
Algorithm selection with librec-auto

Masoud Mansoury1 and Robin Burke2

1 DePaul University, Chicago IL, USA
mmansou4@depaul.edu

2 University of Colorado, Boulder, Boulder CO, USA
robin.burke@colorado.edu

Abstract. Due to the complexity of recommendation algorithms, ex-
perimentation on recommender systems has become a challenging task.
Current recommendation algorithms, while powerful, involve large num-
bers of hyperparameters. Tuning hyperparameters for finding the best
recommendation outcome often requires execution of large numbers of
algorithmic experiments particularly when multiples evaluation metrics
are considered. Existing recommender systems platforms fail to provide
a basis for systematic experimentation of this type. In this paper, we de-
scribe librec-auto, a wrapper for the well-known LibRec library, which
provides an environment that supports automated experimentation.

1 Introduction

A recommender system aims to predict users’ preferences and suggests desirable
items to them. Due to their power and effectiveness in generating personalized
recommendations and consequently increasing companies’ profit, such systems
have become an essential tool in electronic commerce systems. There are a wide
variety of real world examples like video recommendation in Youtube, item rec-
ommendation in Amazon, and music recommendation in Pandora. In all these
applications, specific recommendation algorithms are employed for generating
recommendations to users.

Research on recommender systems has expanded to a wide variety of topics
as new problems emerged. This expansion introduced new evaluation criteria for
measuring the performance of recommender systems and made recommendation
algorithms, while accurate, very complicated, computationally expensive, and
sensitive to parameter values. Understanding the nature of these algorithms
requires extensive experiments over combination sets of parameters, multiple
data sets, and different metrics.

Depending on the characteristics of the data set and evaluation criteria, spe-
cific recommendation algorithm will be needed and assignments for its parame-
ters may vary [1]. Some algorithms may work well on dense data sets, some may
work well on binary data sets, and some may result in better recommendations
on contextual data sets. Thus, performing extensive experiments is required to
find the best algorithm. Also, evaluation criteria are another factor in experimen-
tation. In addition to accuracy, which is the most important metric for achieving

j
Text Box
The 1st Interdisciplinary Workshop on Algorithm Selection and Meta-Learning in Information Retrieval (AMIR), 14 April 2019, Cologne, Germany. Editors: Joeran Beel and Lars Kotthoff. Co-located with the 41st European Conference on Information Retrieval (ECIR). http://amir-workshop.org/ 



2 Masoud Mansoury and Robin Burke

personalization, non-accuracy measures such as diversity, novelty, fairness, and
coverage have become recognized as important measures of recommendation ef-
fectiveness. Since some of these metrics are in conflict with each other, extensive
experiments are required to achieve a trade-off between them.

Hyperparameters play an important role on the performance of many rec-
ommendation algorithms, requiring careful tuning. For example, the integrated
neighborhood and singular value decomposition model3 [9] involves seven hyper-
parameters (i.e., bias regularization, user bias regularization, item bias regular-
ization, implicit feedback bias regularization, learning rate, maximum number of
iterations, and number of factors). Simple calculation shows that, for instance,
exploring 5 possible values for each parameter on a single data set will entail
running almost 80,000 different experiments. Manual configuration of so many
experiments would be tedious and error-prone, then motivating the design of a
system that can significantly reduce the configuration and setup time for each
experiment.

Moreover, reproducibility of previous experiments is key for conducting fur-
ther analysis in the future. Doing this, it is necessary to save all elements of
each experiment and retrieve them in the future. This is very useful particularly
when analyzing recommendation results with different metrics is needed.

However, while a number of recommendation platforms have been developed
for recommender systems researchers: LibRec [7], Surprise [8], MyMediaLite [6],
LensKit [4], Mahout [11], pyRecLab [12], LKPy [3] and others, none of these
tools supports automated experimentation. LibRec is well-known for its large
library of implemented recommendation algorithms (more than 70 as of this
writing), its attention to efficiency, and its ability to evaluate algorithms relative
to a variety of tasks and metrics. LibRec works well for single-shot algorithm
and data set evaluation, but it is not well-suited for reproducible, automated,
large-scale experimentation.

We have implemented librec-auto, a Python-based wrapper that encapsu-
lates LibRec and supports the automation of repetitive experiments. In [10], we
presented a beta version of librec-auto along with a demo. In this paper, we
present the functionalities of librec-auto in detail and introduce several new
features implemented in the most recent version. We also comprehensively com-
pare librec-auto with well-known existing recommendation tools and discuss
its advantages over other tools.

2 Some existing recommendation tools

In this section, we introduce some well-known recommendation tools for rec-
ommender systems research and discuss their main features along with their
advantages and disadvantages.

3 SVD++ in Librec.



Algorithm selection with librec-auto 3

2.1 Librec

LibRec 2.0 [7] is a mature, flexible, open-source Java-based platform for recom-
mender systems experimentation.4. It supports a large variety of recommenda-
tion algorithms and a large library of evaluation metrics, supported by an active
community of developers and maintainers.

