CEUR-WS.org/Vol-2334/DLTpaper?2.pdf

Blockchain-based Invoice Factoring: from business
requirements to commitments®

Ettore Battaiola!, Fabio Massacci?, Chan Nam Ngo?, and Pierantonia Sterlini?

! Cassa Centrale Banca, Trento, Italy

ettore.battaiola@cassacentrale.it

2 University of Trento, Trento, Italy
{fabio.massacci,channam.ngo,p.sterlini}@unitn.it

Abstract

Europe has the largest global invoice factoring market for over 1.6BEuro. The purpose
of a factoring market is to address delay in payments of commercial invoices by buyers
of good and services: sellers bring their still-to-be-paid invoices to financial organizations
(factors) which provides an advance payment.

The market further growth is hampered by a number of security issues such as the
impossibility of factors to check whether an invoice has been already factored (double
pledging). A global organization collecting all factored invoices could be a solution but all
stakeholders (banks, factors, etc.) have various reasons to not wanting to share such data.

In this scenario a distributed, blockchain-based implementation is the only way forward,
We describe the security requirements and all key operations for a secure, fully distributed
Invoice Factoring Market, hereafter referred to as simply the ‘Market’.

Our distributed, asynchronous protocol simulates the centralized functionality under
the assumption of the availability of a distributed ledger. We consider security with abort
(in absence of honest majority).

1 Introduction

When a seller issues a commercial invoice to a buyer, the latter may have several months to
pay it (from 30days to 120days). In the meanwhile, the seller has to pay its own suppliers,
its workers and other operational costs. To cope with such payments delays by buyers, the
seller brings the invoice to a factor (which might be a bank or another specialized financial
organization) and try to obtain an advance payment by pledging the invoice as a collateral.
The factor grants a payment, typically a fraction of the amount on the invoice, subject to a
risk assessment involving the credit worthiness of both buyer and seller [26].

Furope has the world largest factoring market and the volume of factored invoices has
increased to 1,6BEuro in 2017 from less than a billion in 2010. This increase can partially
be explained by several factors: economic growth and therefore a larger number of invoices,
increased ability for factors to estimate risk, lower cost of capital and entrance of new actors

*This work has been partly supported by the European Union through the European Institute of Innovation
and Technology - EIT Digital under Task 18213 UNBIAS in the 2018 Action Plan (UNITN was involved in:
Task 18213-A1802 - Activation of Community/Pilot preparation; Task 18213-A1803 - Design of security and
privacy mechanisms; and Task 18213-A1804 - Platform development). We would like to thank R. Hoeksma, G.
Kuper, R. Rajani and other members of the UNBIAS team for many useful discussions. Order of authors is
alphabetical. EB provided a broad overview of the factoring business in Europe and Italy. FM and PS captured
the business requirements for the protocol and its ideal functionality, FM and CNN devised the security protocol.
Cassa Centrale Banca and the European Union are not responsible for any claim stated in this paper which
remains with the authors.

2 2 KEY SECURITY AND BUSINESS REQUIREMENTS

in the market. Yet, most small companies are poorly served by this financial market which is
instead recognized to have the potential to address the liquidity needs of small companies [16].

Two critical features of an invoice market are extremely difficult to evaluate for factors:
authenticated identities of parties involved (seller and buyer) and whether or not an invoice
has already been factored. As a result, factors can be victim of frauds by sellers that factor
non-existent invoices or factor an invoice to multiple factors (double pledging). At the same
time, buyers might be contacted by fraudulent factors that claims to have factored an invoice
of a legitimate seller and demand payments for such invoices. Even in absence of frauds, paying
the invoice to wrong organization creates a number of issues.

A quick solution would have been a centralized system where all invoices could be stored
and checked by interested parties. Yet, in spite of the existence of the factoring market for
centuries, no such entities emerged®.

The main reason for such absence is the quest for confidentiality. For different reasons,
buyers, factors, and sellers have no interest of sharing information on past invoices as it can be
used against them. For example, a buyer knowing that a seller routinely factor its invoices may
worsen the payment terms “as you will receive the money anyhow, right?” Another example: a
factor, knowing that there is an ongoing factoring relationship on the invoices between a seller
and a credit worthy buyer, may come forward to the seller offering better factoring terms than
its current factor. Such access control relations cannot be managed by traditional role based
access control [8] or attribute based access control [29] for single invoice factoring as they would
be extremely dynamic and thus costly to maintain and update [13].

To address such challenges, we propose an ideal reactive functionality where all the parties
send their private inputs to a trusted third party, which manages the market. Then we show
how this information can be captured by using a distributed ledger with commitments that
protects the integrity of the data and the confidentiality of all interested parties.

Our goal is to mimic as much as possible the actual current process and minimize the role
of cryptography and the blockchain ledger to boost the possibility of adoption by existing auto-
mated systems for invoice managements at sellers, buyers and factors. Our security protocol is
hybrid. We make use of a permissioned, distributed ledger, where authenticated peers maintain
the consensus for a distributed ledger which stores all commitments of all secret values while
the secret values are only stored locally by the peer who owns the data.

A key feature of our protocol is that access to the data must go through the data owner, i.e.
a peer who doesn’t have the desired data must request the data from the peer who owns it. The
data, if accessible by the requesting peer, will be sent through a private secure channel between
the two peers (we also called this an out-of-band channel). The commitments in the distributed
database are used only to verify the received data (and possibly for solving disputes).

