generated Interestingness Elements

analyze characteristics Transition

0. Task
as of the task (POMDP)

Reward

(Un)Certain transitions; (Un)Certain actions; (Un)certain features

Mean reward; Obs.-action reward outliers; Actions mean reward;

Feature-action reward outliers

Obs. coverage; Obs. Dispersion; (In)Freq. obs.; Strongly/weakly-associated
feature-sets; Associative feature-rules; Earlier obs. and actions

Obs. Freq. and

analyze agent’s Recency

history of interaction
with the environment

Obs.-Action Freq. Obs.-action coverage; Obs.-action evenness; (Un)Certain obs. and features

Mean value; Obs.-action value outliers; Feature-action value outliers; Mean

pred. error; Obs.-action pred. outliers; Actions mean value and pred. error

Local minima/maxima; Absolute minima/maxima; Maximal
strict-difference obs.; Obs. variance outliers

combine elements Transition Value

2. Meta-analysis ~ generated by the
Sequence

different analyses

Contradiction

Uncertain-future obs.; Certain sequences to subgoal

Contradictory-value obs.; Contradictory-count obs.; Contradictory-goal

obs.; Contradictory feature-actions

created a frequent-pattern tree (FP-tree) using the algorithm in [7]
that facilitates the systematic discovery of frequent combinations
between the items in the data-base.

Typical FPM techniques rely on the relative frequency of co-
occurrences of items to judge whether a certain item-set is con-
sidered a pattern or not. However, other metrics exist that allow
the discovery of more meaningful patterns—for example, if two
features are always observed together by the agent, the pair should
be consider interesting even if their relative frequency (i.e., com-
pared to all other observations) is low. Therefore, we use the Jaccard
index [9], which can be used to measure the association strength of
item-sets [17, 18]. We then use an algorithm based on FP-Growth
[7] to retrieve all observation feature-sets that have a Jaccard index
above/below a given threshold, in which case they are considered
to be strongly-/weakly-associated.

This element may be used to denote both patterns in the agent’s

perceptions (or regularities in its environment), and also rare on
inexistent combinations of features. In turn, these aspects may
be important to explain the agent’s physical interaction with the
environment and expose its perceptual limitations to an external
observer.
Associative feature-rules: these are rules generated in the form
antecedent = consequent. The idea is to determine sets of features—
the antecedent—that frequently appear conditioned on the appear-
ance of another set of features—the consequent. We used the lift
statistical measure [1] to determine the confidence of every possible
rule given the strongly-associated feature-sets. This element can be
used to determine causal relationships in the environment, e.g., the
physical rules of the environment or the co-appearance of certain
objects, which are important elements of explanation [14].

2.3.2 Observation-Action Frequency Analysis. This analysis pro-
duces the following elements:

Observation-action coverage: corresponds to how much of the
actions were executed in the observations made. Similarly to the
observation coverage, this element reveals how exploratory the
interaction with the environment was.

Observation-action dispersion: corresponds to the mean even-
ness of action executions per observation. It can be used to deter-
mine how (un)balanced the selection of actions in certain obser-
vations were. In turn, this may denote either how exploratory the
agent was during the interaction, or how stochastic the agent’s
policy is.

Certain/uncertain observations and features: besides transi-
tion certainty, we can calculate how certain or uncertain each ob-
servation is with regards to action execution. Observations where
many different actions have a high count (high evenness) are con-
sidered uncertain, while those in which only a few actions were
selected are considered certain. This may denote situations in which
the agent is (un)certain of what to do, therefore providing good
opportunities to ask for a human user for intervention. Similarly,
we can identify features denoting situations in which, on average,
action selection is very even/uneven. Uneven features may be par-
ticularly useful to abstract action-execution rules, i.e., actions that
are very likely to be executed whenever some feature is active.

2.3.3  Value Analysis. This analysis uses information stored in Q,
V and @ to generate the following interestingness elements:
Observation-action value outliers: correspond to (z, a) pairs
that are significantly more or less valued. This element denotes
desirable situations with regards to the agent’s goals—high-value
pairs indicate situations conducive for the agent to attain its goals
while low-valued situations might prevent the agent of fulfilling its
task.

Mean prediction error: the mean prediction error among all
states and actions. This evaluates the accuracy of the agent’s world
model, i.e, how well can the agent predict the consequences and
future value of its actions in most situations.
Observation-action prediction outliers: correspond to the (z, a)
pairs that have associated a significantly higher/lower mean pre-
diction error. These are situations that are very hard (or easy) for
the agent to learn. Together with transition uncertainty, this is an
important element for explanation as people use social attribution
to determine causes and judge others’ behavior [14]—e.g., when
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the next observation and reward received are very stochastic, the
agent’s future might be very unpredictable and uncertain. There-
fore, in such situations the agent should inform the user to avoid
misunderstandings.

2.4 Level 2: Meta-Analysis

This level refers to analyses combining information from the differ-
ent interaction data and the previous levels.