However, LibRec does not naturally support large-scale experimentation.
Similar to other recommender systems platforms, LibRec is implemented as
a chained series of operations: splitting testing and training data, training an
algorithm, and executing the algorithm and evaluating results.

This monolithic design creates several problems for researchers. One is that
intermediate operations are not saved and repeating similar experiments entails
redundant computation. It is also the case that training/testing splits are not
saved when LibRec computes them. Running with the same random seed guar-
antees the same split will be computed, but because there is no explicit storage
of the training data, it is difficult for a researcher to perform detailed analysis
and debugging where knowledge of the specific input data of each fold would be
helpful.

Finally, LibRec uses a simple key-value configuration system based on the
Java Properties class. The flat structure requires a multi-part key-naming scheme,
which places significant cognitive load on the experimenter to remember the
meaning of each key and the appropriate set of keys required for each algorithm.

2.2 MyMediaLite

MyMediaLite 3.11 [6] is an open-source C# platform5 for recommender systems
experimentation6. It supports both ranking and rating prediction tasks and pro-
vides a wide range of recommendation algorithms for running experiments. It
also has useful functionalities like grid search for optimizing hyperparameters
and model saving .

Even though MyMediaLite saves computed models, it does not save the inter-
mediate files and outputs. Also, it does not have a configuration file for specifying
the hyperparameters for its recommendation algorithms.

2.3 Other recommendation tools

There are a wide range of other platforms for experimentations on recommender
systems: Mahout [11], Surprise7 [8], Lenskit 8 [5], pyRecLab9 [12], LKPy10 [3]
and others.

4 Source code available at github.com/guoguibing/librec
5 It has Perl code as well.
6 http://www.mymedialite.net/index.html
7 Source code available at https://github.com/NicolasHug/Surprise
8 Source code available at https://github.com/lenskit/lenskit
9 Source code available at https://github.com/gasevi/pyreclab

10 Source code available at https://github.com/lenskit/lkpy



4 Masoud Mansoury and Robin Burke

Fig. 1. Operation flow of librec-auto. Bold elements are added to basic LibRec func-
tionality.

These platforms aim to provide a comprehensive tools for practitioners and
researchers for experimenting and developing recommendation algorithms, but
none provide tools for large-scale automated experimentation with a large library
of state-of-the-art algorithms.

3 Librec-auto

librec-auto is a wrapper built around the core LibRec functionality to enhance
the platform’s ability to support reproducible large-scale experiments. The tool is
currently under development with additional features planned. The core LibRec
library is used unmodified, with some additional Java functionality implemented
in a separate set of Java classes.

Figure 1 shows the operation of librec-auto and its relationship to the
core LibRec system. New elements of the system are indicated in bold font.
As shown, the system reads an XML configuration file, which is converted into
the properties file (or files) required by LibRec. The data from each training
/ split is saved to that future experiments can share a common experimental
configuration. Unlike in core LibRec, recommendation generation and evaluation
are separate steps, so that previously-generated recommendation results can be
reused where possible.

Another key element of the librec-auto implementation is the ability (de-
scribed below) to iterate over different parameter values in one scripted experi-
ment. The system performs all of the necessary bookkeeping and allows the user
to write scripts that summarize over all of experiments, including the creation
of visualizations.

3.1 Flexible configuration

LibRec uses a simple unstructured key-value properties file to define the param-
eters related to an experimental configuration. The file format does not capture
the relationships between parameters and it can be difficult to determine, for ex-
ample, what parameters are appropriate for which algorithms. librec-auto uses



Algorithm selection with librec-auto 5

an XML-based configuration file, with greater self-descriptive power, and the
ability to perform error and consistency checking. The properties files required
by LibRec are produced and managed by librec-auto, making the process less
tedious, especially when multiple, similar, experiments are being performed.

Figure 2 shows a fragment of one such XML configuration file, showing how
the element labels and embedding structure clarify the experimenter’s intent.
This part of the file defines an algorithm to be tested, in this case ItemKNN,
with its configuration settings – the number of neighbors to be used and the
similarity metric. The results are to be computed in recommendation lists of
size 10 and evaluated by the nDCG measure. Note that multiple values are
listed for neighborhood-size. The system will therefore run an experiment for
each given value.

3.2 Installation

As usual for Python programs, librec-auto provides pip style installation. It
makes the installation process easy and provides access to code everywhere for
running experiments.

On a machine equipped with Python and Java and with Librec and librec-auto

installed, the next step is to create a configuration file. The configuration spec-
ifies the data to be operated on, the type of evaluation to be performed, the
algorithms to be run, and other operations.

3.3 Automation

As the example shows, one of the important capabilities of librec-auto is its
ability to automate multiple experiments across algorithmic hyperparameters,
supporting tuning and sensitivity analysis. This type of functionality will be
familiar to users of scikit-learn’s GridSearchCV model selection tool [2].

For each combination of parameters, the system creates a separate subdirec-
tory with its own configuration and output files. A separate instance of LibRec
runs on each configuration, allowing for parallel operation.