2 Key Security and Business Requirements

Advancing payment on invoices (factoring) has long tradition in the banking and financial sector
[26], starting from the advance payments by Venetian Merchants well described in Shackespeare.
It is the most common way to provide liquidity to companies. The major reason for the existence
of such market is that commercial payments are often late (The Netherlands have an average
of 40days while Italy arrives to more than 80days and Spain lags behind). The problem is so
pervasive that a European Directive has been issued without much effect.

Mn contrast centralized entities dealing with transactions such as stock, commodities, and futures exist [12]
and even their blockchain based equivalent [19].

Intuitively, the entire relationship is essentially based on a “story” (the invoice) by the Seller
who told the Factor that the Buyer owed him something. The invoice reports at least

e who are the Seller and the Buyer (typically identified by the VAT number),

e the Seller’s credit (the amount) and the deadline when the payment is due,

e the payment’s bank (where the Buyer would send the money).

From the perspective of the Factor, it has document in its hand which, if not false, certifies
the Seller’s credit. Eventually a bank of the Buyer will transfer this amount into the Invoice’s
bank account and this will happen because the Buyer said to its bank this story was actually
true. However, from the perspective of the relationships we have no warranty whatsoever that
the artifact supporting the story is actually true, not that the same story has not been told to
several different people in the hope of extracting money from all.

Indeed, a seller can issue invoices as long as it wants. It might even be that the invoice is
true in the Seller’s head but if disputes arises on the debt by the Buyer, the Factor is anyway
at zero. It might also be that the Buyer has paid somewhere else and would therefore refuse
to pay. While this should be a bad practice, it happens, often by mistakes. For example if
the Seller had previous relationship with the Buyer, the Buyer might have automatically used
the previous bank account of the Seller without checking whether it has been changed in the
meanwhile.

Factoring typically takes two forms: recourse factoring and factoring without recourse. The
former is the most traditional form of factoring, essentially a loan offered by the banking system
in which the invoice is simply a speculative form of collateral. The latter is the most common
type in Italy and on most advanced financial markets. Reverse factoring is a financial (usually
exclusive) agreement mostly used by major industrial groups. Reverse factoring allows suppliers
to be paid in a timely manner for a fee that is taken care of by the group (“champion”). In
this case is the buyer itself that propose factoring to its small, weak, but strategic suppliers, as
an instrument in business negotiations to obtain better terms of special products, better terms
of delivery, and lower prices. By entering into the supply chain financing mechanism, once the
buyer has approved the invoice sent from the seller, the bank, in agreement with the buyer, will
provide the seller with advance financing. The buyer then pays the bank at the agreed time,
with low interest rate due to its financial strenght and low risk. In this way, small enterprises
with bad credit scoring can receive instant payments because “champions can guarantee the
bank that the money will be paid. Tablel summarize the differences.

A common approach to factoring is a permanent relationship between a financier and com-
mercial enterprise which is also called Portfolio factoring in which all invoices from a seller are
managed by the factor. In different markets this might have different embodiments and levels
of automation.

For example in the Italian system a common way in which this is implemented is the form
of RiBa (Ricevuta Bancaria - bill of exchange) which have a high level of automation. The
Ri.Ba. as a credit and transfer instrument, is an order addressed by the Seller’s bank to the
Buyers’ banks, requiring to pay a certain sum of money at a fixed time following an interbank
mechanism. The creditor’s bank receives a set of orders for charges (typically corresponding to
invoices) by the Seller. At due time, if the charge is authorized by each Buyer’s Bank the money
is transferred to the Seller’s Bank. In the meanwhile the Seller’s bank has already advanced
the money of the orders to the Seller.

Remark 1. The advance payment of the invoice by the Factor may not be the entire amount
mentioned in the invoice. This might happen depending on the level of risks and trust rela-
tionship between the Factor and the Seller (or the Buyer for non-recourse factoring). In the
Ttalian system an advanced payment based on the invoices brought for a Ri.Ba. might be around

4 3 RELATED WORKS

Table 1: Types of Factoring Mechanisms

Term Risk Description
Recourse The factor advances the payment to the seller but the risk of the buyer failing
Factoring to pay is born by the seller, who is accountable to the factor in the event

of defaulting buyers. The operation may or may not notified to the buyer.
The factor has a primary relationship with the seller.

Non- The seller transfers the ownership of the credit to the factor in change for an
Recourse advance payment. The factor becomes new creditor of the buyer and bears
Factoring the risk for a defaulting buyer. The transfer is normally notified to buyers

at the time in which their credits become due. The factor has a relationship
with both seller and buyer.

Indirect Based on the the line of credit attributable to each seller, the buyer prepares
(reverse) a payment service proposal for the seller in agreement with the factor. The
Factoring buyer is directly responsible to pay the factor which has a primary relation-

ship with the buyer.

80-100%.

Portfolio factoring makes it more cost-efficient to perform risk assessment, as it is close to
impossible for the Seller to double pledge the invoices as they are all managed by its Factor.
Yet, it limits the scope of potential customers to those willing to factor all invoices rather than
a small selection. The ability to factor single invoices further increases the potential customer
base but presents the concrete risk of double pledging.

A Blockchain system could bring several advantages:

1. the certainty of the uniqueness of the invoice,

2. the (potential) acknowledgement of the buyer,

3. the assurance of the advance of that invoice (i.e. it was anticipated by bank x on that

day y).

Yet, there is also an important constraint that stems from the PSD2 European Directive.
From the viewpoint of the participating banks and payment service providers the transaction
must be open and all banks in the blockchain that have a business with the parties involved in
the transaction must be potentially able to read it. In other words, access to the system must be
determined in an automatic way by having a relationship with one of the parties of the invoice.

