
The Matrix-based Knapsack Cipher in the Context of

Additively Homomorphic Encryption

Aleksei Vambol1[0000-0003-1929-7783]

1 Department of Computer Systems, Networks and Cybersecurity,

National Aerospace University «KhAI», Kharkiv, Ukraine

o.vambol@csn.khai.edu

Abstract. The purpose of this paper is the research of the matrix-based knap-

sack cipher in the context of additively homomorphic encryption and its appli-

cation in secret electronic voting. Group-based knapsack ciphers represent a

novel approach for building knapsack-like encryption schemes, which is based

on the properties of generating sets of finite groups and isomorphic transfor-

mations. The matrix-based knapsack cipher is a cryptosystem of the given class,

which is constructed using the direct product of diagonal subgroups of a general

linear group over a finite field. In the given paper two new results are proposed.

The first one is represented by the proof that the considered encryption scheme

is additively homomorphic. This property allows the investigated cipher to be

used in several application fields besides key agreement in hybrid cryptosys-

tems. The second result is a brief description of a new secret electronic voting

protocol, which is built on the basis of the matrix-based knapsack cipher.

Keywords: matrix-based knapsack cipher, homomorphic encryption, knapsack

cryptosystems, electronic voting, asymmetric ciphers.

1 Introduction

Asymmetric ciphers, also known as public-key encryption schemes, are of great im-

portance for ensuring the confidentiality of data exchange as they allow users of inse-

cure communication channels to establish a common secret key for a symmetric cryp-

tosystem [1]. For this reason the given ciphers are used in such widespread network

protocols like TLS, SSH and IKEv2 [2].

The knapsack-like ciphers constitute the class of asymmetric encryption schemes,

which has been among the earliest representatives of public-key cryptosystems. The

Merkle-Hellman knapsack cipher is the historically first encryption scheme of the

given class. Although this cryptosystem, as well as many other ciphers of the afore-

mentioned class, has been broken, knapsack-based cryptography continues to attract

attention of researchers [1]. Attempts to develop new or improve the existing cryp-

tosystems of this class are undertaken as the general knapsack problem has been

proven to be NP-complete [3].

Group-based knapsack ciphers represent a novel approach for building knapsack-

like encryption schemes, which is based on the properties of generating sets of finite

groups and isomorphic transformations. The matrix-based knapsack cipher is a cryp-

tosystem of the given class, which is constructed using the direct product of diagonal

subgroups of a general linear group over a finite field [4, 5]. This encryption scheme,

as well as its class, has been proposed in [4].

The purpose of the present work is to continue and deepen the matrix-based knap-

sack cipher research, which has been started in [5]. In the given paper two new results

are proposed. The first one is represented by the proof that the considered encryption

scheme is additively homomorphic. This property can be useful, since homomorphic

ciphers are used in several fields of application such as electronic voting, secure mul-

ti-party computation and private information retrieval [6]. The second result is a brief

description of a new secret electronic voting protocol, which is built on the basis of

the matrix-based knapsack cipher.

2 The Matrix-based Knapsack Cipher

Let n and q be parameters of this cryptosystem. Consider a group G, which is the

diagonal subgroup of general linear group GL(n, GF(q)). As the multiplication of

diagonal matrices is commutative, G is an abelian group. Choose a generating set of

G and represented it by a tuple (g1, g2, ..., gn). A value of gi is chosen as a diagonal

matrix, where the i-th entry of the main diagonal is some primitive element zі of

GF(q) and other elements equal the corresponding entries of n-dimensional identity

matrix. Thus, the generating set of G can be completely described by (z1, z2, ..., zn).

The multiplicative order for gi equals q - 1, so for each d ∈ G there is a single integer

tuple (x1, x2, ..., xn) such that

 1 2 nx x x
n1 2d = g g ... g ,   (1)

where 0 ≤ xі < q - 1 for all i ≤ n [5].

For purpose of brevity, define entі(x) to be the i-th element of the main diagonal of

x ∈ GL(n, GF(q)). If b ∈ G, then enti(b·gi) = zi·enti(b) and entj(b·gi) = entj(b) for j ≠ і.

