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Abstract. Constrained polynomial optimization problem on permutation set is 
explored. For the problem, an equivalent formulation with a convex objective 
function and functional constraints is formed based on forming convex exten-
sions of all functions involved in the model. New approaches to the construc-
tion of convex extensions of polynomials from the permutation set are pro-
posed. Original optimization methods using a polyhedral-spherical structure of 
the set are offered. Decomposition schemes underlying some global optimiza-
tion techniques on permutations are described. Results of numerical experi-
ments are presented. 
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1 Introduction  

Various real-world problems can be modeled as optimization problems over the per-
mutation set [1-5]. Among them are scheduling, assignment, routing problems and 
many others. They form a class of permutation-based problems (PBP) [6, 7]. Some of 
them allow embedding into Euclidean space and considering them as Euclidean com-
binatorial sets. Permutation set and it's Boolean invariant - permutation matrices set - 
are well studied [8-10]. For instance, it is known H-representations of their convex 
hulls, main combinatorial characteristics, solutions of linear optimization and projec-
tion problems, etc. However, real problems require fulfilling many conditions on 
permutations. In mathematical models, they are represented by additional constraints, 
typically spoiled the original combinatorial structure of permutation set and requiring 
developing specific technics for solving the corresponding optimization and feasibil-
ity problems. From a theoretical point of view, permutation, as well as some of its 
subsets, are of interest. Among such subsets are even, odd, alternating, distance, cy-
clic, circular, complete permutations, etc. [11-14]. It is a separate problem to construct 
additional constraints to single out any of the specific subsets. When it is solved, we 
come to a constrained PBP again. The paper is dedicated to studying permutation set 
embedded into the Euclidean space from different points of view in order to offer new 
approaches to constrained permutation-based optimization. 



2 Optimization Problem of Polynomials on Permutations 

Consider the optimization problem on permutation set in the following formulation. 

Let Π  be permutation space on which functional Π 1: R   is defined. We are 

looking for Π   such that 

Π
arg min ( )


    ,                                                (1) 

where Π Π  is a feasible set. 
We perform a mapping Π: E   between elements Π  and vectors 

  n
1 2 nx = x ,x ,...,x E R  , i.e., suppose   

π -1x = ψ(π), = ψ (x) Π, x E  . 

Combinatorial sets for which such mapping can be established are called Euclidean 
combinatorial sets. Permutation set is Euclidean combinatorial one, which is espe-
cially important for further research in this paper. 

Denote  n = 1,...,nJ . Let  i nG g ,  i J  be a set of real numbers such that 

1 2 n0 g g ... g    . To each   Π1 n,...,      we correspond vector 

  n
1 2 nx = x ,x ,...,x R  , assuming  

ii πx = g , n i J . 

The set of such vectors  1 2 nx = x ,x ,...,x  induces a finite point configuration 

n
nE (G) R . Let  1 2 nG g ,g ,...,g  be a multiset of real numbers such that 

1 2 n0 < g g ... g   . 

Then n
nE (G) R  be permutation set with repetitions. For both sets nE (G)  and 

nE (G) , we will use the same notation E .  

Suppose function 1f : E R is such that  

-1f(x)= ξ(ψ (x))  

for all x E . 
 Consider a discrete optimization problem:  to find 

x E E
x arg min f (x)

 
 ,                                           (2) 



 

where ΠE (    .  

The problems (1) and (2) are equivalent in the sense that if a solution x E  of the 
problem (2) is found, then 

1( x )      

 is a solution of the problem (1). We reformulate (2) in the form 

 f x min , x ,                                     (3) 

where set   is given by the constraints: 

x E ,                                            (4) 

 i kx 0, i  J ,                             (5) 

            i m kφ x = 0,  i \ J J .                             (6) 

and functions    if x ,  φ x ,  mi J , are defined on E . 

Thus, 

             i k i m kX= x E : (x) 0, i J , (x) 0,i J \ J       .                                              

. 

3 Properties of Polynomials on Permutation Set 

Properties of the problem (3) - (6) are determined by properties of permutation set E  

and behavior of functions    i mf x ,  φ x , iJ  on nR , as well as on nE R . Let 

functions    if x ,  φ x ,  mi J  be polynomials. 