This challenge is a severe stumbling block that makes Role-Based Access Control [8] as
well Attribute-Based-Access Control [29] unsuitable for the purpose as they are both based
on attributes and roles of the subjects [13] whereas we need to consider the relationship of the
subjects with attributes of the object (namely the invoice).

3 Related Works

Distributed Payment Network The most prominent example of a distributed payment network
is Bitcoin [22], whose core components are the Proofs-of-Work and the Blockchain. The current
bottleneck of Bitcoin is its low throughput in terms of transactions-per-second (TPS). (Roughly,
10 TPS compared to 2000 TPS achieved, e.g. by Visa.) Several variants/extensions of Bitcoin
appeared recently, including ZeroCoin [21], ZeroCash [27], and Ethereum [7].

Blockchain-based FinTech Blockchain is widely adopted to implement distributed financial
markets (see the survey [4] for a wide range of distributed financial applications) but most of

them store data in clear and the blockchain only provides integrity and fault-tolerance. This
allows the network nodes to read the sensitive data even though they cannot alter or contaminate
them. As an example DecReg [23] is a private blockchain-based protocol for preventing double-
pledging in Invoice Factoring Market. Even though the protocol relies on a Central Authority
to regulate the access control to the sensitive data from outside, the peers who maintain the
network storage still have access to the stored data.

Cryptographic Accumulators Cryptographic-based Invoice Factoring Market was introduced
as e-Invoice Factoring Problem which is obtainable through Strong Accumulators from Collision-
Resistant Hashing [3]. However cryptographic accumulators [6, 25] only allow to prove mem-
bership in a finite set hence it addresses only a small part of the Invoice Factoring Market
functionality which is the double-pledging problem.

Secure Multiparty Computation (MPC) Seminal feasibility results in the theory of MPC
established that any functionality is securely realizable via a distributed protocol in the com-
putational (resp. information-theoretic) setting, assuming honest minority (resp. majority) [28,
10, 2, 5, 24]. The recent progress on efficient implementations of general-purpose MPC proto-
cols (see, e.g., [1]) opened up the way to advanced applications, e.g. to privacy-preserving data
mining [18].

4 Ideal Functionality

A typical evolution of the market includes i) Initialization of the market and Onboarding the
participants; ii) Invoice Registration and Acknowledgement where a Seller and a Buyer
agree on an invoice’s data; iii) Invoice Factoring and Proposal Acknowledgement where a
Seller and a Factor agree on and assign (when the Factor advances the agreed amount) an invoice
factoring proposal, and finally iv) the Payment Registration and Invoice Settlement
where the Buyer of an invoice pays and the corresponding assignee (either the Seller or a Factor
- in the case where the invoice is factored) receives the payment.

For the actual transfers of money, all parties rely on a set of trusted parties called Payment
Service Providers® (PSPs) to route the money transfers. In typical embodiment. Those might
be banks or other organisations licensed to undertake payment services. In this respect one
can use traditional payment systems or novel cryptographic ones. See Massacci et al. [20] for
a comprehensive survey and the corresponding functionalities that must be implemented.

Remark 2. To keep the protocol simple, we omit the operations where a Buyer disagrees with a
Seller on an invoice registration or when a Factor disagrees with a Seller on an invoice proposal
(after negotiation). Such steps would obviously be present in a full commercial implementation.

For expository purposes, both in the ideal functionality Fcg’s and in the protocol Ilpe’s
description we allow an adversary to abort the computation after receiving its own intermediate
outputs. This flavor of security is known as security with aborts [14]. The protocol can be
extended to avoid scot-free aborts using penalties [17] as done in [19] for the futures market.

Initialization and Onboarding. As shown in Fig. 1, an invoice factoring market comprises
of a set of sellers S, buyers B, factors F, and the set of known and trusted PSPs P. The market
needs also to store a set of invoices I, input by sellers, and a set of money transfers M, input

2 PSPs are also trusted parties like the ideal functionality Fcjr, we might as well integrate their functionality
directly into the ideal functionality Fcjp. However, we detach them here for explicit description of the interactions
between the PSPs and other parties. The relationship between PSPs themselves is heavily regulated and therefore
trusted. The relationship between the creditor and the debtor isn’t assured and is the target of our proposal.

6 4 IDEAL FUNCTIONALITY

Initialization Initially fix the set of recognizable PSPs P; set ¢ = 0 and other stored sets
asempty: B=S=F=1=M=0;

Onboarding Upon receiving:
(join, buyer:B), add B=BU {B} if B ¢ B;

[]
e (join, seller:S), add S=SU{S} if S ¢§;
e (join, factor:F), add F=FU{F} if F ¢ T,

Figure 1: Initialization of the invoice factoring market and onboarding parties

only by the PSPs. The market evolves in rounds, at round ¢t = 0, the set of PSPs is known
while the sellers, buyers and factors sets are empty. A party can onboard into the market by
sending its (join, id) to Fcig.

Remark 3. PSPs are responsible to certify the correspondence to the protocol actions to some
actions in the real world. This corresponds to value creation into the system (See step 1 in
[20]), i.e. a PSP announces into the systems that some money transactions have taken place in
the real world. Hence it is critical that they are strongly authenticated with an authentication
mechanism that ties their identities to identities in the real world [15].

Buyers and Sellers could also be authenticated but they could still introduce fraud even if
authenticated. For example Buyer and Sellers could collude to create bogus invoices to extract
money from Factors and disappear. However, the presence of a strong elDentity mechanisms
[15] would diminish the number of frauds and would be anyhow necessary for dispute resolution
in the real world.