Therefore, entі(d) equals zi to the power of xi. Hence,

  
іі іzx = log (ent d), (2)

where logg(x) is a discrete logarithm in GF(q).

Select a secret value s ∈ GL(n, GF(q)) to define an isomorphism f: G → H and its

inverse f-1: H → G, where H is some subgroup of GL(n, GF(q)), as follows:

f: x → s-1·x·s,

f-1: y → s·y·s-1.

Owing to (1) and the isomorphism f, any c ∈ H has a unique representation

 1 2 nx
n1 і

x x
2 іc e= e e . = .. e ,),f(g   (3)

where integer xі ∈ [0, q - 2] for all i ≤ n [5].

The key generation procedure for the matrix-based knapsack cipher consists of

choosing a private key s ∈ GL(n, GF(q)) and computation of a tuple (e1, e2, ..., en),

which is a public key [5].

The encryption lies in using (3) for obtaining a ciphertext c from a plaintext, which

is represented by a nonnegative integer tuple (x1, x2, ..., xn), where all elements are

less than q - 1 [5].

The decryption is performed as follows [5]:

1. A value of d is calculated using the formula d = f-1(c). A tuple (z1, z2, ..., zn), which

is required for the next stage of decryption, is either stored along with a private key

or computed by the formula zi = enti(f-1(ei)).

2. A plaintext tuple is obtained in accordance with (2). Since discrete logarithms in

GF(q) are computed at this stage, its efficient performance requires q - 1 to be

smooth or small. In the current paper the last approach is accepted.

In absence of a correct private key the recovery of a plaintext from a ciphertext and a

public key requires to solve (3) for an integer tuple (x1, x2, ..., xn), i.e. to compute a

multidimensional discrete logarithm. There are no known algorithms for solving the

general case of this problem in polynomial time by means of non-quantum computers

[2]. Thus, to date the investigated cipher can be considered secure provided that its

parameters are chosen properly.

A toy example of the matrix-based knapsack cipher, where q = 11 and n = 4, is

presented below. In this case, G is a diagonal subgroup of GL(4, GF(11)), so a tuple

(g1, g2, g3, g4) can be chosen in the following way:

1 2 3 4

2 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0

0 1 0 0 0 6 0 0 0 1 0 0 0 1 0 0
g = , g = , g = , g = .

0 0 1 0 0 0 1 0 0 0 7 0 0 0 1 0

0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 8

      
      
      
      
      

      

Hence, (z1, z2, z3, z4) equals (2, 6, 7, 8). The multiplicative order for each gі is 10, so

the elements of a plaintext tuple must not exceed 9.

A private key s and its inverse s-1 are selected as follows:

-1

3 8 5 2 2 2 0 9

1 3 5 8 8 10 10
s = , s = .

1 10 8 5 8 5 2 10

9 0 9 7 6 2

4

410

  
  
  
  
  

  

The corresponding public key (e1, e2, e3, e4) is described in the following way:

1 2 3

 7 5 10 4 0 8 7 6 1 0 0 0

 2 10 7 5 7 0 6 2 5 7 7 3

 2 9 8 5 3 9 2 4 1 10 9 5

 7 4 8 2 10 8

e

 7 7 5 6 7

= , e = , e =

 4

   
   
   
  
  

   

4

 7 0 6 1

 3 1 3 6

 3 0 4 6

10 0 10 1

, e = .

0

 
 
 
  
  

 

A plaintext to be encrypted is (9, 1, 3, 4). A ciphertext c is obtained as follows:

9 1
1 3 4

43
2

9 0 3 6

0 2 6 1
c = e e e e

10 8 4 7

9 7 4

.

 3

=







 

  

The decryption starts with computation of d as shown below:

-1

6 0 0 0

0 6 0 0
d s c s

0 0 2 0

0 0 0 4

= .







 

 





The last stage of the decryption lies in obtaining the elements of the plaintext tuple

from d in the following way:

   
1 21 1 2 2z 2 z 6x = log () log (6) 9, xent d ent d= log () log (6) 1,   

   

3 43 3 4 4z 7 z 8x = log () log (2) 3 xent d , ent d= log () lo 4 4g .()   

Thus, the result of the decryption is (9, 1, 3, 4), which equals the original plaintext.

