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ABSTRACT

This paper demonstrates how to explore and visualize differ-
ent types of structure in data, including clusters, anomalies,
causal relations, and higher order relations. The methods
are developed with the goal of being as automatic as pos-
sible and applicable to massive, streaming, and distributed
data. Finally, a decentralized learning scheme is discussed,
enabling finding structure in the data without collecting the
data centrally.

CCS CONCEPTS

« Human-centered computing — Visualization; Graph-
ical user interfaces; « Mathematics of computing —
Causal networks; « Theory of computation — Unsuper-
vised learning and clustering; - Computing methodologies
— Anomaly detection.
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1 INTRODUCTION

Information visualization (IV) is concerned with the trans-
formation of abstract data, information, and knowledge into
interactive visual representations that amplify human cogni-
tion and assist humans in solving problems. IV has proven
effective for presenting important information and for mak-
ing complex analyses in solving big-data problems [7]. In
contrast to traditional IV, in Visual Analytics (VA) the user
is not just a consumer of information who interprets and
acts on visually presented results, but is the driving force of
the whole problem solving process, from problem formula-
tion, data selection and cleaning, over hypothesis generation
and testing, model building and steering computations, to
interpreting results and communicating insights. The scope
of VA is very broad, and the area has grown to encompass
a wide array of topics. A unifying principle is the need for
systems to leverage computational methods in data mining
and machine learning for big data analysis. In a VA system,
the human user and the computational process operate in
coordination in an integrated fashion, forming a continuous
and cooperative problem solving loop [3].

Here, we focus on understanding the underlying structure
of real-world data sets before applying any artificial intel-
ligence and machine learning algorithm. However, today,
making sense of data is quite hard due to high-dimensional
aspect of real-world data sets. Therefore it is important to
find different structures in the data as automatic as possible
to facilitate information visualization.

The endeavour is similar to that of the Automated Statis-
tician [14] in that we want a data set to be automatically an-
alyzed from several different aspects. However, while much
of the efforts regarding the Automated Statistician is about
characterizing time series or predicting an output variable
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from inputs, we focus on unsupervised characterization of
the data set as a whole. Also, rather than producing a fixed
report, we focus on interactive and exploratory capabilities.

2 STRUCTURE IN THE DATA

"Structure” can mean many different things. The kind of
structure we focus on here can be characterized as either
horizontal or vertical properties of the data. Considering a
(tabular) data set with different samples row-wise, and dif-
ferent features column-wise, then properties describing how
samples relate to each other can be considered as horizontal
properties, whereas properties of how different features re-
late to each other as vertical. Examples of the former kind of
structure that we focus on are clusters among samples in the
data, and finding anomalous samples or groups of samples.
Examples of the latter kind of structure are relations between
the features, such as statistical correlation, causal relations,
and a higher order similarity relations.

Clusters

Unsupervised clustering of data is a frequently occurring
task in statistical machine learning. Real world data is sel-
dom completely homogeneous, but usually contains clusters
representing different varieties of the entities under study
[2]. The reasons to detect such clusters are plenty: clusters
may represent a useful categorization of the data that is valu-
able to discern; the significance and value of the correlation
between attributes may be misleading when there are clus-
ters; or just as a mathematical trick that complex distribution
can be approximated by a sum of simpler distributions. At
the same time it is hard to reliably detect clusters. Most al-
gorithms are “unstable” in the sense that different random
starting points of iteration will lead to very different cluster-
ing results. It is also inherently hard to find the “best” number
of clusters. Furthermore, in streaming data, the clusters may
not even be fixed but change over time . Finally, in many
situations, it is not even possible to objectively measure what
the best clustering is, since there may be many equally good
alternatives.

Anomalies

In many domains, various units, such as vehicles and vessels,
are generating data over time. To diagnose a unit A at each
time period T as anomalous or not, the data for A needs
to be compared against the data from other similar groups
of units over the same time period in an online fashion.
Various representations or features can be extracted from
each of these units which can capture different anomalies.
Some anomalies might be relevant to inspect further, whereas
others can be regarded as irrelevant from the human operator
perspective. However, it is not easy to determine whether
an event is anomalous or not and a human operator often
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needs to be involved in the process. With the help of a human
operator, various deviation levels can be inspected, enriching
the view of the potential important anomalies.

Causal structure

For systems that not only learn from data but actually act
based on the resulting knowledge, it thus becomes more
and more important to identify cause and effect. This is a
very challenging task since in the general case it is easy to
discover correlations between the attributes in data but is
impossible to distinguish which is the cause or effect only
based on observational data. There are however in many
cases several hints in the data that can potentially be used.
We propose a visualization tool which incrementally and
gradually discovers causal relations between features as more
data becomes available. The results are shown in a form of
a causal graph [4] where the strength and uncertainty of
causal and correlation links are marked by color and shading

(1].

Higher-Order Structures

Appropriately representing data with regard to relevant fea-
tures for the task at hand is often critical when applying
machine learning. Specifically, by building hierarchical - or
higher-order - representations, we are able to capture mul-
tiple abstraction levels in data, examine information from
different perspectives and thereby capture various aspects of
it. Such representations are applicable both to solve machine
learning tasks at the appropriate granularity level and to per-
form exploratory data analysis on and across multiple levels
of abstraction. In this context, we have proposed a fast and
lightweight demonstrator estimating word similarities from
the text by explicitly counting second-order co-occurrences
[5]. It visualizes the similarity between words in a single
pass over data in a form of a tree starting from leaves and
building towards the root.