Invoice Registration and Acknowledgement. As illustrated in Fig. 2, to register an
invoice into the Fcg:
1. The seller S first composes a standardized invoice document D. The seller S must include
some key information such as
e H(D) a hash (e.g. SHA-1) of the readable invoice document, serves as a unique ID
of an invoice;
e S its own ID; and B the ID of the buyer;
e v the value of the invoice; and e the expiration date of the invoice.
We also use the notation map(H, (s1, - .., s,)) to indicate the sequence (H(s1), ..., H(sy))-
2. The seller S then can register these information as an invoice I into Fcg as well as send
the invoice document to the Buyer B. The buyer status of I is now set as I.og = sent.
3. The buyer B can now pickup the invoice I, cross-check it with the (out-of-band) received
invoice document. If everything is correct, B will acknowledge the invoice I, i.e. the
buyer status of I is now set as I.cp = acked?.
4. The PSP P for handling payment related to this invoice is also specified during invoice
registration since it has to be trusted by the Seller S.

Invoice Factoring and Proposal Acknowledgment. To factor an invoice I, three parties
must participate: the seller S, the factor F' and the PSP P (Fig. 3).

3The B could also abort the invoice registration by sending (abort). As we said, we omit the operation when
Buyer dis-acknowledges an invoice for some reason.

Invoice Registration Seller S composes the invoice document D (which is the readable
form of the invoice), sends it out-of-band to the buyer B, and register the important
information into the ideal functionality Fcg.

Upon receiving (send, H(D), S, B, v, e, P) from S € S, the functionality Fcjg will

1. create [and add I=1UI;

2. set the status I.o = (I.hash, I.sell, I.buy, I.val, I.exp,I.pay) to
(H(D)’ S’ B’ v’ e’ P);

append [.ocp = sent into [;

send (send, S, H(I,map(H,I.0))) to all parties;

send (send, I, I.0) to I.sell and I.buy;

send (send, I, map(H, I.0), I.sell, I.val) to I.pay.

o Gt

Invoice Acknowledgement B upon receiving (send, I,1.0), cross-checks the invoice doc-
ument D, and I, if they are consistent, sends (ack, H(I)) to Farr,

Upon receiving (ack, H(I)) from B € B, the ideal functionality Fci will

1. retrieve I from I;
2. update I.cp = acked;
3. send (ack, B, H(I,map(H,I1.0))) to all parties;

Figure 2: Invoice registration and acknowledgment

1. S and F must first negotiate out-of-band the factoring term, i.e. the advanced amount
I.amount, which requires S to send the invoice document to the factor F.

2. The seller then can make an invoice proposal and register it into the ideal functionality,
i.e. the factor is updated as I.factor = F, the advanced amount is set as I.amount = v,
and the factor status is now I.cr = factor_sent.

3. The factor will now be able to retrieve I from the ideal functionality F¢jr and cross-checks
the data for consistency, then either acknowledge (by sending ack_factor, where the factor
status will be changed to I.op = factored)?.

4. The PSP P will also be notified by the ideal functionality of the factoring situation for
it to handle payment correctly. The PSP P is also responsible for updating the factor
status to I.op = fpaid when it receives the correct payment from F.

Payment Registration and Invoice Settlement. The final function of the ideal function-
ality is payment registration and invoice settlement (Fig. 4). As the round ¢ advances, the
invoice expiration notification is sent to all related parties (I.sell, I.buy, I.factor and I.pay).
1. The payment registration starts with a payer (could be the buyer B when s/he pays the
invoice or the factor F' to advance the payment of the invoice) out-of-band comes to a
PSP and make a payment with an [.hash as the reference.

2. The PSP checks if the paying amount is consistent with the payer and the expected

amount, then routes the payment to the corresponding payee of the invoice:
(a) If the payer is the buyer B, the amount must be at least I.val; and the payee will be
the seller S (invoice is not factored) or factor F' (if invoice was successfully factored);

4Similar to the invoice acknowledgment, we omit the operation where the Factor or the Seller withdraw the
proposal.

4 IDEAL FUNCTIONALITY

Invoice Proposal Registration Upon receiving (factor, F'; I.amount, I.hash) from S €
S the ideal functionality will

1.

G

Invoice Proposal Acknowledgement The Factor F' upon receiving (factor, I), cross-
checks the invoice document and I, if they are consistent, sends (ack_factor, I) to
FaiF;

Upon receiving (ack_factor, I) from F € F:
1.

CU

retrieve I from I;

update I.factor = F, I.amount = v, I[.op = factor_sent;
send (factor, S, H(I,map(H,I.0))) to all parties;

send (factor, I, I.0) to I.sell and I.factor;

send (factor, I, map(H, I.0), I.factor, I.amount) to I.pay;

retrieve I from I;

update I.cp = factored;

send (ack_factor, F', H(I,map(H,I.0))) to all parties;

send (ack_factor, I, I.0) to I.sell and I.factor;

send (ack_factor, I, map(H, I.0),I.factor, I.amount) to I.pay;

Figure 3: Invoice Factoring

Payment Registration Upon receiving (pay, I.hash) from P € P:

1.
2.

retrieve I from I;

if I.op = factored, update I.op = fpaid, send (pay, I.or) to I.sell, I. factor and
P.

if I.op € {acked, expired}, update = .opbpaid, send (pay, I.op) to I.sell (or
I.factor if I.op = fpaid), I.buy and P.

send (pay, P) to all parties;

Figure 4: Payment registration and invoice settlement

(b) If the payer is the factor F', the amount must be at least I.amount.
3. The PSP then registers the payment into the ideal functionality where the new buyer/
factor status of the invoice will be updated accordingly.
4. The related parties will also be notified of the new status.

