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Abstract. Object-oriented development of software systems and their 

components is based on the application of object-oriented models, technologies 

and tools that support them. Real systems are characterized by complexity, 

which is caused by problems describing the properties and behavior of subject 

domain objects. A description of the subject domain is given in the natural 

language, which can be considered an input language at the stage of object-

oriented analysis. Syntax-oriented processing of sentences in the input language 

forms the output of the model software system. The conversion of the input 

language into a certain output is reduced to the construction of some translator, 

which, for any transformations of the sentences of the input language, uses the 

structure of this sentence. The ideas on which this concept is based include the 

ideas of formal grammars and semantic calculations for symbolic chains. These 

questions are the basis of the work under consideration. 

Keywords: syntactic analysis, semantic analysis, semantic graph, classes, 

relations, object model 

1 Introduction 

Object-oriented programming (OOP) created a new style for programming systems by 

modeling subject domains (SD) with objects and their interfaces. The theoretical and 

applied conceptions of improved theory of design SD from objects of functional, 

interface data and isomorphism reflection of SD function of objects to the program 

components. [1] 

We have a description of the subject environment in the natural language at the 

input. Our first step is to generate a report of the subject environment in the artificial 

language gen2, explicitly created to describe the subject environments. This is the 

notion stage. The solution is to statistically process the input data that do not have a 

clearly defined structure, and to generate the structured data that can be processed 

based on the classical algorithms of computational linguistics. 
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At the next stage, the generation of a semantic graph is performed based on the 

subject environment description in the language gen2. For this purpose a 

mathematical machine of context-free grammars is used. 

The object model is generated once the semantic graph is constructed. At this 

stage, we apply the algorithm providing the use of design patterns and the results of 

the previously employed program runs. Generation based on the design patterns is 

completed; generation based on the previous program runs is in the stage of 

implementation. 

The object model is stored in the form of structured information in the computer 

memory. There are no difficulties in generating software code or UML diagrams [2] 

[3]. At this stage, the frame code generation in C++ is implemented. The generation 

of results in other formats is a work in progress. After that a user can edit the model 

using the graphical interface. The database that contains the user's edits and that may 

be used for further runs is at the implementation stage. 

2 Mathematical model of the problem 

The language L is in development. This language allows to describe an object-

oriented model. We can use the context-free grammar G  to simplify the stage of the 

analysis of input data to determine the language L . 

 )(GLL   (1) 

A context-free grammar can be represented as a set of four objects [4] [5]: 

 ),,,( SPTNG   (2) 

where N  is a finite set of nonterminal characters (or variavles) of the language, T  is 

a finite set of terminal characters of the language, P  is a limited set of production 

rules which are the rules for replacing nonterminal symbols. Production rules have the 

following form:  

 )( ,)( , TNTN     (3) 

where   are variables which are placeholders for patterns of terminal symbols that 

can be generated by the nonterminal symbols,  are string of variables and terminals. 

S is the original grammar symbol from the set of non-terminal characters N  

Now let us consider the stage of semantic analysis. Assign a set of valid 

identifiers I  that include chains of Latin alphabet characters and digits whose length 

does not exceed 255 characters. The first character in a string must be a letter. 

At the first stage of semantic analysis, we should construct a semantic graph S : 

 ),,( EVS   (4) 



 

where V  is the set of vertices of the graph, E  is the set of edges of a graph,  is an 

incidence function 

Let us define the functions for each vertex of the graph: 

 IVVertexName  :  (5) 

 } ,{ : ypeOperationTeEssenceTypVVertexType   (6) 

Formula Error! Reference source not found. matches each vertex of a graph with a 

unique identifier. The expression Error! Reference source not found. specifies the 

type of vertex. Each vertex can describe the subject environment or the operation or 

process that occurs in the subject environment. According to the type of vertex, we 

can select two subclasses of the set of vertices: 
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Define the EdgeType function for the edges of the graph: 

 EdgeTypesEEdgeType  :  (8) 
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The expression (8) specifies the graph type for each edge. The set of edge types (9) 

includes a significant number of elements. Let us split the set of edges into subclasses 

by type: 
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The type of edge imposes certain restrictions on the type of vertices that are incident 

with it: 

 VertexTypeEdgeTypesRoleA   (11) 

 VertextypeEdgeTypesRoleB   (12) 
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For each type of the relation, functions (11) and (12) determine the types of vertices 

to which the relation can be applied. The Boolean function (13) accepts the relation at 

the input and returns the logical truth at the output if the relation is validated. If (13) 

returns error, then the relation is set incorrectly and should be excluded from the 

graph. 