3 The Proof of Additive Homomorphism

A cipher is additively homomorphic if for all parameters and keys it possesses all of

the following features [7, 8]:

1. A set of plaintexts with and a ciphertexts set with are additive and multiplica-

tive abelian groups, respectively. The symbols  and  designate some binary

operations.

2. If an encryption procedure converts m1 to c1 and m2 to c2, then the decryption of c1

c2 yields m1  m2.

For the matrix-based knapsack cipher define operations and as follows:

            1 n 1 n 1 1 n nu , ..., u v , ..., v = u + v mod q - 1 , ..., u + v mod q - 1

1 2 1 2c c c c  

It is easy to show that the set of plaintexts and  constitute an additive abelian group.

The ciphertexts set and form the group H, which is isomorphic to the multiplicative

abelian group G. Thus, the investigated cipher fulfills the first of the aforesaid neces-

sary conditions of additive homomorphism.

Consider this cipher in the context of the second feature from the list above. Let the

plaintexts be m1 = (u1, u2, ..., un) and m2 = (v1, v2, ..., vn). The ciphertexts c1 and c2 are

obtained by encryption of m1 and m2, respectively. As the group H is abelian, it fol-

lows from (3) that

 1 1 2 2 n nu +v u +v u +v
n1 21 2 = e e .c . e .c .    (4)

Since ei is defined by (3), it has the same multiplicative order as gi, i.e. q - 1. Thus, it

is possible to transform (4) into the following expression:

           1 1 2 2 n nu + v mod u + v moq - 1 q - 1 q d u + v mod

n1

2
-1

1 2c c e e .= . . e    (5)

In (5) each ei is raised to the nonnegative power, which is less than q - 1. Therefore,

the decryption of c1  c2 yields ((u1 + v1) mod (q - 1) , ..., (un + vn) mod (q - 1)), which

is equal to m1  m2. So the second necessary condition from the aforesaid list is ful-

filled by the considered cryptosystem.

Thus, the matrix-based knapsack cipher is additively homomorphic, as it has all the

features from the list above.

4 Application in Secret Electronic Voting

Secret electronic voting systems can be built on the basis of additively homomorphic

encryption schemes. However, such systems require using additional cryptographic

tools, among which there are secret-sharing schemes and zero-knowledge proof pro-

tocols [9].

As the matrix-based knapsack cipher is additively homomorphic, it can be used to

construct the secret e-voting protocol, which is proposed below. Secret sharing and

zero-knowledge proof schemes are not considered in the current paper, since choosing

them can be the subject of a separate research. The focus of this section is on the role,

which the investigated cryptosystem plays in the described e-voting protocol. Using

this cipher allows voters to keep their votes secret during the tallying process.

The proposed secret e-voting protocol consist of the preparatory, voting and tally-

ing stages. The first stage comprises registering voters and candidates, choosing pa-

rameters of the used cryptographic tools, generating key data and distributing required

information among the participants of a voting process. The second stage lies in col-

lecting and validating the encrypted votes of authenticated users. The last stage is

represented by tallying without decrypting the data submitted by voters.

The preparatory stage includes the following steps:

1. Voters and candidates are registered in the e-voting system. Let nv and nc be quan-

tities of voters and candidates, respectively.

2. The tallying committee chooses positive integer number tv, which determines the

range of marks used by a voter, and publishes it. Accordingly, a vote is a tuple of

marks given to candidates, where each element belongs to {0, 1, 2, ..., tv}. The val-

ue of tv should be small to provide computational efficiency, since the use of a

large tv leads to calculation of discrete logarithms in a large finite field during the

tallying stage.

3. The parameters of the matrix-based knapsack cipher are chosen. The value of q

must be no less than tv · nv + 2 to ensure that any total mark given to a candidate is

less than q - 1. The parameter n is chosen to equal nc + np, where np is the length of

a random padding tuple used to provide a probabilistic encryption of a vote. Con-

sequently, an encrypted vote is a ciphertext corresponding to the plaintext obtained

by concatenating a vote tuple with a random padding. The value of q to the power

of np must be sufficiently large to provide semantic security against chosen-

plaintext attack. Choosing the value of np can be considered in further research.