Security of Fcig. The ideal functionality Fcjr clearly captures the required data access con-
trol summarized in Table 2 for an invoice factoring market that integrates the trusted PSPs.

It also captures an important functionality for payment system. Every participant must be
able to show that it has performed a due diligence process on the data that it has received from
the ideal functionality.

Table 2: Invoice Factoring Market Read/Update Permission
Field/Actor S S* B B* F F*F? P P* Pp

Permission Read Invoice Data
o the s - I.hash y Y vy ooy oy y
n e side we provide the ac- —
cess control matrix for an invoice I I.sell =5 Yy Yy Yy Yy Yy Yy
and the generic Seller S™ # I.sell, Ibuy =B Yy Yy Yy Y Yy
Buyer B* # I.buy, Factor F* # —
I.factor and PSP P* # I.pay and I.factor =r Yy Yy Yy
Pp which is the PSP of the Factor I.pay =P y Y Y Y Y Y
F = I.factor. We also have Fac-
tor F? which is also different from™ "~ Lal Y Y Y Y Y
I.factor but has received from the Iexp Yy y Yy Yy Yy
seller the information on the invoice
I for a quote. As one can immedi- I.amount Yy Y Y
ately see, only Dynamic ABAC can I.UB Yy Yy Yy Yy
set appropriately this access control
matrix. I'UF S Y Y _ Y
Permission Update Invoice Data
l.op Y Yy
l.og Y Yy

5 Cryptographic Building Blocks for the Committment-
based Scheme

Distributed Ledgers are ledgers maintained by a network of nodes. The most impor-
tant property, e.g. for distributed payment networks, is consensus among the nodes, while
still being fully decentralized. We use a distributed ledger, e.g. HyperLedger in PBFT mode
(https://www.hyperledger.org) as a byzantine fault tolerant storage for each protocol step,
i.e. each broadcast is replaced with a write into the distributed ledger. While we mention
HyperLedger in our implementation, we can replace any sub-protocol with other protocols for
the same task, without affecting security.

Digital Signature Scheme is a tuple of polynomial time algorithms (KGen, Sig, Vf) that
runs as follows.

(sk,vk) < KGen(\) takes as input the security parameter A and returns a pair of signing key
sk and verifying key vk.

o <« Sig(sk, M) takes as input the signing key sk and the message M, outputs a signature o.

{0,1} = Vf(vk, M, o) takes as input the verifying key vk, the message M and the signature o,
return 1 upon successful signature verification and 0 otherwise.

For the formal definitions of digital signature we refer readers to [11].

Commitment Schemes. We rely on a non-interactive commitment scheme Com, with do-
main {0,1}*. We typically write [v] := Com(v;r,) for a commitment to value v using ran-
domness r, € {0,1}*. To open a given commitment [v], it suffices to reveal (v,r,), so that a
verifier can check that [v] = Com(v;r,). For the proof of security we need that [v] statistically
hides the committed value v, and after publishing [v] it is computationally infeasible to open
the commitment in two different ways. We follow [9] for the formal definitions.

10 6 PROTOCOL CONSTRUCTION

Initialization All parties initialize ¢ = 0, and all the empty sets:

1. The set of invoices I = 0;
2. The set of payments transfers M = (;

All parties accept a set of verifying keys for the PSPs: P = {P.vk}

Onboarding Each party ¢ runs (sk,vk) < KGen(\) then broadcasts vk to all parties.
Other parties stores vk associated with the party ID.

Figure 5: Initialization and onboarding parties into the protocol Ilpg

6 Protocol Construction

In this section we describe the protocol Ilpr that securely realizes the ideal functionality Fcif.
The security of IIpr will also be sketched accordingly.

Initialization and Onboarding. The protocol initialization is as simple as all parties set
the initial round ¢ = 0 and the set of invoices I and payments M to be initially empty. The
set of verifying keys of the PSPs is also fixed at the beginning of the protocol P = { P.vk}°. To
onboard a party, it requires that party to generate a pair of signing key sk and verifying key vk.
The party then simply broadcasts the verifying key vk to be stored by all other parties. The
initialization is illustrated in Fig. 5.

Invoice Registration and Acknowledgement. As shown in Fig. 6, to register an invoice
into the protocol:
1. The seller S first does the same as in the ideal functionality, i.e. composes a standardized
invoice document D, extracts all the important information I.c = (I.hash, I.sell I.buy,
T.wal, I.exp) from the invoice document. We recycle the notation map(Com, (s1,...,5,))

to indicate the sequence ([[s1], ..., [$n]). The information is then committed into map(Com, I.0)

and [, map(Com, I.0)].
2. The initial buyer status I.op = sent is also committed into [I.03].
3. The seller S then broadcasts [I.op] together with [I, map(Com, I.o)] and only sends the
private data to the buyer B.
4. The PSP P also receives map(Com, I.0), I.sell, I.val from the seller S.
5. The buyer B signs the invoice [I,map(Com,I.c)] with sk to obtains the signature oI,
updates the buyer status to acked (to be committed to [I.ocp = acked]).
6. The buyer B sends the updated status I.0p = acked to seller S then broadcasts the tuple
(o, [I.0p = acked]) together with [I, map(Com, I.0)].
7. The other parties verify the signature before accepting the data.
8. Finally seller S forwards oI and I.op = acked together with [I, map(Com, I.0)] to factor
Fif I is factored to F.
We note that (1) whenever a party sends some private data to another party in a step in
the protocol, the corresponding randomness used for the commitment of that private data is
also included. Hence we omit the randomness in the protocol description for simplicity; (2)
whenever a party receives some private data from another party, a check for data consistency

5We assume the PSPs have run key generation and obtain a pair of signing key P.sk and verifying key P.vk
before the protocol starts.