Breakdown proceeds according to the classic syntax-directed translation scheme 

[6]. Syntactic parser initiates a lexical analyzer to receive the next non-terminal, and 

initiates semantic non-terminal procedures thereby guiding the semantics analysis. 

In our case, the semantic procedures complement the semantic graph (4) with new 

vertices and edges. Each edge is validated against (13) before being added to the 

graph.  

The object-oriented model begins construction after the semantic graph is made. 

This model is a set of classes, which can be described as (14):  

 MModelClassModel   },{  (14) 

Let  be the set of all object-oriented models. Each class can be represented as an 

ordered triple: 

 IClassNameMethodAttributeNameClass   ,}{|}{|  (15) 

where Name is the name of the class from the set of valid identifiers I ; 

}{Attribute is a set of class attributes; }{Method  is a set of methods. 

Define the class attribute as a pair: 

 ModelTypeINameTypeNameAttribute   , ,|  (16) 

where Name is the name of the attribute from the set of valid identifiers I , Type  is 

an attribute data type. It is one of the classes that are described in the Model . 

The class method can be represented as a triplet: 
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where Name is the name of the method from the set of valid identifiers I , 

ReturnType  is the data type of the value returned by the method; 

}|{  ArgTypeArgName  is a set of method arguments, each represented by a pair, 

which includes the name of the attribute ArgName and its data type ArgType . 

Let us consider the algorithm, which is the basis for the semantic graph to 

construct the object-oriented model. 

1. Build a set Model  by expression (14): 

 }|,),({ EssencesvvVertexNameModel   (18) 

2. For each vertex Vv  



 

a. Obtain all the edges E , adjacent to the vertex v . 

b. Construct a partially ordered set  ,E , where relation of the partial order ""   

will allow determining the sequence where it is necessary to process the edges 

passing from this vertex.  

c. ),,( ModeleionApplyRelatModel   where MMEionApplyRelat : accepts 

the arc of the semantic graph Ee with its model Mm  at the input and 

returns model Mm  , supplemented by additional classes, methods, attributes, 

and the relationship between classes at the output.  

3 Stages of syntactic analysis 

Syntactic analysis is performed using the top-down parsing algorithm. This section 

presents the employed grammar. The initial nonterminal character is represented by 

start . It displays nonterminal characters sentence  separated by a dot. After the last 

nonterminal of the sentence, the point can be applied selectively. The nonterminal 

symbol sentence  defines the sentence. A sentence in this context is a unit that 

describes one or another connection between the entities of the subject environment. 

There are such sentences as: 

 )',' % (  ationsingleOpere"can" spacword spaceoperations   which describes the 

actions that are inherent to the essence of the subject environment; 

 )',' % (  "   ationsingleOperspace"specifyspaceworderationsabstractOp   which 

describes the connection between entities, when one entity is a subclass of another; 

 e word "is" spacword spacetiongeneraliza  is a description of the connection 

between entities, when one entity is a subclass of another; 

 wordts" space  "implemenword spacetionimplementa   is a description of the 

connection between entities, when one entity can also be classified as another 

entity; 

 rds) space wos" | "has" ("containword spacecontains   is a connection when 

one or more entities are part of another entity; 

 ncompositio is a complex connection that allows you to establish complex 

hierarchical relationships between the entities of the subject 

environment;

posites"space "comace words e "and" sp      spac                    

"ace "leafse words sp"has" spacord space n" space wCompositioncompositio "
 

 empty  is an empty sentence that does not carry information content and is 

ignored. 