2.4.1 Transition Value Analysis. This analysis combines informa-
tion from the agent’s estimated V function and the transition func-
tion P(z’ | z, a). The goal is to analyze how the value attributed to
some observation changes with regards to possible observations
taken at the next time-step. The following elements are produced:
Local minima/maxima: refers to observations whose values are
greater/lower than or equal to the values of all possible next obser-
vations. These help explain the desirability attributed by the agent
to a given situation. Specifically, local maxima denote subgoals
or acquired preferences—e.g., this may help explain situations in
which the agent prefers to remain in the same state rather than
explore the surrounding environment. In contrast, local minima
denote highly-undesirable situations that the agent will want to
avoid and in which typically any action leading to a different state
is preferable.

Observation variance outliers: correspond to observations where
the variance of the difference in value to possible next observations
is significantly higher or lower. This element is important to identify
highly-unpredictable and especially risky situations, i.e., in which
executing actions might lead to either lower- or higher-valued next
states.

2.4.2  Sequence Analysis. This analysis combines information from
the analyses of observation frequencies, transitions and values. The
goal is to extract common and relevant sequences of actions from
to the agent’s interaction with its environment. In particular, in-
teresting sequences involve starting from important observations
identified by the other analyses, then executing the most likely
action, and henceforth performing actions until reaching a local
maximum. To discover sequences between observations we first
used the information stored in P to create a graph where nodes are
observations and edges are the actions denoting the observed transi-
tions. We then implemented a variant of Dijkstra’s algorithm [4] to
determine the most likely paths between a given source observation
and a set of possible target observations. Using this procedure, this
analysis generates the following interestingness elements:
Uncertain-future observations: correspond to observations, taken
from the local minima, maxima, variance outliers, frequent, and
transition-uncertain sets of observations, from which a sequence
to any local maxima (subgoal) is very unlikely. These enable the
identification of very uncertain situations—where the agent is not
able to reason about how to reach a better situation—and hence in
which help from a human user might be needed.

Certain sequences to subgoal: these denote likely sequences
starting from an observation in the same set of sources used for
the previous element, and then performing actions until reaching a
subgoal. This element determines the agent’s typical or most likely
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actions when in relevant situations. Thus, it can be used to sum-
marize its behavior in the environment, e.g., by distilling a visual
representation from the graph or visualizing a sequence of obser-
vations. The sequence-finding procedure can also be used by the
user to query the agent about its future goals and behavior in any
possible situation. Notably, this can be used to provide contrastive
explanations which help reasoning about why the alternatives to
some actions—the foils—are not as desirable as those chosen by the
agent [14]. Also, starting points may denote reasons for behavior
while the combined transition likelihoods denote the agent’s be-
liefs—these are two crucial elements commonly used by people to
explain intentional events [3].

2.4.3 Contradiction Analysis. This analysis combines information
from the value, reward and frequency functions, the value analysis
and provided domain knowledge. The goal is to identify unexpected
situations, where the agent was expected to behave in a certain
manner, but the collected data informs us otherwise. Hence, we
automatically determine the foils for behavior in specific situations.
Contradictory-value observations: correspond to observations
in which the actions’ values distribution proportionally diverges
from that of their rewards. Specifically, we use the Jensen-Shannon
divergence (JSD) [5] that measures how (dis)similar two probability
distributions are with regards to the proportion attributed to each
element. By using this technique and resorting to the information
stored in Q and R, we can identify situations with a value-reward
JSD higher than a given threshold. In such situations, the agent
may select actions contradicting what an external observer would
expect. Further, we analyze the individual components of the JSD
to identify which indexes are responsible for the non-alignment or
dissimilarity between the distributions. In this manner, the agent
can automatically detect the contradictory situations and justify
why it chose an unexpected action, e.g., explaining that it leads
to a certain subgoal and is thus a better option compared to the
expected action (contrastive explanation).

Contradictory-count observations: similarly, we can identify
observations in which the actions’ selection distribution diverges
from that of their values. We use the same technique as above to
calculate the count-value JSD by using the data stored in n and
Q. This element can identify situations where the agent’s action-
selection mechanism contradicts what it has learned, e.g., by se-
lecting more often actions in situations in which they have lower
values. In turn, this could indicate one of several things: an inade-
quate action-selection mechanism; an unstable and hard-to-learn
situation, where the value of an action changed throughout learn-
ing; that the agent has acquired a preference for an action but
selected other actions with the same frequency during learning,
which means that the agent has not started exploiting its learned
knowledge.

Contradictory-goal observations: to identify these elements, we
assume that the system is provided with domain-knowledge regard-
ing goal states. These correspond to situations that would normally
be considered as highly-desirable for the agent to perform the task
by an external observer, e.g., collecting relevant items from the
environment, reaching a new level in a game, etc. Based on this
information, we determine which observations that were found to
be subgoals for the agent (local maxima) are not in the known list
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of goals. The idea is to identify surprising situations in which the
agent can justify its behavior by resorting to other interestingness
elements.