Theorem 1. For any polynomial  f x , there exists a constant С  and a polyno-

mial  f x , that can be represented as a positive linear combination of monomials, 

such that    f x f x С   for any x E . 

Proof of the theorem follows from the fact that any symmetric function takes a 
constant value on E . We choose a positive linear combination of monomials as the 
symmetric function. Then any monomial with a negative coefficient can be repre-
sented on E  by a positive linear combination of monomials and a constant. 

An important property of a polynomial function 1f : E R  is the possibility of 

constructing its convex extension to a convex set Х conv E . 



Definition 1. A function 1f : X R  defined on a convex set X  is called a con-

vex extension of function 1f : E R  onto X  if  

   f x = f x  

for any x E Х  . 

To indicate that equality of functions holds on E , we will use a notation 

   
E

f x f x .   

The theory of convex extensions of functions defined on combinatorial sets 

mapped onto nR , is considered in [15] and is based on the following theorem. 

Theorem 2. Let E = vert conv E . Then for any function 1f : E R  there exists a 

convex function  1f : conv E R , such that    
E

f x f x  . 

Definition 2. A finite set E  satisfying a condition E = vert conv E  is called vertex-

located. 

A convex hull of any finite set nE R  is a polytope P conv E  whose vertices 

form a vertex located set. Permutation set E is vertex located and coincides with a set 
of vertices of the permutohedron P  described by the following linear system 

n n

i i
i 1 i 1

x g
 

                                                       (7) 

i i
i i 1

x g


 
  ,                                              (8) 

where the summation is over various indexes from subsets nJ   of the cardinality 

 . 

Note that for any  , equality 

n n
2 2

i i
i 1 i 1

(x ) ( g )  
 

                                       (9) 

holds for points of E . 
Thus, set E  belongs to a family (9) of hyperspheres centered at the point 

n( , ,..., ) R      with a radius 



 

1/ 2n
2

i
i=1

r = (g )
 

   
 
                                        (10) 

and a parameter 1R . The minimum value of the radii is attained at 

n

i
i=1

1
= g

n
  .                                                (11) 

Theorem 3 [16]. A point x E  if and only if it satisfies the system (7)-(9). 

Definition 3. Finite set nE R  that belongs to both a hypersphere and a vertex set 
of a polytope is called polyhedral-spherical. 

Properties of polyhedral-spherical sets were studied in [17–19] and adapted to 
permutation set. 

4  Convex Extensions of  Polynomials on Permutation Set 

Let us present new approaches to constructing convex extensions of polynomials 
defined on permutation set E . The extensions will be formed by induction.  

By assumption 

n n
0E R int R   . 

Clearly, any monomial with a positive coefficient is positive on n
0R . For convex 

extensions of monomials, we also require positivity on n
0R  

Remark 1. A square of any positive convex function is also a convex function. We 
will use this fact for a recursive construction of convex extensions monomials from 
already constructed ones of lower degrees. 

A monomial of a degree k   is represented in the form: 

i
1 n

n
k( k )
ik ...k

i 1

F ( x ) x


 , 1 2 nk k ... k k 1     .           (12) 

If k 1 , then 

1 n

( 1 )
ik ...kF ( x ) x , 

where i jk 1, k 0  , nj J , j i .  

 A convex extension of this function will coincide with the original one and positive 

on n
0R , i.e.,  



1 n 1 n

( 1 ) ( 1 )
k ...k k ...kF ( x ) F ( x ) . 

For a quadratic monomial 
1 n

( 2 )
k ...kF ( x )  we offer the following convex extension 

onto nR  

1 n

2
i i j n

( 2 ) n n
k ...k 2 2 2

i j k k i j n
k 1 k 1
k i, j

x , if k 2, k 0 j , j i;

F̂ ( x ) 1
( x x ) x g , if k k 1, i, j , j i.

2  


     

    

        
     

 

J

J
 

Positive convex extension of 
1 n

( 2 )
k ...kF ( x )  onto n

0R  has the form 

 1 n 1 n

( 2 ) ( 2 )
k ...k k ...k

ˆF ( x ) max 0,F ( x ) . 