4. The public and private keys for the matrix-based knapsack cipher are generated. A

secret sharing scheme is used to split the private key into nt unique secret shares,

where nt is the number of members of tallying committee. Each member receives

only one of these shares. No member must obtain the private key or a share given

to another member. All nt shares are required to recover the decryption key. After

the secret shares are generated, the public key is published, whereas the private one

is deleted as no one must know it.

The voting stage can be described as follows:

1. The voting server and a voter perform mutual authentication.

2. A voter gives to each candidate some nonnegative integer mark, which does not

exceed tv, and performs probabilistic encryption of his vote by means of the con-

sidered cipher using the public key of the voting system. Let wi,j denote the mark

given by the i-th voter to the j-th candidate. The k-th element of the random pad-

ding tuple generated by the i-th voter is designated as pi,k. The i-th encrypted vote

сі is obtained as the result of encryption of the plaintext

 c pi,1 i,2 i,n i,1 i,2 i,nw w ...,w p , p , ..., p, , , ,

where wi,j ∈ {0, 1, 2, ..., tv} for all j ≤ nc, pi,k ∈ [0, q - 2] for all k ≤ np. Thus, it follows

from (3) that

i,ni,ni,1 i,2 i,1 i,2 pc

c c c

pww w p p
nn ni 1 2 1 2n

c = e e ... e e e ... e .
 

      

3. The value of сі and proof of its correctness are sent to the voting server. This proof,

which is generated by means of a non-interactive zero-knowledge range proof pro-

tocol, allows voting server to make sure that for сі every wi,j is not greater than tv.

The tallying stage consists of the following steps:

1. The voting server calculates h, which is defined as the product of all correct en-

crypted votes received on the previous stage, and sends its value to the tallying com-

mittee. Let nr denote the number of such votes. It follows from (4) that

r

c c c p

r r r

i,1 n i,n n 1 i,1 n

n n n n

1

i

i,n

1 1 1 1= i= i= i=

h = pw e , ... pw e , pw e , ...w w wp e , pp ,

      
          

       
      

   

where pw(x, y) denotes xy. This formula can be transformed into the expression

 1 1

c c

nn pc
mbb m
n1 n n 1

h = e ... e e ... , 6e


    

where bj is total mark given to the j-th candidate and mk is the sum of the k-th ele-

ments of all random padding tuples, which have been used for generating correct

encrypted votes.

2. The members of the tallying committee give their secret shares, as well as the

ciphertext h, to the voting system, which restores the private key, decrypts h and trun-

cates the obtained plaintext tuple, leaving only the first nc elements. The resulting

tuple, which describes an outcome of the voting, is sent to the tallying committee. In

accordance with (5) and (6), the decryption of h yields the tuple

 c p1 n 1 nb ...,b mmod (q -1), mod (q -1), mod (q -1) mod (, ..., m q-1) ,

where bj < q - 1 for all j ≤ nc, which follows from the way of choosing q on the third

step of the preparatory stage. Thus, the resulting tuple received by the tallying com-

mittee is equal to

 c c1 2 n -1 nb b ...,b ,b, , .

The restored private key, as well as the received shares, are kept secret by the voting

system. These data must be deleted after h is decrypted.

3. The tallying committee announces the result of the voting.

Consider a toy example of execution of this secret e-voting protocol, where 3 can-

didates are assessed by 7 voters, which give to each candidate some mark from the set

{0, 1, 2, 3, 4, 5}. In this case, nv = 7, nc = 3 and tv = 5.