Nonterminals are used to describe primary syntax components [6] [7]: 

 ][ zZaAalpha   is a letter; 

 ]90[|  alphaalnum  is a letter or a digit; 



 

  ]\[\ tnspace  –one or more indentation characters: space characters, tab 

characters, new line characters; 

 *  alnumalphaword  – word, a sequence of letters and digits, which should 

begin with a letter;  

 ',' % wordwords  – sequence of words separated by a comma. 

The form in which this grammar is defined differs from the classical Backus-Naur 

notation [8]: 

 the abbreviation BA%  introduced for expressions of the form *) ( ABA ; 

 regular expressions are specified instead of nonterminal characters; 

 exit rules are arranged in descending order of priority. 

4 Stage of semantic analysis. Construction of the semantic 

graph 

The stage of semantic analysis is challenging to formalize [10]. This section deals 

with the language constructs of the gen2 language and describes the semantic actions 

that process them. 

4.1 The generalization relation 

The generalization relation syntax looks like: 

 BAAA n  is ,..., 21  (19) 

Generalization establishes a relation where one or several entities are subclasses of 

another entity. Inheritance of classes is an analog of generalization in the object-

oriented programming [11] [12] [13]. The essence of this operation is to indicate that 

a specific entity can perform the same actions and have the same properties as another 

entity but at the same time possess its specific features. 

The semantic graph is supplemented with vertices during processing of this design: 
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and arc :e  

 IsTypeeEdgeTypevve  )(  ),,()( 21  (21) 

In the second stage of the semantic analysis, we should add two classes A and B to 

the object-oriented model. It will be determined that A  inherits from B . 

Consider an example: 

 e is tableСoffeeTabl  (22) 



 

This relation indicates that the essence of the eCoffeeTabl  is a subclass of table . In 

fact, the coffee table has the features and characteristics inherent in the table, but it 

has its distinctive features, such as the purpose of keeping books, personal belongings 

and diminished dimensions. Figure 1 depicts a semantic graph corresponding to this 

relation. 

 

Fig. 1. Semantic graph for the generalization relation 

4.2 The functionality relation 

The syntax for determining the functionality is: 

 ),...,(),...,...,(),,...,(    21222212112111 nmnnnmm CCCBCCCBCCCBcanA  (23) 

This relation determines that the subject environment includes entities A , mn
ijC ,

1,1}{ , 

and the essence of A  can perform actions of 
n

iB 1}{  using the essence
mn

ijC ,
1,1}{ . 

The vertices 4321 ,,, vvvv  will be added to the semantic graph in the process of 

constructing this relation:  
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as well as arcs 321 ,, eee  according to (25): 
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At the second stage of the semantic analysis, three classes CBA  , ,  will be added to 

the object-oriented model. Method op  will be added to class A . This method accepts 

two arguments of types B  and C . 

Consider an example: 

 Beans)er, coffeeCoffee(watr can makeCoffeeMake  (26) 

This relation indicates that the entity rCoffeeMake can prepare coffee while using 

water and coffee beans. Figure 2 shows a semantic graph corresponding to this 

relation 



 

 

Fig. 2. Semantic graph of the functioning relation 

4.3 Definition relation 

The syntax of the definition relation has the form: 

 
BimplementsAAA n   ,...,, 21  (27) 

This relation indicates that a specific entity is capable of performing the functional 

duties of another entity. The class inheriting from the interface is an analogue of 

generalization in object-oriented programming [11] [12] [13].. 

During processing, the semantic graph is supplemented with vertices :, 21 vv  
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and arc :e  

 TypeImplementseEdgeTypevvee  )(),2,1()(:  (29) 

At the second stage of semantic analysis, class A  and interface B  will be added to 

the object-oriented model. It will be determined that A  is inherited from B . 

Consider an example: 

 sortextProcesonyApplicatiproprietarimplementsordMicrosoftW  ,  (30) 

This relation (30) indicates that the ordMicrosoftW  essence (the Microsoft Word 

product) can be regarded as onyApplicatiproprietar  (proprietary software product) or 

sor textProces  (word processor). In fact, ordMicrosoftW has all the peculiarities 

inherent to both the proprietary software and a word processor. Figure 3 represents a 

semantic graph corresponding to this relation (27): 

 

Fig. 3. Semantic graph for the generalization relation 



 

4.4 The specification relation 

The syntax for determining the ratio of the specification has the form: 

 ),…C,C (CB),…,…C,C (CB),,…C,C (C B A specify nmnnnmm 21222212112111  ,  (31) 

This relation (31) determines that the subject environment includes entities A and 

mn
ijC .