We construct a positive convex extension onto n
0R   for monomial (12) of a de-

gree k  under the assumption that for any monomials of degree less k  such extensions 
have been constructed. It is true 

1 n 1 n 1 n

( k ) ( j ) ( k j )
k ...k j ... j l ...lF ( x ) F ( x )F ( x )   

     
1 n 1 n 1 n 1 n

2 2 2( j ) ( k j ) ( j ) ( k j )
j ... j l ...l j ... j l ...l

1
F ( x ) F ( x ) F ( x ) F ( x ) ,

2
  

    
 

 

where  

i i i nj (k 1) 2 , l k j , i       J . 

Based on the induction hypothesis for monomials of degree less k  and taking into 

account Remark 1 and Theorem 1, we can construct a convex extension 
1 n

( k )
k ...kF̂ ( x ) . 

Then a positive convex extension on n
0R  is 

 1 n 1 n

( k ) ( k )
k ...k k ...k

ˆF ( x ) max 0,F ( x ) . 

The considered approach to constructing the convex extension is generally compli-
cated and yields no smooth functions. Depending on a class of functions in the 
problem (3)-(6), simpler algorithms can be offered. In the article [17], such an ap-
proach to the construction of smooth convex extensions of monomials defined on 
permutation set was proposed. 



 

Theorem 4. For any monomial 
1 nk ...kF ( x )  of the form (10) defined on a set E , 

there exists a smooth convex extension onto n
0R  given by a formula 

 i
1 n

n nk k
k ...k i i

i 1 i 1

F ( x ) g x




 

 
   
 
  , 

where   

n
i

i
μ= max k

J
. 

Corollary. For any polynomial defined on a set n
0E R , there exists a smooth 

convex extension onto n
0R . 

5 Optimization of Polynomials on Permutations with 
Constraints 

Consider the optimization problem (3)-(6) and implement the following equivalent 
transformations to it. Represent equations (6) in the form 

   i i m kx 0, x 0, i J \ J .      

Next, for polynomials  f x ,  i mx , i J  , we construct the following convex ex-

tensions onto a convex set P  E : 

    
E

f x = f x ,  

   i i m
E

x = x , i J   , 

   i i-m+k q m
E

x = x ,  i J \ J , q 2m k     . 

Let us form an optimization problem 

  f x min , x ,                    (13) 

where the set   satisfies (3) and the system of inequalities 

 i qx 0, i   J ,                             (14) 

Problems (3)-(6) and (13),(14) are equivalent in the sense that 




x X x X

arg min f (x) arg min f (x)
 




. 

Let us consider  X  in the form  

X=E W  , 

 where  

 i qW x : g (x) 0, i J    . 

As a result, we have constructed a polyhedral relaxation of the original problem as 
a convex optimization problem 

  f x min , x W ,                         (15) 

One of the interesting properties of permutation set is its decompositions into per-
mutation sets of lower dimension lying on parallel planes. For instance, if 

 1 2 n nx = x ,x ,...,x E ( ) G , then for any ix  G holds 

i
n n-1 iE ( )= E ( ) xG G  , 

where  

 i
i n= \ x , iG G J  . 

Evidently, when solving the problem (13),(14), such a decomposition induces con-
vex optimization problems again. In fact, the offered branching scheme, used recur-
sively, allows organizing branch and bound schemes to solve the problem (15). In this 
case, lower bounds correspond to solutions of the induced convex programs, where 
the number of levels of a decision trees dos not exceed n . Also, note that a specifics 
of the permutohedron and permutation set allows strengthening the lower bounds 
[20]. 

Let us describe some approaches to optimization on permutations based on its 
polyhedral-spherical structure. One of them uses an idea of optimization of convex 
objective function on the hypersphere described by equation (9). In the general case, 
the exact methods to solve this problem are unknown. An exception is a linear or 
convex quadratic function  f x . This feature underlies an approach to solve the 

quadratic optimization problem on E  offered in [20]. Clearly, an intersection of a 
hypersphere with a hyperplane yields a lower-dimension sphere. This allows perform-
ing a decomposition of the original problem into simpler ones in accordance to the 
decomposition of E  into hyperplanes parallel to facets of permutohedron, followed 
by solving induced problems of quadratic function optimization on a sphere of lower 
dimension. 