11

Invoice Registration Seller S

extracts invoice details, i.e. I.hash, I.sell I.buy, I.val, I.exp, from the invoice document D;
commits map(Com, I.0);

commits and broadcasts [I, map(Com, I.0)];

commits and broadcasts [[.op = sent];

sends I.o0, map(Com, I.o), the corresponding invoice document D and I.ocp = sent to the Buyer B;
sends map(Com, I.0), I.sell, I.val to PSP P;

SO Wi

Invoice Acknowledgement Buyer B upon receiving the private data from the seller S;

1. signs and broadcasts oI = Sig(sk, [I, map(Com, I.o)]) together with [I, map(Com, I.0)];
2. update I.ocp = acked;

3. commits and broadcasts [I.cp = acked] together with [I, map(Com, I.0)];

4. sends I.op = acked together with [I, map(Com, I.0)] to Seller S;

Seller S forwards ol and I.ocp = acked together with I.hash to factor F if I is factored to F.

Figure 6: Invoice Registration and Acknowledgment in the distributed protocol Ilpr

between the private data and the public commitments must be carried out; and (3) whenever
a signature verification or a check regarding the data consistency fails, the complaining party
open the private data to show the inconsistency and the protocol is aborted®.

Invoice Factoring and Proposal Acknowledgment. We illustrates the protocol steps to
factor an invoice in Fig. 7.

1. Asin the ideal functionality, S and F' must first negotiate out-of- band the factoring term,
i.e. the advanced amount I.amount. The out-of-band negotiation requires S to send the
invoice document D to the factor F.

2. The seller S then can register an invoice proposal into the protocol by committing
and broadcasting [I.factor = F|, [I.amount = v], [I.cp = factor_sent] together with
[Z, map(Com, I.0)].

As usual, S forwards the private data I.o, I.op, I.factor, I.amount and [.op to F.

4. The other parties only accept the new proposal if there is no previous proposal, i.e. there
is no tuple ([I.factor], [I.amount], [I.cF]) for [I, map(Com,I.0)].

5. The PSP P is also involved in this step:

(a) It is required to generate a signature o’ I on the invoice proposal [I.hash, I.factor,v].

(b) P then sends the signature o'l to S who will forward it to F.

(¢) The factor F' then can acknowledge the proposal similarly to the invoice acknowledg-
ment, i.e. commits and broadcasts [I.cr = factored] together with [I, map(Com, I.0)]
while sending I.op = factored together with [I, map(Com,I.0)] to Seller S and the
PSP P.

@

Payment Registration and Invoice Settlement. The protocol steps for payment handling
is described in Fig. 8. The invoice expiration is moderated by the current assignee of the invoice,
let it be the seller S or the factor F, by committing and broadcasting [I.cp = expired] together
with [I, map(Com, I.0)]. The private data is sent to the buyer B and the PSP P is also notified.
The PSP P has an important role in finalizing invoice proposals and invoice settlements.
1. As in the ideal functionality, P receives payment out-of-band from a payer and processes
the payment with the stored information.

6The private data and the public commitments can be then used for post-protocol dispute resolution.

12 6 PROTOCOL CONSTRUCTION

Invoice Proposal Registration Seller S

1. extracts the factoring term, i.e. v, from the agreement with the factor F’;

2. commits and broadcasts [I.factor = FJ], [I.amount = v], [I.cp = factor_sent] together with
[1, map(Com, I.0)];

3. sends I.factor = F, I.amount = v, I.ocp = factor_sent together with [I, map(Com, I.0)] to factor
F

4. sends map(Com, I.0), I.factor = F, I.amount = v together with [I, map(Com, I.c)] to PSP P

5. obtains o’'I = Sig(sk, [[I.hash]|I.factor|v]) from PSP P and forwards it to factor F};

All parties reject the proposal if there is already a tuple ([I.factor], [I.amount], [I.cr]) for
[1, map(Com, I.0)].
Factor F' checks 1 = Vf(vk, o', [[I.hash]|I.factor|v]).

Invoice Proposal Acknowlegdement Factor F' upon receiving the private data from Seller S

1. update I.ocp = factored;

2. commits and broadcasts [I.cp = factored] together with [I, map(Com, I.0)];

3. sends I.op = factored together with [I, map(Com, I.0)] to Seller S;

4. sends map(Com, I.c), I.factor = F, I.amount = v together with [I, map(Com, I.c)] to PSP P;

Figure 7: Invoice Factoring in the distributed protocol Ilpe

Invoice Expiration Seller S (or Factor F') can check for one’s currently assigned invoice I at every tick t:

1. if I.exp > t, update I.op = expired;

2. commits and broadcasts [I.0p = expired] together with [I.hash];

3. sends I.op = expired together with [I, map(Com, I.c)] to Buyer i;

4. sends I.hash, I.sell (or I.factor) together with [I, map(Com, I.c)] to PSP P.