The parameters for the underlying cipher are chosen as follows. The smallest pos-

sible value of q is nv · tv + 2 = 37, since this number is prime. Therefore, let q be 37 as

this choice is suitable for a toy example. The value of np is chosen to equal 2, so

n = nc + np = 5. Accordingly, for the given parameters of the matrix-based knapsack

cipher the group G is a diagonal subgroup of GL(5, GF(37)). The elements of the

tuple (g1, g2, g3, g4, g5) can be selected as follows:

1 2 3

2 0 0 0 0 1 0 0 0 0 1 0 0 0 0

0 1 0 0 0 0 5 0 0 0 0 1 0 0 0

g = , g = , g = ,0 0 1 0 0 0 0 1 0 0 0 0 13 0 0

0 0 0 1 0 0 0 0 1 0 0 0 0 1 0

0 0 0 0 1 0 0 0 0 1 0 0 0 0 1

    
    
    
    
    
    

     
    

4 5

1 0 0 0 0 1 0 0 0 0

0 1 0 0 0 0 1 0 0 0

g = , g = .0 0 1 0 0 0 0 1 0 0

0 0 0 15 0 0 0 0 1 0

0 0 0 0 1 0 0 0 0 17

  
  
  
  
  
  

   
  

Thus, (z1, z2, z3, z4, z5) is equal to (2, 5, 13, 15, 17).

A private key s and its inverse s-1 are chosen in the following way:

-1

32 7 26 36 36

12 2 1 16 4

s = ,

24 15 21 13 15

9 22 18 35 8

11 27 3 12 s = .11 36 17 175

24 2

2

7 28 4 10 35

19 33 14 0 36

1 26 32 11

19 20 36 16 26

  
  
  
  
  
  

   
  

Hence, the public key (e1, e2, e3, e4, e5) is described as follows:

1 2

29 36 6 9 36 31 24 23 18 2

29 33 30 8 32 35 29 33 21 27

5 17 10 32 17 1 23 3 8 5

20 31 36 18 31 9 22 18 36 8

12 26 29 25 27 4 18 8 32

= =

21

e , e ,

  
  
  
  
  
  

   
  

3 4

29 25 11 7 6 35 2 6 33 31

21 29 36 33 23 11 6 15 27 22

24 32 21 6 21 14 3 10 31 28

10 1 33 22 18 30 17 14 4 23

35 22 23 18 2

e = , e = ,

0 0 0 17 0

  
  
  
  
  
  

   
  

5

30 13 16 3 28

32 23 10 25 36

16 11 6 31 18

21 26 32 7 19

29 13 16

e .

3 29

=








 
 

The value of s is split into unique secret shares, which are distributed among of the

members of tallying committee. The values of s and s-1 are deleted as soon as all se-

cret shares are generated.

The first voter gives marks 2, 4 and 5 to the first, second and third candidates, re-

spectively. The random values used to encrypt the vote are 27 and 34. Accordingly,

w1 = (2, 4, 5) and p1 = (27, 34). The encrypted vote c1 is obtained as follows:

272 4 5
1 1 2 3 4 5

34

3 20 6 13 10

0 5 14 0 1

c = e e e e e 5 0 26 22 35

33 10 2 1 14

3 20 8 25 7

= .

2





    



 
 

The actions of another voters can be briefly described in the following way:

       2 2 3 3w = 0, 0, 2 , p = 13, 17 , w = 5, 5, 4 , p = 3, 29 ,

       4 4 5 5w = 0, 1, 0 , p = 2, 3 , w = 3, 2, 1 , p = 31, 5 ,

       6 6 7 7w = 4, 3, 0 , p = 25, 15 , w = 0, 5, 0 , p = 11, 35 ,

2 3

5 7 5 1 7 8 27 10 36 16

29 4 35 6 30 28 6 24 17 27

c = c =34 15 34 0 31 14 36 25 0 22

26 9 24 34 16 10 3 8 35 32

3 31 1 23 16 29 26 27 19 22

, ,

  
  
  
  
  
  

   
  

4 5

6 14 36 24 29 12 21 15 7 33

8 18 13 25 35 28 22 35 13 28

c = c =31 7 17 31 22 25 24 28 12 28

17 25 2 2 30 30 30 1 11 34

27 13 36 28 33 23 26

,

3 3

,

3 2 9

  
  
  
  
  
  

   
  

6 7,

7 4 13 9 31 29 35 17 16 26

6 24 24 6 33 31 9 17 5 7

c = c =9 32 22 23 15 8 1 1 15 31

29 23 15 24 36 4 25 25 22 2

20 22 30 12 7 23 19 18 19 1

.