3 RELATED WORK

Recent works within eXplainable RL (XRL) have recently started to
addressed some of the problems identified in this paper. Some frame-
works simply develop language templates to translate elements of
the problem into human-understandable explanations. Namely, the
work in [21] generates explanations for reasoning in POMDPs,
i.e., the agent’s policy, beliefs over states of the environment, tran-
sition probabilities, rewards, etc. All explanations were derived
directly from the POMDP elements, therefore corresponding to our
Level 0 analysis. In [11], the discounted occupancy frequency is
used to form contrastive explanations about the expected return in
a given state by executing the optimal action and following some
policy. Other works focus on abstracting state representations of the
task and creating graph structures denoting the agent’s behavior—
in [8] and [20], explanations were framed as summaries assembled
from outputs of binary classifiers that characterized the agent’s
trajectories and decisions. Other approaches try to identify key
moments of the agent’s interaction to summarize its behavior. The
approach in [2] used the concept of importance, dictated by the
largest difference in the Q-values of a given state, to identify which
trajectories are representative of the agent’s behavior, which were
then shown to a human user.

We note that, overall, these works usually require a great deal
of manual adjustments for specific domains while our framework
relies on generic data that is already collected by standard RL algo-
rithms and on a factored-state structure. Moreover, while some can
summarize the agent’s behavior, they do not perform an analysis
of the reasons of behavior and thus cannot provide insights about
the agent’s decision-making. In addition, they lack the capability of
automatically detecting situations requiring external human inter-
vention. Finally, current XRL systems operate only after learning,
making it hard to recover key aspects of the interaction.

4 CONCLUSIONS AND FUTURE WORK

We introduced a framework capable of analyzing a RL agent’s his-
tory of interaction with its environment. The framework operates
at three distinct levels, first analyzing characteristics of the task
that the agent has to solve, then the behavior of the agent while
interacting with the environment, and finally by performing a meta-
analysis combining information gathered at the lower levels. In
general, the proposed analyses generate meaningful information
from data that is already collected by standard RL algorithms, such
as the Q and V functions generated by value-based methods, and
state frequencies and expected rewards collected by model-based
techniques. In addition, we proposed statistical data that can be
easily collected by an RL agent while performing the task that
helps further summarizing its history of interaction. We then de-
tailed how, based on this interaction data, several interestingness
elements can be generated by the analyses framework.

P. Sequeira et al.

4.1 Explanation Framework

Explanation for autonomous agents requires determining not just
what to explain but also how and when. The interestingness ele-
ments described here provide the content for explanation. Through-
out the paper, we provided insights on how each element can be
used to expose the agent’s behavior to a human user, justifications
regarding its decisions, situations in which input from the user
might be needed, etc. For most of the elements, explanations can
easily be converted from the data by coupling them with natural
language templates, similarly to what has been done in [21]. For
others, visual tools like graphs and images highlighting important
situations—including relevant observation features—can be used,
in line with [2].

In an autonomy setting—particularly for learned autonomy—
explanation should be capable of operating with different modes.
As mentioned earlier, in a passive mode the agent constructs expla-
nations in response to explicit queries from the user. For example,
after training the agent in some task, the user may wish to validate
the learning by asking the agent to analyze particular situations, its
motivations, its foreseeable plans, etc. To that end, we can use the
analyses proposed in this paper to summarize the learned policy,
i.e., abstract a strategy, or identify the most important situations.

The explanation framework should also be able to operate in a
proactive mode, where the agent initiates explanation, whether to
avert surprise [6], or to request assistance. For example, while the
agent is learning, it may use the identified uncertain, unpredictable,
or low-valued situations to ask input from a user. This may be
particularly useful in situations where the agent alone is not able
to perform optimally, e.g., it is learning in a partially-observable
domain. Interaction with the user may occur in various forms,
by the user indicating which action to perform in some situation,
by providing corrective rewards [12], or by providing higher-level
guidance [23]. The explanations provided by the agent in this setting
provide the user with the context within which to give feedback to
better influence the agent’s learning process.

Being able to operate at different times is another desirable fea-
ture of an explanation framework. In that regard, we can use the
proposed framework to perform a differential analysis identifying
how the interestingness elements change given two histories of in-
teraction with an environment. By analyzing these changes, we can
explain transformations of the agent’s behavior, changes in the en-
vironment, identify novel situations, acquired knowledge, etc. This
analysis can be used during training to assess the agent’s learning
progress. Another possibility is to compare between the agent’s be-
havior during and after training to identify which challenges were
overcome after learning, and which situations remained confusing,
uncertain or unpredictable. Finally, one can apply the differential
analysis to data captured by a novice/learning agent and an expert
in the task. This can be useful to “debug” the agent’s behavior and
identify its learning difficulties, assess how its acquired goals differ
from those of the expert, etc.
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