3.4 Multi-threading

Some existing tools (for example, Librec and LKPy) allow parallel operation of
individual experiments by computing folds of a cross-fold validation experiment
separately. This is sufficient when single experiments are performed. librec-auto,
on the other hand, has the capability of running multiple experiments in parallel.
This allows for parallelization efficiencies for a wider range of experiment types.

3.5 Intermediate results

Because recommendation algorithms can be computationally expensive at scale,
librec-auto is designed to help minimize wasted computational effort. As much
as possible, the intermediate results are stored, including training/test splits and
algorithm outputs, as noted above.



6 Masoud Mansoury and Robin Burke

<alg >

<class >ItemKNNRecommender </class >

<similarity >cos </similarity >

<neighborhood -size >

<value >10</value ><value >20</value >

</neighborhood -size >

</alg >

<eval >

<metric >NDCG </metric >

<list -size >10</list -size >

</eval >

Fig. 2. Fragment of librec-auto XML configuration file

Because intermediate outputs are recorded, it is possible in librec-auto

to execute multiple evaluation metrics on a single set of experimental results.
LibRec allows the computation of multiple metrics when the experiment is being
run, but applying a different metric after the fact requires starting over, with
potentially significant computational cost. Note that error-oriented and ranking-
oriented experiments are not compatible: the results computed for a ranking
metric are recommendation lists and can be evaluated with ranking metrics
such as precision. librec-auto is aware of this distinction and can warn the
user if there is an attempt to apply an metric incompatible with the computed
results.

3.6 Summarization

The multiplicity of experiments that librec-auto can perform can yield a large
amount of data that researchers must collate and examine. It would be tedious
to have to pore over LibRec’s log files to attempt to discover the differences
between different parameter settings.

To make such interpretative tasks more efficient, librec-auto allows for a
final summarization phase to follow the completion of a set of experiments. This
is effectively one or more scripts that the experimenter can write to process the
log file data into a useful format. Using plotting libraries such as matplotlib, it
is possible to create and save visualizations that the researcher can quickly scan.

4 Conclusion

In this paper and our associated demo, we presented librec-auto, a tool for au-
tomating recommender systems experimentation using the LibRec 2.0 platform.
Our tool retains the benefits of working with LibRec while making large-scale
experimentation easier, more efficient, and more reproducible. Some of impor-
tant features of librec-auto presented in this paper are: flexible configuration,
installation, automation, multi-threading, intermediate results, and summariza-
tion.



Algorithm selection with librec-auto 7

References

1. Adomavicius, G., Zhang, J.: Impact of data characteristics on recommender
systems performance. ACM Transactions on Management Information Systems
(TMIS) 3(3) (2012)

2. Buitinck, L., Louppe, G., Blondel, M., Pedregosa, F., Mueller, A., Grisel, O., Nic-
ulae, V., Prettenhofer, P., Gramfort, A., Grobler, J., Layton, R., VanderPlas, J.,
Joly, A., Holt, B., Varoquaux, G.: API design for machine learning software: expe-
riences from the scikit-learn project. In: ECML PKDD Workshop: Languages for
Data Mining and Machine Learning. pp. 108–122 (2013)

3. Ekstrand, M.D.: The lkpy package for recommender systems experiments: Next-
generation tools and lessons learned from the lenskit project. arXiv preprint
arXiv:1809.03125 (2018)

4. Ekstrand, M.D., Ludwig, M., Kolb, J., Riedl, J.T.: Lenskit: a modular recom-
mender framework. In: Proceedings of the fifth ACM conference on Recommender
systems. pp. 349–350 (2011)

5. Ekstrand, M.D., Ludwig, M., Kolb, J., Riedl, J.T.: Lenskit: a modular recom-
mender framework. In: RecSys ’11 Proceedings of the fifth ACM conference on
Recommender systems. pp. 349–350 (2011)

6. Gantner, Z., Rendle, S., Freudenthaler, C., Schmidt-Thieme, L.: Mymedialite: a
free recommender system library. In: Proceedings of the fifth ACM conference on
Recommender systems. pp. 305–308 (2011)

7. Guo, G., Zhang, J., Sun, Z., Yorke-Smith, N.: Librec: A java library for recom-
mender systems. In: UMAP Workshops (2015)

8. Hug, N.: Surprise, a python library for recommender systems. In: URL:
http://surpriselib.com (2017)

9. Koren, Y.: Factorization meets the neighborhood: a multifaceted collaborative fil-
tering model. In: Proceeding of the 14th ACM SIGKDD international conference
on Knowledge discovery and data mining. pp. 426–434. ACM (2008)

10. Mansoury, M., Burke, R., Ordonez-Gauger, A., Sepulveda, X.: Automating rec-
ommender systems experimentation with librec-auto. In: Proceedings of the 12th
ACM Conference on Recommender Systems. pp. 500–501 (2018)

11. Seminario, C.E., Wilson, D.C.: Case study evaluation of mahout as a recommender
platform. In: RUE@ RecSys. pp. 45–50 (2012)

12. Sepulveda, G., Dominguez, V., Parra, D.: pyreclab: A software library for quick
prototyping of recommender systems. In: ACM RecSys Poster (2017)