  
  
  
  
  
  

   
  

After all encrypted votes are received, the voting server computes h as shown below:

7

i

i 1

35 30 29 20 3

12 1 30 0 8

h = c 8 16 6 21 4

34 11 27 34 18

1 28 30 19 33

= .










 
 



The voting system obtains the secret shares, as well as the value of h, from the tally-

ing committee, restores the private key s and decrypts the ciphertext h. The first stage

of the decryption lies in calculation of d in the following way:

-1

30 0 0 0 0

0 0 0 0

= .0 0 0 0

0

12

d s h s 10

1

0 0 9 0

0 0 0 10








 






 

The decryption ends with obtaining the plaintext tuple (x1, x2, x3, x4, x5) as follows:

   
1 2z 2 z1 1 2 2 5x = log () log (30) 14, x = log () logent d ent d ,(12) 20   

   

3 4z 13 z3 3 4 4 15ent d ,x = log ent() log (10) 12 x = log () log (d 9 .) 4   

 
5z5 75 1x = log () log (11)ent 0d .3 

The plaintext truncated to the first 3 elements, which represents the outcome of the

voting, is sent to the tallying committee. Its members receive the tuple (14, 20, 12)

and publish it as the voting results. Since w1 + ... + w7 = (14, 20, 12), the published

total marks are correct.

5 Conclusion

The property of additive homomorphism, which is proven for the matrix-based knap-

sack cipher in the current work, allows this encryption scheme to be used in several

fields of application, which include but are not limited to key agreement in hybrid

cryptosystems. In particular, a new secret electronic voting protocol constructed on

the basis of the given cipher is proposed in the given paper in the form of a brief de-

scription. This protocol allows a voter to assess each candidate by means of using

nonnegative integer marks.

Future research can be focused on choosing the parameters for the considered cryp-

tosystem, which would provide 128-bit and 256-bit security levels. Another possible

research direction encompasses the probabilistic encryption by means of the given

cipher in the context of the proposed secret e-voting protocol.

References

1. Schneier, B.: Applied Cryptography: Protocols, Algorithms and Source Code in C. 20th

edn. John Wiley & Sons (2015)

2. ETSI White Paper No. 8. Quantum Safe Cryptography and Security: An introduction, ben-

efits, enablers and challenges. European Telecommunications Standards Institute (2015).

3. Van Tilborg, H.: An Introduction to Cryptology. Springer (2012)

4. Zhivotova, А., Ziuliarkina, N., Kostygina, Y.: Modification of the Cryptosystem with Pub-

lic Key on the Basis of Knapsack Problem. UrFR Newsletter. Information Security 1 (11),

pp. 16-20 (in Russian) (2014)

5. Vambol, A.: The Prospects for Group-based Knapsack Ciphers in the Post-Quantum Era.

In: 9th IEEE International Conference on Dependable Systems, Services and Technologies

(DESSERT), pp. 271-275 (2018)

6. Liu, J., Mesnager, S., Chen, L.: Partially homomorphic encryption schemes over finite

fields. In: the 6th International Conference on Security, Privacy and Applied Cryptography

Engineering (SPACE 2016), pp. 109-123 (2016)

7. Bendlin, R., Damgård, I., Orlandi, C., Zakarias, S.: Semi-Homomorphic Encryption and

Multiparty Computation. In: 30th Annual International Conference on the Theory and Ap-

plications of Cryptographic Techniques (EUROCRYPT 2011), pp. 169-188 (2011)

8. Barshap, G., Tassa, T.: Privacy-Preserving Planarity Testing of Distributed Graphs. In: Da-

ta and Applications Security and Privacy XXXII (DBSec 2018), pp. 131-147 (2018)

9. The Future of Voting: End-to-End Verifiable Internet Voting Specification and Feasibility

Assessment Study. U.S. Vote Foundation (2015)

https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=8401513
https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=8401513