Payment Registration The payment service provider P will

1. extracts the payment details, i.e. pr, v, [I.hash] and find the data related to [I.hash];
2. if I.op = factored (the Factor is paying according to the factoring term):

(a) check pr = I.factor, v > I.amount;

(b) update I.op = fpaid and route payment to I.sell;

(c) commits and broadcasts [I.cp = fpaid] together with [I, map(Com, I.0)]

(d) sends I.op = fpaid together with [I, map(Com, I.c)] to Seller S and Factor F';
3. else if v > I.val (the Buyer is paying the invoice, could be after the expiration date):

(a) update = .opgbpaid and route payment to current assignee of [I.hash];

(b) commits and broadcasts [I.cp = bpaid] together with [I, map(Com, I.0)];

(c) sends I.ocp = bpaid together with [I, map(Com, I.o)] to current assignee of [I.hash];
4. otherwise simply reject the payment.

Figure 8: Finalizing Invoice Proposal and Invoice Settlement in Ilpe

2. P then registers the payment into the protocol by committing and broadcasting [I.op =
fpaid] to finalize an invoice proposal (or [I.cp = bpaid] to settle an invoice) together with
[L, map(Com, I.0)].

3. The private data is forwarded to the involved parties, i.e. the seller S (in case of invoice
settlement and the invoice is not factored), the factor F' (in case of invoice proposal
finalization or the factor has been assigned the invoice), the buyer B (in case of invoice
settlement).

6.1 Security Analysis (Sketch)

We sketch here the key step of the security proof. As in standard simulation-based security
proofs, we must exhibit an efficient simulator interacting with the ideal functionality Fcir that
is able to fake the view of any efficient adversaries corrupting a subset I of the untrusted parties
in an execution of protocol Ilpf.

13

On a very high level, our simulator & works as follows. During the simulation, it commits to
zero values for each commitment forwarded by an honest party in the real protocol and relies on
the ideal functionality Fcir to register, acknowledge invoices, invoice proposals and payments.

The hiding property of the commitment scheme implies that the above simulation is in-
distinguishable to the view generated in a mental experiment where the simulator S is given
the real inputs corresponding to each honest party. The only difference between this mental
experiment and a real protocol execution is that in the former experiment the market evolves
using the data held at the beginning by each corrupted party, whereas in the latter experiment
the adversary can try to cheat and fake the data of a corrupted party (e.g., by committing
or sending wrong value). However, the binding property of the commitment scheme and the
security of the digital signature scheme ensure that such cheating attempts only succeed with
a negligible probability.

This allows us to conclude that the view simulated in the ideal world (with the functionality
Fcie) is computationally indistinguishable from the view in a real execution of the protocol,
thus establishing the security of Ilpf.

7 Concrete Architectural Implementation

We report here on the proposed implementation in the UNBIAS project”.

The ultimate goal of this network is to digitize and digitalize the invoicing process amongst
buyers and sellers. UNBIAS defines following roles: Seller, Buyer, Payment Switch /PSP, Factor.

The first three roles are what we see as the core roles of the network and they form the
basis on which the UNBIAS initiative is built. Factor is the role which will help achieve the
objective of the UNBIAS is that is to enable easy access to funds for SMEs. There are more
roles possible in this network and would be considered to be added in future.

The Distributed ledger is hosted by the Peer Nodes (Dense Compute) and each peer node has
copy of ledger locally. Peer nodes are the nodes which do the heavy tasks like doing consensus
and verifying commitments. Since these tasks are quite resource intensive, the systems running
the node have to be high configuration hardware to support the load. Also only these nodes
have the copy of ledger so eventually it would need high amount of storage preferably with high
performance.

Apache Kafka is the consensus protocol for Hyperledger fabric. Kafka is primarily a dis-
tributed, horizontally-scalable, fault-tolerant, commit log. A commit log is basically a data
structure that only appends. No modification or deletion is possible, which leads to no read-
/write locks, and the worst case complexity O(1). There can be multiple Kafka nodes in the
blockchain network, with their corresponding Zookeeper ensemble. Verification of commitment
is necessary to trust the validity of the invoice transactions reported on the ledger. An hash
has to be verified against the hashes in the ledger and its chain to the root it is an resource
intensive task. Hence it should be run on peer node.

8 Conclusion

The market for invoice factoring can significantly benefit from the deployment of distributed
ledger solution. A blockchain would make it possible for factors to check whether an invoice
has been already factored (double pledging) without forcing all stakeholders (banks, factors,
etc.) to share and disclose their data.

"https://unbias.eu/.

https://unbias.eu/

14 REFERENCES

In this paper we have described the security requirements and all key operations for a secure,
fully distributed Invoice Factoring Market. Our distributed, asynchronous protocol simulates
the centralized functionality under the assumption of the availability of a distributed ledger
and offers security with abort (in absence of a honest majority).

Looking at the first results from the introduction of the Italian obligation of electronic
invoicing®, there seems to be a reduced propensity of Italian companies to rely on their bank(s)
as a provider of services for electronic invoicing. In an economic system characterized by multi-
banked companies?, the tight bond with a single bank is experienced more as a penalty than as a
real advantage and companies prefer the use of intermediaries specialized in electronic invoicing.
Given this scenario, then the adoption of electronic invoicing could only be an incentive for the
development of a blockchain dedicated to the certification of the uniqueness and source of the
invoices, without restricting the potential scope of the blockchain itself.

References

[1] David W Archer, Dan Bogdanov, Benny Pinkas, and Pille Pullonen. Maturity and performance
of programmable secure computation. Proc. of IEEE S&P, (5):48-56, 2016.

[2] Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Completeness theorems for non-
cryptographic fault-tolerant distributed computation. In Proc. of ACM STOC, pages 1-10. ACM,
1988.

[3] Philippe Camacho, Alejandro Hevia, Marcos Kiwi, and Roberto Opazo. Strong accumulators from
collision-resistant hashing. In Proc. of ISC, pages 471-486. Springer, 2008.