1,1}{ while the entity A  can perform actions of 
n

iB 1}{  using the entity mn
ijC .

1,1}{ . 

However, there is no information on how these actions are carried out. 

Implementation of the specification relation differs from the implementation of the 

functionality relation by the fact that the semantic graph is supplemented with vertices 

4321 ,,, vvvv during processing of its construction:  
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and with arcs 321 ,, eee : 
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At the second stage of the semantic analysis, three classes CBA ,, will be added to the 

object-oriented model. An abstract method op  will be added to the class A , which 

accepts two arguments of B  and C types. 

Consider an example: 

  (index)y  getDataer  specifDataProvid  (34) 

Relation (34) indicates that the erDataProvid  (data source) can provide 

information getData , while using the information identifier index . However, nothing 

is known about the nature of the information provided and about the mechanisms that 

will be used to collect this information.  

 

Fig. 4. Semantic graph for the ratio of the specification 

4.5 Inclusion relation 

The syntax for determining the inclusion is: 



 

 nBBBcontainsA ,...,,  21  (35) 

This relation (35) determines that the subject environment includes entities A  

and
n

iB 1}{ , and entity A  includes entities 
n

iB 1}{  as its components. 

During processing, the semantic graph is supplemented with vertices 21,vv : 
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and with arc e : 

 peContainsTyeEdgeTypevve  )(  ),,()( 21  (37) 

At the second stage of semantic analysis, two classes A  and B  will be added to the 

object-oriented model. Class A  will contain a type B  attribute. 

Consider an example: 

 , stringstains bodyGuitar con  (38) 

This attitude indicates that the Guitar entity includes the body and strings entities. The 

figure 5 represents a semantic graph corresponding to this relation (38). 

 

Fig. 5. Semantic graph for the inclusion relation 

4.6 The composition relation 

The composition relation is based on the design pattern “composition”. Design pattern 

“composition” describes a group of objects, considered by using the same interface. 

The task of this design pattern is to build a tree-like data structure that defines the 

hierarchy. The composition allows access to individual objects and their compositions 

using a unified interface. 

Programmers often split vertex-leaves and vertex-nodes when working with tree-

like data structures. It makes the code more complex and increases the probability of a 

mistake. The solution is to use an interface that allows access to complex and 

primitive objects in the same way. In the object-oriented programming, a composite 

object is an object consisting of one or more similar objects, each of which has similar 

functionality. This relation is known as "has-a". The key concept is that it is possible 

to manage a group of objects by managing only one object. The composition can be 

used when the client code should ignore the difference between complex and simple 

objects. It is because the code processes the former and the latter in the same way [11] 

[12] [13]. 



 

The composition relation syntax is: 

 es  compositC,…,Cd C  leafs anB,…,Bn A has BCompositio m21n21 ,,  (39) 

This relation (39) determines that the subject environment includes entities A , 
n

iB 1}{  

and
m

iC 1}{ . According to the description above: A  performs the role of Component, 

n
iB 1}{  performs the role of Leaf, 

m
iC 1}{  – the role of Composite.  

During processing of this design, the semantic graph will be supplemented with 

vertices with names ACompositeCBA ,,,  describing entities and vertices with names 

d, childremoveChiladdChild, , which describe operations.  

Arches defining relations will be added: 

 the entity AComposite  performs operations d, childremoveChiladdChild, ; 

 the entity AComposite  defines A ; 

 the entity B  defines A ; 

 the entity C  defines AComposite ; 

 the entities A are involved in the dremoveChiladdChild,  operation. 