Visualization and Interaction

We have so far implemented separate modules for all the
above analyses. It remains to make the different analyses
accessible through a combined tool, to visualize and explore
them simultaneously. Figure 1 illustrates one possible way of
doing this. (The pictures are not representing any real data
but are manually constructed to illustrate the principles.)

The horizontal properties relating samples to each other
as described above, i.e. clusters and anomalies/outliers, are
very natural to display in the same view (figure 1a), by show-
ing each cluster in a different color and then assigning the
outliers a (markedly) different color or symbol to make them
stand out. Here it is illustrated by a scatter plot, but the same
principle works also with time series.
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Figure 1: A mock-up illustration of horizontal and vertical properties of the data, and a possible way to combine them in the

same view.

The vertical properties relating features to each other, i.e
correlations, causal relations and higher order relations, can
also be visualized in the same view (figure 1b). Different
shapes and colors can be used for the different types of re-
lations. Here direct correlations (without established causal
direction) are shown in blue, links with established causal di-
rection as narrowing links in purple, and links representing
higher order similarity in hatched orange.

Our suggestion for combining the horizontal and vertical
views into one (figure 1c) is to start with the vertical view
showing all features and their relations, and interactively
popping up the horizontal properties, as scatter plots or time
series, for those features or links that the user wishes to
explore further. In this way all the data and its different
types of structure is made readily accessible to the user to
explore.

3 SHARING KNOWLEDGE WITHOUT SHARING DATA

The predominant way of using machine learning involves
collecting all the data in a data center. The model is then
trained on powerful servers. However, this data collection
process is often privacy-invasive. Users may not want to
share private data with companies, making it difficult to
use machine learning in some situations. For example, users
generate vast amounts of data through interaction with the
applications installed on their mobile devices. This data is
often deeply private in nature and should not be shared
completely with a remote server. Even when privacy is not a
concern, having to collect data in one central storage can be
unfeasible. For example, self-driving cars generate too much
data to be able to send all of it to a server.

Federated Learning approach provides distributed and
privacy-friendly approach by allowing users to train models
locally using their sensitive data, and communicate interme-
diate model updates to a central server without the need to

—Fed-PS —Dec-HLL —~Dec-HLL-Skewed -Golf  -=Golf-Skewed

1510 20 30 40 50 60 70 80 90 100 110 120 130 140 150
number of rounds

Figure 2: Comparative analysis of performing a cluster-
ing task using our proposed scheme (Dec-HLL), federated
learning framework (Fed-PS) and gossip learning frame-
work (GOLF). Fed-PS achieves the highest performance as
a result of performing model aggregation centrally. Yet,
our scheme achieves higher performance compared to P2P
learning scheme used in Golf, particularly the performance
gap increases when the data distribution is very skewed.

centrally store the data [8, 10, 13]. Specifically, users start by
contacting the central server and downloading the learning
algorithm and a global model that is common to all users.
The algorithm trains its model locally on each device using
user data and computes the update to the current global
model. Afterwards, the new updates on the learning param-
eters obtained from the algorithm on the device of each
user are sent to the central server for aggregation step. The
server integrates the new learning outcomes as if it were
directly trained on the data and sends the aggregated global
model back to each user. This distributed approach for model
computation diminishes the need to centrally store the data,
hence, computation becomes distributed among the users
and their personal data never leaves their devices.
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In this context, we present a decentralized learning scheme
that removes the dependency on a central aggregating au-
thority in order to offer a more scalable Federated Learning
approach. Our proposed scheme organizes user devices in a
Peer-to-Peer (P2P) network allowing machine learning tasks
to cooperate among each other using Gossip protocols [12].
Furthermore, our learning scheme operates as a decentral-
ized learning and knowledge sharing approach that considers
how strongly each local update is backed up by a represen-
tative volume of data. Particularly, our scheme integrates
Hyperloglog [6] as a cardinality estimation mechanism to
maintain the number of data items used in generating and
incrementally updating the models exchanged among partic-
ipating devices. Figure2 shows performance analysis results
of our scheme (i.e., Dec-HLL) compared to two state-of-the-
art techniques: federated learning scheme (i.e., Fed-PS) [9]
and Gossip learning (i.e., Golf) [12]. As shown, our scheme
achieves higher accuracy than P2P learning scheme adopted
in Golf, specifically, our accuracy is much closer to the accu-
racy of Fed-PS when the data distribution is very skewed.

4 A PLATFORM FOR ELICITING STRUCTURE IN DATA

We have taken the first steps to implement a platform to
simplify the above discussed exploratory data analysis and
visual analytics. The purpose is to be able to get a first quick
overview of various useful structures in a data set. To make
it generally applicable, we base it on an existing big data
platform HOPS [11], develop the code in Python, and do
the interaction and visualization through Jupyter notebooks.
This make development flexible and easy, and the chances
of it to be useful for others. The intention is to publish the
entire package as open source.
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