[4] Fran Casino, Thomas K Dasaklis, and Constantinos Patsakis. A systematic literature review
of blockchain-based applications: current status, classification and open issues. Telematics and
Informatics, 2018.

[5] David Chaum, Claude Crépeau, and Ivan Damgard. Multiparty unconditionally secure protocols.
In Proceedings of the twentieth annual ACM symposium on Theory of computing, pages 11-19.
ACM, 1988.

[6] David Derler, Christian Hanser, and Daniel Slamanig. Revisiting cryptographic accumulators,
additional properties and relations to other primitives. In Cryptographers’ Track at the RSA
Conference, pages 127-144. Springer, 2015.

[7] Ethereum. A next-generation smart contract and decentralized application platform, 2015.

[8] David Ferraiolo, Janet Cugini, and D Richard Kuhn. Role-based access control (rbac): Features
and motivations. In Proc. of ACSAC, pages 241-48, 1995.

[9] Oded Goldreich. Foundations of cryptography: volume 2, basic applications. Cambridge university
press, 2009.

[10] Shafi Goldwasser. How to play any mental game, or a completeness theorem for protocols with an
honest majority. Proc. of ACM STOC, pages 218-229, 1987.

[11] Shafi Goldwasser, Silvio Micali, and Ronald L Rivest. A digital signature scheme secure against
adaptive chosen-message attacks. SIAM Journal on Computing, 17(2):281-308, 1988.

[12] Larry Harris. Trading and exchanges: Market microstructure for practitioners. Oxford University
Press, 2003.

[13] Vincent C Hu, David Ferraiolo, Rick Kuhn, Arthur R Friedman, Alan J Lang, Margaret M Cogdell,
Adam Schnitzer, Kenneth Sandlin, Robert Miller, Karen Scarfone, et al. Guide to attribute based
access control (abac) definition and considerations (draft). NIST special publication, 800(162),
2013.

8http://www.gazzettaufficiale.it/eli/id/2018/10/23/18G00151/sg.
9 An Ttalian company may use on average the services of three-four banks and some companies more than a
dozen.

http://www.gazzettaufficiale.it/eli/id/2018/10/23/18G00151/sg

REFERENCES 15

(14]

(15]
[16]

(17]

(18]
(19]
20]
21]
(22]
23]
24]
(25]
[26]
27]
(28]

29]

Yuval Ishai, Jonathan Katz, Eyal Kushilevitz, Yehuda Lindell, and Erez Petrank. On achieving the
“best of both worlds” in secure multiparty computation. SIAM journal on computing, 40(1):122—
141, 2011.

Gerhard Jakisch. E-signature versus e-identity: the creation of the digital citizen. In Proc. of
DEXA, pages 312-316. IEEE, 2000.

Leora Klapper. The role of factoring for financing small and medium enterprises. The World
Bank, 2005.

Ahmed Kosba, Andrew Miller, Elaine Shi, Zikai Wen, and Charalampos Papamanthou. Hawk:
The blockchain model of cryptography and privacy-preserving smart contracts. In Proc. of IEEE
SEP, pages 839-858, 2016.

Yehida Lindell. Secure multiparty computation for privacy preserving data mining. In Encyclopedia
of Data Warehousing and Mining, pages 1005-1009. IGI Global, 2005.

F. Massacci, C. N. Ngo, J. Nie, D. Venturi, and J. Williams. Futuresmex: Secure, distributed
futures market exchange. In Proc. of IEEE S€P, pages 453-471, 2018.

Fabio Massacci, Chan-Nam Ngo, and Julian M Williams. Decentralized transaction clearing be-
yond blockchains. 2016. Available at SSRN: https://ssrn.com/abstract=2794913.

Tan Miers, Christina Garman, Matthew Green, and Aviel D Rubin. Zerocoin: Anonymous dis-
tributed e-cash from bitcoin. In Proc. of IEEE S&P, pages 397-411. IEEE, 2013.

Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system. 2008.

Joris Oudejans, Zekeriya Erkin, et al. Decreg: A framework for preventing double-financing using
blockchain technology. In Proceedings of the ACM Workshop on Blockchain, Cryptocurrencies and
Contracts, pages 29-34. ACM, 2017.

Tal Rabin and Michael Ben-Or. Verifiable secret sharing and multiparty protocols with honest
majority. In Proc. of ACM STOC, pages 73-85. ACM, 1989.

Leonid Reyzin and Sophia Yakoubov. Efficient asynchronous accumulators for distributed pki. In
International Conference on Security and Cryptography for Networks, pages 292-309. Springer,
2016.

Freddy R Salinger. Factoring: the law and practice of invoice finance. Sweet & Maxwell, 2006.
Eli Ben Sasson, Alessandro Chiesa, Christina Garman, Matthew Green, Ian Miers, Eran Tromer,
and Madars Virza. Zerocash: Decentralized anonymous payments from bitcoin. In Proc. of IEEE
SE€P, pages 459-474. IEEE, 2014.

AC Yao. Protocols for secure computations (extended abstract). in proceedings. In Proc. of IEEE
FOCS, pages 160-164, 1982.

Eric Yuan and Jin Tong. Attributed based access control (abac) for web services. In Proc. of
IEEE ICWS. IEEE, 2005.

https://ssrn.com/abstract=2794913

	Introduction
	Key Security and Business Requirements
	Related Works
	Ideal Functionality
	Cryptographic Building Blocks for the Committment-based Scheme
	Protocol Construction
	Security Analysis (Sketch)

	Concrete Architectural Implementation
	Conclusion