Consider an example: 

 sitestory compo and direclink leafsas file,emObject hn fileSystCompositio   (40) 

File system element ObjectfileSystem acts as a component of the composition. The 

simple elements of the composition are linkfile , . The complex element of the 

composition is .directory  The figure 6 depicts a semantic graph corresponding to this 

relation (40): 

 

Fig. 6. Semantic graph for composition relation 



 

4.7 Validation of a semantic graph 

After constructing the semantic graph, it is necessary to validate it. If the model is in 

the form of a semantic graph, it is easy to notice logical errors. If we consider a 

semantic graph as a structure in the computer memory, we can use an algorithm on 

the graphs to search for logical errors committed during its construction. 

First, check the Incompatibility of the types of arcs and types of edges. Sum up and 

give a list of types of edges and vertices. The following types of edges are used: 

 ContainsRelation; 

 ImplementationRelation; 

 IsRelation; 

 CanRelation; 

 SpecifyRelation; 

 DecoratesRelation; 

 UsesRelation. 

Two types of vertices are used: 

 EssenseNode; 

 OperationNode. 

There are restrictions that arcs of a specific type can connect only vertices of a 

particular type. There are 4 classes of arcs according to this criterion: 

 arcs that connect vertices of the EssenseNode type with the vertices EssenseNode: 

ContainsRelation, IsRelation, ImplementationRelation; 

 arcs that connect vertices of the EssenseNode type with the vertices 

OperationNode: CanRelation, SpecifyRelation; 

 arcs that connect the vertices of the OperationNode type with the vertices 

EssenseNode: UsesRelation; 

 arcs that connect the tops of the OperationNode type with the vertices 

OperationNode: DecoratesRelation.  

Therefore, validation provides checking of correspondence of arcs and vertices types. 

In general case, a semantic graph may contain cycles. For example, an entity may 

contain an operation involving one or more entities of the same type. However, some 

types of connections should not be locked up. For example, there can be no loops 

formed by IsRelation -type arcs. 

The following criteria are used for assessing the quality of the constructed semantic 

graph: 

 number of unconnected areas in the graph: if the graph consists of two or more 

domains, then this indicates that the semantic model is in fact two models; 

 the average number of edges entering a vertex: the higher the value of this 

indicator - the higher is the connectivity of the model; 

 maximum number of edges entering or leaving a vertex; 



 

 the ratio of the average number of edges entering the vertex to the maximum 

number of edges entering the vertex: if this value is significantly higher than 2, it 

indicates that the graph is not balanced; 

 the ratio of the number of vertices to the number of edges. 

5 Construction of an object model 

After the semantic graph is constructed and the validation is executed, the object 

model is generated.The object model represents a hierarchy of objects describing the 

hierarchy of data types and their attributes and operations. This model is used to 

generate software code in the future. 

This process represents the sequence of stages. The first steps are the graph walk 

and supplementation of the object model with information. In fact the data is copied 

and converted from one format to another. The final steps consist of the complex 

analysis of the semantic graph and the already constructed part of the object model. 

Based on the results of this analysis, the object model is supplemented with new 

information. 

The construction of an object model includes the following steps: 

 generation of data types based on the entities described in the semantic graph; 

 addition of attributes to data types; 

 addition of operations to data types; 

 addition of information on basis and derivative classes to the object model; 

 inheritance from the interfaces execution. 

After that, if the object model is built, there is code generation. Code generation boils 

down to a recursive walk of the object model and creation of corresponding language 

constructs. 

5.1 The comprehensive example 

Let's have on input the following object model: 

Composition furniture has sofa, chair, cupboard leafs and living Room, 

kitchen composites.  

Furniture specify color, size and location.  

Furniture has name. Location has x, y. 

After the analysis is complete, a semantic graph is constructed. The result is shown 

in the figure 7. 



 

 

Fig. 7. Semantic graph on the control example 

Generation of the object model is the next stage. At the final stage, the program code 

is generated. 

6 Conclusion 

The algorithm of automated creation of object-oriented models is considered. At the 

first stage, the description of the subject environment in the natural language is 

transformed into a description in the artificial language gen2. Then the text in the 

artificial language undergoes syntactic and semantic parsing. The semantic graph is 

based on the results of the parsing. This graph is validated for identifying logical 

errors. The object-model in the form of classes is based on the data obtained from the 

analysis of the semantic graph. An object model can further be used to generate 

software code, UML-diagrams, design documentation, etc. 
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