It is of interest to apply the penalty method to the problem (15). We offer an ap-



 

proximate method for solving this problem based on using of a polyhedral-spherical 
representation of the set E , i.e., its presentation as the intersection of polytope (7), 
(8) with hypersphere (9). Consider  the following penalty function: 

      
q 2

k k i
i 1

F( ,x ) f x + max 0, x


     . 

It is clear that, given that penalty coefficients k 0  , the following sequence of 

optimization problems 

k
k

F( ,x ) min, x


   , 

consists of convex programs, whose solutions, under rather general conditions and 

k   , converge to a solution of the problem (15). 

Let us introduce one more optimization approach based on the use of the following 
penalty function: 

2n
2 2

k k k k i
i 1

( , ,x ) F( ,x ) (x ) r


 
          

 
 , 

where k 0  , k 0   are penalty coefficients, r  and   are given by expressions 

(10), (11), respectively. 
Then for sufficiently large k  and k  , a solution of the following problem 

k k( , ,x ) min, x                                               (16) 

can be considered as an approximate solution to the problem (3)-(6). 

When solving optimization problems on permutohedron P , auxiliary linear and 
quadratic optimization problems arise, which are solvable explicitly using the proper-
ties of permutation set  [16,21,22]. For instance, the minimization of a linear function 
on E  is reduced to the ordering of its coefficients. Similarly, the problems of finding 
the nearest vertex and facet of the permutohedron are solvable. This allows offering 
modifications of the conditional gradient method and the gradient projection method 
for solving nonlinear optimization problems on the permutohedron. 

As a model constrained optimization problem on permutation set, the problem of 
balancing rotating discretely distributed masses was considered [23]. There are n  
blades with masses i n, i  J ,  that are placed on a balanced disk with a given angular 

step. It is required that masses of successively placed blades should differ by at least 
the value 1  an at most 2 .  The goal is to minimize the total unbalance of the whole 

system. Mathematically, the problem can be represented as the optimization problem 
on the permutation set E  of the following  objective function 



1/ 22 2n n

i i
i 1 i 1

f ( x ) x cos 2 i n x sin 2 i n
 

                   
   

subject to constraints 

1 i 1 i 2 n-1x x , i      J , 

1 n 1 2x x     . 

The set E  is induced by  1 2 nG , ,...,    . A test problem of balancing was 

formed and solved with the following parameters:  

n 100 , 1 0,2  , 2 1,0  , 

i ni , i   J . 

PC with characteristics i3/8G/SSD 256G was used.  A solution was obtained by the 
penalty method in the formulation (16) with parameters k 10  , k 5  . Namely, 

the total unbalance of 0.31 was obtained for the running time 17 sec. In addition, the 
test problem of balancing rotating 96 blades masses presented in [23] was solved 
resulted in the total unbalance 0.07 obtained over 9 sec. 

6  Conclusions 

The paper presents new approaches to solving permutation-based problems allowing 
embedding into the Euclidean space. The main result consists in the reduction of an 
arbitrary problem of conditional optimization of a polynomial function defined on a 
set of permutations to optimization of a convex objective function with convex func-
tional restrictions on a vertex located set. Thus, for any permutation-based optimiza-
tion problem on permutations with arbitrary constraints, an equivalent problem is 
constructed, where convex extensions of its objective function and functional con-
straints participate. 

Now, geometric properties of permutation set and permutohedron, as well as fea-
tures of continuous and convex optimization methods, become applicable to the solu-
tion of new classes of combinatorial optimization problems. The results of this paper 
can be extended to optimization problems on other vertex-located and polyhedral-
spherical sets, in particular, on Boolean and binary ones, known by a variety of prac-
tical and theoretical applications [2,5,8-11]. In addition, since the sets of even, odd, 
alternating, distance, cyclic, circular, complete permutations are subsets of the of 
permutation set , the above results also apply to them. 
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